Search results for: bulk traps
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 805

Search results for: bulk traps

325 The Effect of Public Debt on the Economic Growth and Development in Nigeria

Authors: Uzoma Emmanuel Igboji

Abstract:

This paper examines the influence of public debts (external and internal) on economic growth and development in Nigeria from (1980-2015). The study uses aggregate GDP as a proxy for economic growth, per capital income as a proxy for standard of living and Government expenditure on health as a proxy for human capital development, while Foreign Direct Investment, Unemployment rate, and Oil revenue were used as control variables. The study made use of ex-post facto research design with the data extracted from the Central Bank of Nigeria (CBN) Statistical Bulletin and the World Bank database. It adopted a multiple regression analysis of the ordinary least square (OLS) method with the help of E-View version 3.0. The results revealed that external debt has a negative and insignificant effect on GDP, per capital income and human capital development. The study concluded that external debts were being channeled to meet the recurrent expenditures of the nation’s economy at the expense of productive investment that could stimulate growth and poverty alleviation. It, however, recommended that government should ensure that the bulk of the total borrowings are mostly sourced from within the domestic economy so that the repayment of the principal and interest will serve as a crowd in-effect rather that crowd out-effect which in turn further accelerates the country’s economic growth and development.

Keywords: economic growth, external debt, internal debt, Nigeria

Procedia PDF Downloads 251
324 Eco-Survivalism and Nomadic Pastoralism: An Exploratory Study on the Dialectics of Herder-Farmer Conflict in Nigeria

Authors: Francis N. Okpaleke

Abstract:

The threat of Fulani herder militancy in Nigeria has led to a volatile security situation characterized by communal strife, arms proliferation, rural banditry, and insurgency. The exigency of this situation resonates in the eco-survivalist theory of farmer-herder conflict which holds that the herder deems the farmers’ unwarranted incursions into his grazing terrain as an effrontery that must reprised and a call to war. In spite of the rising incidence of Fulani militancy in Nigeria, only little is known concerning the phenomenon. The bulk of prevailing ideas on the subject has been largely and unnecessarily journalistic and anecdotal, lacking in intellectual depth, fecundity and rigour. The issue has remained scarcely documented by way of organized research. There is therefore a need for a systematic investigation that would leverage scholarly and policy insights on the subject which is the purpose of this study. The study will therefore, seek to examine the nexus between nomadic pastoralism and the incidence of herder-farmer conflicts in Nigeria with particular reference to the central region of the country. By means of qualitative descriptive analysis predicated on the theory of eco-violence, the paper explores the contemporary historical and structural drivers of this conflict, its relationship with the dynamics of climate change in Nigeria and its implication of human security in Nigeria. The paper also proffers theoretical and policy recommendations to mitigate the onto ward conflict.

Keywords: eco-survivalism, conflict, pastoralism, nomads

Procedia PDF Downloads 314
323 Field-Programmable Gate Array Based Tester for Protective Relay

Authors: H. Bentarzi, A. Zitouni

Abstract:

The reliability of the power grid depends on the successful operation of thousands of protective relays. The failure of one relay to operate as intended may lead the entire power grid to blackout. In fact, major power system failures during transient disturbances may be caused by unnecessary protective relay tripping rather than by the failure of a relay to operate. Adequate relay testing provides a first defense against false trips of the relay and hence improves power grid stability and prevents catastrophic bulk power system failures. The goal of this research project is to design and enhance the relay tester using a technology such as Field Programmable Gate Array (FPGA) card NI 7851. A PC based tester framework has been developed using Simulink power system model for generating signals under different conditions (faults or transient disturbances) and LabVIEW for developing the graphical user interface and configuring the FPGA. Besides, the interface system has been developed for outputting and amplifying the signals without distortion. These signals should be like the generated ones by the real power system and large enough for testing the relay’s functionality. The signals generated that have been displayed on the scope are satisfactory. Furthermore, the proposed testing system can be used for improving the performance of protective relay.

Keywords: amplifier class D, field-programmable gate array (FPGA), protective relay, tester

Procedia PDF Downloads 216
322 Oryzanol Recovery from Rice Bran Oil: Adsorption Equilibrium Models Through Kinetics Data Approachments

Authors: A.D. Susanti, W. B. Sediawan, S.K. Wirawan, Budhijanto, Ritmaleni

Abstract:

Oryzanol content in rice bran oil (RBO) naturally has high antioxidant activity. Its reviewed has several health properties and high interested in pharmacy, cosmetics, and nutrition’s. Because of the low concentration of oryzanol in crude RBO (0.9-2.9%) then its need to be further processed for practical usage, such as via adsorption process. In this study, investigation and adjustment of adsorption equilibrium models were conducted through the kinetic data approachments. Mathematical modeling on kinetics of batch adsorption of oryzanol separation from RBO has been set-up and then applied for equilibrium results. The size of adsorbent particles used in this case are usually relatively small then the concentration in the adsorbent is assumed to be not different. Hence, the adsorption rate is controlled by the rate of oryzanol mass transfer from the bulk fluid of RBO to the surface of silica gel. In this approachments, the rate of mass transfer is assumed to be proportional to the concentration deviation from the equilibrium state. The equilibrium models applied were Langmuir, coefficient distribution, and Freundlich with the values of the parameters obtained from equilibrium results. It turned out that the models set-up can quantitatively describe the experimental kinetics data and the adjustment of the values of equilibrium isotherm parameters significantly improves the accuracy of the model. And then the value of mass transfer coefficient per unit adsorbent mass (kca) is obtained by curve fitting.

Keywords: adsorption equilibrium, adsorption kinetics, oryzanol, rice bran oil

Procedia PDF Downloads 322
321 Evaluating the Functional Properties of Flours Varying Percentage Blend of Malted Acha, Aya and Ede flours as Potentials for Weaning Food Formulation

Authors: O. G. Onuoha, E. Chibuzo, H. M. Badau

Abstract:

Traditional weaning foods are dense or thick paste, which are then diluted with large volume of water to produce thin drinkable consistency for infants. This work was aimed at evaluating the functional properties of six varying percentage blends of locally abundant, underutilized crops; malted acha (Digitaria exiles), aya (Cyperus esculentus) and ede (Colocasia esculentum) flours as weaning foods. The results of bulk density and starch digestibility showed a decrease with increasing percentage addition of malted acha with values from 5.889±0.98 to 7.953±0.103; -5.45 to -13.6 respectively. While water absorption capacity, measure of dispersibility, wettability, swelling power, % solubility increased with increase in percentage addition of malted acha with values from 6.6±0.712 to 8.1±0.1; 2.12 to 37.225; 3.21±0.04 to 3.6±0.03; 20.64 to 24.46 respectively. There was no significant difference between all the formula and the control. Results of pasting properties showed that the peak viscosity, break down, final viscosity, setback values from -0.42±0.085 to -3.67±0.085; 5.63±0.045 to 1.79±0.04;-3.88±0.045 to -1.475±0.275; 2.17±0.045 to 2.93±0.045 respectively. There was no significant different between some of the weaning formula and the control for peak viscosity, break down, final viscosity and temperatures required to form paste. The formula compared favorably with the control- a commercially sold formula.

Keywords: weaning food, functional properties, under-utilized crops, blends

Procedia PDF Downloads 444
320 Management and Evaluation of the Importance of Porous Media in Biomedical Engineering as Associated with Magnetic Resonance Imaging Besides Drug Delivery

Authors: Fateme Nokhodchi Bonab

Abstract:

Studies related to magnetic resonance imaging (MRI) and drug delivery are reviewed in this study to demonstrate the role of transport theory in porous media in facilitating advances in biomedical applications. Diffusion processes are believed to be important in many therapeutic modalities such as: B. Delivery of drugs to the brain. We analyse the progress in the development of diffusion equations using the local volume average method and the evaluation of applications related to diffusion equations. Torsion and porosity have significant effects on diffusive transport. In this study, various relevant models of torsion are presented and mathematical modeling of drug release from biodegradable delivery systems is analysed. In this study, a new model of drug release kinetics from porous biodegradable polymeric microspheres under bulk and surface erosion of the polymer matrix is presented. Solute drug diffusion, drug dissolution from the solid phase, and polymer matrix erosion have been found to play a central role in controlling the overall drug release process. This work paves the way for MRI and drug delivery researchers to develop comprehensive models based on porous media theory that use fewer assumptions compared to other approaches.

Keywords: MRI, porous media, drug delivery, biomedical applications

Procedia PDF Downloads 89
319 Kinetics, Equilibrium and Thermodynamic Studies on Adsorption of Reactive Blue 29 from Aqueous Solution Using Activated Tamarind Kernel Powder

Authors: E. D. Paul, A. D. Adams, O. Sunmonu, U. S. Ishiaku

Abstract:

Activated tamarind kernel powder (ATKP) was prepared from tamarind fruit (Tamarindus indica), and utilized for the removal of Reactive Blue 29 (RB29) from its aqueous solution. The powder was activated using 4N nitric acid (HNO₃). The adsorbent was characterised using infrared spectroscopy, bulk density, ash content, pH, moisture content and dry matter content measurements. The effect of various parameters which include; temperature, pH, adsorbent dosage, ion concentration, and contact time were studied. Four different equilibrium isotherm models were tested on the experimental data, but the Temkin isotherm model was best-fitted into the experimental data. The pseudo-first order and pseudo-second-order kinetic models were also fitted into the graphs, but pseudo-second order was best fitted to the experimental data. The thermodynamic parameters showed that the adsorption of Reactive Blue 29 onto activated tamarind kernel powder is a physical process, feasible and spontaneous, exothermic in nature and there is decreased randomness at the solid/solution interphase during the adsorption process. Therefore, activated tamarind kernel powder has proven to be a very good adsorbent for the removal of Reactive Blue 29 dyes from industrial waste water.

Keywords: tamarind kernel powder, reactive blue 29, isotherms, kinetics

Procedia PDF Downloads 245
318 Camera Trapping Coupled With Field Sign Survey Reveal the Mammalian Diversity and Abundance at Murree-Kotli Sattian-Kahuta National Park, Pakistan

Authors: Shehnila Kanwal

Abstract:

Murree-Kotli Sattian-Kahta National Park (MKKNP) was declared in 2009. However, not much is known about the diversity and relative abundance of the mammalian fauna of this park. In the current study, we used field sign survey and infrared camera trapping techniques to get an insight into the diversity of mammalian species and their relative abundance. We conducted field surveys in different areas of the park at various elevations from April 2023 up to March 2024 to record the field signs (scats, pug marks etc.) of the mammals’ species; in addition, we deployed a total of 22 infrared trail camera traps in different areas of the park, for 116 nights. We obtained a total of 5201 photographs using camera trapping. Results of camera trapping coupled with field sign surveys confirmed the presence of a total of twenty-one different mammalian species (large, meso and small mammals) recorded in the study area. The common leopard was recorded at four different sites in the park, with an altitudinal range between 648m-1533m. Distribution of Asiatic jackal and a red fox was recorded positive at all the sites surveyed in the park with an altitudinal range between 498m-1287m and 433m-2049m, respectively. Leopard cats were recorded at two different sites within the altitudinal range between 498m-894m. Jungle cat was recorded at three sites within an altitudinal range between 498m-846. Asian palm civets and small Indian civets were both recorded at three sites. Grey mongoose and small Indian mongoose were recorded at four and three sites. We also collected a total of 75 scats of different mammal species in the park to further confirm their occurrence. For the Indian pangolin, we recorded three field burrows at two different sites. Diversity index (H’=2.369960) and species evenness (E=0.81995) were calculated. Analysis of data revealed that wild boar (Sus sucrofa) was the most abundant species in the park; most of the mammal species were found nocturnal; these remain active from dusk throughout the night, and some of them remain active at dawn time. Leopard and Asian palm civets were highly overlapping species in the study area. Their temporal activity pattern overlapped 61%. Barking deer and Indian crested porcupine were also found to be nocturnal species they remained active throughout the night.

Keywords: MKKNP, diversity, abundance, evenness, distribution, mammals, overlapped

Procedia PDF Downloads 18
317 Magnetic Field Induced Mechanical Behavior of Fluid Filled Carbon Nanotube Foam

Authors: Siva Kumar Reddy, Anwesha Mukherjee, Abha Misra

Abstract:

Excellent energy absorption capability in carbon nanotubes (CNT) is shown in their bulk structure that behaves like super compressible foam. Furthermore, a tunable mechanical behavior of CNT foam is achieved using several methods like changing the concentration of precursors, polymer impregnation, non covalent functionalization of CNT microstructure etc. Influence of magnetic field on compressive behavior of magnetic CNT demonstrated an enhanced peak stress and energy absorption capability, which does not require any surface and structural modification of the foam. This presentation discusses the mechanical behavior of micro porous CNT foam that is impregnated in magnetic field responsive fluid. Magnetic particles are dispersed in a nonmagnetic fluid so that alignment of both particles and CNT could play a crucial role in controlling the stiffness of the overall structure. It is revealed that the compressive behavior of CNT foam critically depends on the fluid viscosity as well as magnetic field intensity. Both peak Stress and energy absorption in CNT foam followed a power law behavior with the increase in the magnetic field intensity. However, in the absence of magnetic field, both peak stress and energy absorption capability of CNT foam presented a linear dependence on the fluid viscosity. Hence, this work demonstrates the role magnetic filed in controlling the mechanical behavior of the foams prepared at nanoscale.

Keywords: carbon nanotubes, magnetic field, energy absorption capability and viscosity

Procedia PDF Downloads 304
316 Synthesis and Applications of Biosorbent from Barley Husk for Adsorption of Heavy Metals and Bacteria from Water

Authors: Sudarshan Kalsulkar, Sunil S. Bhagwat

Abstract:

Biosorption is a physiochemical process that occurs naturally in certain biomass which allows it to passively concentrate and bind contaminants onto its cellular structure. Activated carbons (AC) are one such efficient biosorbents made by utilizing lignocellulosic materials from agricultural waste. Steam activated carbon (AC) was synthesized from Barley husk. Its synthesis parameters of time and temperature were optimized. Its physico-chemical properties like density, surface area, pore volume, Methylene blue and Iodine values were characterized. BET surface area was found to be 42 m²/g. Batch Adsorption tests were carried out to determine the maximum adsorption capacity (qmax) for various metal ions. Cd+2 48.74 mg/g, Pb+2 19.28 mg/g, Hg+2 39.1mg/g were the respective qmax values. pH and time were optimized for adsorption of each ion. Column Adsorptions were carried for each to obtain breakthrough data. Microbial adsorption was carried using E. coli K12 strain. 78% reduction in cell count was observed at operating conditions. Thus the synthesized Barley husk AC can be an economically feasible replacement for commercially available AC prepared from the costlier coconut shells. Breweries and malting industries where barley husk is a primary waste generated on a large scale can be a good source for bulk raw material.

Keywords: activated carbon, Barley husk, biosorption, decontamination, heavy metal removal, water treatment

Procedia PDF Downloads 415
315 Characteristics Flakes Product with Dry Residue of Wild Orenago

Authors: Kosutic Milenko, Filipovic Jelena

Abstract:

Cereals constitute the staple food of the human race. In accordance with the modern nutritionist opinions, cereal products, flakes and snack products are the most common foods in the daily diet, such as ready to eat breakfast cereal, flakes, and snacks. Extrusion technology makes it possible to apply different sources of ingredients for the enrichment of cereal-based flakes or snacks products. Substances with strong antioxidant properties such as wild oregano have a positive impact on human health, therefore attracting the attention of scientists, consumers and food industry experts. This paper investigates the effects of simultaneous addition of dry residue of wild oregano (0.5% and 1%), on the physical and colour properties of corn flakes to obtain new products with altered nutritional properties. Post-hoc Tukey’s HSD test at 95% confidence limit showed significant differences between various samples. Addition of dry residue wild oregano positively influenced physical characteristics (decreased bulk density 30.2%, increased expansion rate 44.9%), influenced of decrease hardness 38.1% and work of compression 40.3% also significantly change the color of flakes product. Presented data point that investigated corn flakes is a new product with good physical and sensory properties due to higher level of dry residue of wild oregano.

Keywords: flakes product, wild oregano, phisical properties, colour, sensory properties

Procedia PDF Downloads 322
314 Influence of Culture Conditions on the Growth and Fatty Acid Composition of Green Microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa

Authors: Tatyana A. Karpenyuk, Saltanat B. Orazova, Yana S. Tzurkan, Alla V. Goncharova, Bakytzhan K. Kairat, Togzhan D. Mukasheva, Ludmila V. Ignatova, Ramza Z. Berzhanova

Abstract:

Microalgae due to the ability to accumulate high levels of practically valuable polyunsaturated fatty acids attract attention as a promising raw material for commercial products. It were defined the features of the growth processes of cells green protococcal microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa at cultivation in different nutritional mediums. For the rapid accumulation of biomass, combined with high productivity of total lipids fraction yield recommended to use the Fitzgerald medium (Scenodesmus obliquus, Oocystis rhomboideus) and/or Bold medium (Dictyochlorella globosa). Productivity of lipids decreased in sequence Dictyochlorella globosa > Scenodesmus obliquus > Oocystis rhomboideus. The bulk of fatty acids fraction of the total lipids is unsaturated fatty acids, which accounts for 70 to 83% of the total number of fatty acids. The share of monoenic acids varies from 16 to 36 %, the share of unsaturated fatty acids - from 44 to 65% of total fatty acids fraction. Among the unsaturated acids dominate α-linolenic acid (C18:3n-3), hexadecatetraenic acid (C16:4) and linoleic acid (C18:2).

Keywords: microalgae, lipids, fatty acids, culture conditions

Procedia PDF Downloads 451
313 Numerical Investigation of AL₂O₃ Nanoparticle Effect on a Boiling Forced Swirl Flow Field

Authors: Ataollah Rabiee1, Amir Hossein Kamalinia, Alireza Atf

Abstract:

One of the most important issues in the design of nuclear fusion power plants is the heat removal from the hottest region at the diverter. Various methods could be employed in order to improve the heat transfer efficiency, such as generating turbulent flow and injection of nanoparticles in the host fluid. In the current study, Water/AL₂O₃ nanofluid forced swirl flow boiling has been investigated by using a homogeneous thermophysical model within the Eulerian-Eulerian framework through a twisted tape tube, and the boiling phenomenon was modeled using the Rensselaer Polytechnic Institute (RPI) approach. In addition to comparing the results with the experimental data and their reasonable agreement, it was evidenced that higher flow mixing results in more uniform bulk temperature and lower wall temperature along the twisted tape tube. The presence of AL₂O₃ nanoparticles in the boiling flow field showed that increasing the nanoparticle concentration leads to a reduced vapor volume fraction and wall temperature. The Computational fluid dynamics (CFD) results show that the average heat transfer coefficient in the tube increases both by increasing the nanoparticle concentration and the insertion of twisted tape, which significantly affects the thermal field of the boiling flow.

Keywords: nanoparticle, boiling, CFD, two phase flow, alumina, ITER

Procedia PDF Downloads 125
312 Development of Light-Weight Fibre-Based Materials for Building Envelopes

Authors: René Čechmánek, Vladan Prachař, Ludvík Lederer, Jiří Loskot

Abstract:

Thin-walled elements with a matrix set on a base of high-valuable Portland cement with dispersed reinforcement from alkali-resistant glass fibres are used in a range of applications as claddings of buildings and infrastructure constructions as well as various architectural elements of residential buildings. Even if their elementary thickness and therefore total weight is quite low, architects and building companies demand on even further decreasing of the bulk density of these fibre-cement elements for the reason of loading elimination of connected superstructures and easier assembling in demand conditions. By the means of various kinds of light-weight aggregates it is possible to achieve light-weighing of thin-walled fibre-cement composite elements. From the range of possible fillers with different material properties granulated expanded glass worked the best. By the means of laboratory testing an effect of two fillers based on expanded glass on the fibre reinforced cement composite was verified. Practical applicability was tested in the production of commonly manufactured glass fibre reinforced concrete elements, such as channels for electrical cable deposition, products for urban equipment and especially various cladding elements. Even if these are not structural elements, it is necessary to evaluate also strength characteristics and resistance to environment for their durability in certain applications.

Keywords: fibre-cement composite, granulated expanded glass, light-weighing

Procedia PDF Downloads 291
311 Nano Ceramics Materials in Clean Rooms: Properties and Characterization

Authors: HebatAllah Tarek, Zeyad El-Sayad, Ali F. Bakr

Abstract:

Surface coating can permit the bulk materials to remain unchanged, whereas the surface functionality is engineered to afford a more required characteristic. Nano-Ceramic coatings are considered ideal coatings on materials that can significantly improve the surface properties, including anti-fouling, self-cleaning, corrosion resistance, wear resistance, anti-scratch, waterproof, anti-acid rain and anti-asphalt. Furthermore, various techniques have been utilized to fabricate a range of different ceramic coatings with more desirable properties on Nano-ceramics, which make the materials usually used in in-service environments and worth mentioning that the practical part of this study will be applied in one of the most important architectural applications due to the contamination-free conditions provided by it in the manufacturing industry. Without cleanrooms, products will become contaminated and either malfunction or infect people with bacteria. Cleanrooms are used for the manufacture of items used in computers, cars, airplanes, spacecraft, televisions, disc players and many other electronic and mechanical devices, as well as the manufacture of medicines, medical devices, and foods. The aim of this study will be to examine the Nano-ceramics on porcelain and glass panels. The investigation will be included fabrications, methods, surface properties and applications in clean rooms. The unfamiliarity in this study is using Nano-ceramics in clean rooms instead of using them on metallic materials.

Keywords: nano-ceramic coating, clean rooms, porcelain, surface properties

Procedia PDF Downloads 108
310 Alumina Supported Cu-Mn-La Catalysts for CO and VOCs Oxidation

Authors: Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Petya Cv. Petrova, Georgi V. Avdeev, Diana D. Nihtianova, Krasimir I. Ivanov, Tatyana T. Tabakova

Abstract:

Recently, copper and manganese-containing systems are recognized as active and selective catalysts in many oxidation reactions. The main idea of this study is to obtain more information about γ-Al2O3 supported Cu-La catalysts and to evaluate their activity to simultaneous oxidation of CO, CH3OH and dimethyl ether (DME). The catalysts were synthesized by impregnation of support with a mixed aqueous solution of nitrates of copper, manganese and lanthanum under different conditions. XRD, HRTEM/EDS, TPR and thermal analysis were performed to investigate catalysts’ bulk and surface properties. The texture characteristics were determined by Quantachrome Instruments NOVA 1200e specific surface area and pore analyzer. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor in a wide temperature range. On the basis of XRD analysis and HRTEM/EDS, it was concluded that the active component of the mixed Cu-Mn-La/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio and consisted of at least four compounds – CuO, La2O3, MnO2 and Cu1.5Mn1.5O4. A homogeneous distribution of the active component on the carrier surface was found. The chemical composition strongly influenced catalytic properties. This influence was quite variable with regards to the different processes.

Keywords: Cu-Mn-La oxide catalysts, carbon oxide, VOCs, deep oxidation

Procedia PDF Downloads 260
309 Rapid Start-Up and Efficient Long-Term Nitritation of Low Strength Ammonium Wastewater with a Sequencing Batch Reactor Containing Immobilized Cells

Authors: Hammad Khan, Wookeun Bae

Abstract:

Major concerns regarding nitritation of low-strength ammonium wastewaters include low ammonium loading rates (usually below 0.2 kg/m3-d) and uncertainty about long-term stability of the process. The purpose of this study was to test a sequencing batch reactor (SBR) filled with cell-immobilized polyethylene glycol (PEG) pellets to see if it could achieve efficient and stable nitritation under various environmental conditions. SBR was fed with synthetic ammonium wastewater of 30±2 mg-N/L and pH: 8±0.05, maintaining the dissolved oxygen concentration of 1.7±0.2 mg/L and the temperature at 30±1oC. The reaction was easily converted to partial nitrification mode within a month by feeding relatively high ammonium substrate (~100 mg-N/L) in the beginning. We observed stable nitritation over 300 days with high ammonium loading rates (as high as ~1.1 kg-N/m3-d), nitrite accumulation rates (mostly over 97%) and ammonium removal rate (mostly over 95%). DO was a major limiting substrate when the DO concentration was below ~4 mg/L and the NH4+-N concentration was above 5 mg/L, giving almost linear increase in the ammonium oxidation rate with the bulk DO increase. Low temperatures mainly affected the reaction rate, which could be compensated for by increasing the pellet volume (i.e. biomass). Our results demonstrated that an SBR filled with small cell-immobilized PEG pellets could achieve very efficient and stable nitritation of a low-strength ammonium wastewater.

Keywords: ammonium loading rate (ALR), cell-immobilization, long-term nitritation, sequencing batch reactor (SBR), sewage treatment

Procedia PDF Downloads 273
308 Geological Characteristics and Hydrocarbon Potential of M’Rar Formation Within NC-210, Atshan Saddle Ghadamis-Murzuq Basins, Libya

Authors: Sadeg M. Ghnia, Mahmud Alghattawi

Abstract:

The NC-210 study area is located in Atshan Saddle between both Ghadamis and Murzuq basins, west Libya. The preserved Palaeozoic successions are predominantly clastics reaching thickness of more than 20,000 ft in northern Ghadamis Basin depocenter. The Carboniferous series consist of interbedded sandstone, siltstone, shale, claystone and minor limestone deposited in a fluctuating shallow marine to brackish lacustrine/fluviatile environment which attain maximum thickness of over 5,000ft in the area of Atshan Saddle and recorded 3,500 ft. in outcrops of Murzuq Basin flanks. The Carboniferous strata was uplifted and eroded during Late Paleozoic and early Mesozoic time in northern Ghadamis Basin and Atshan Saddle. The M'rar Formation age is Tournaisian to Late Serpukhovian based on palynological markers and contains about 12 cycles of sandstone and shale deposited in shallow to outer neritic deltaic settings. The hydrocarbons in the M'rar reservoirs possibly sourced from the Lower Silurian and possibly Frasinian radioactive hot shales. The M'rar Formation lateral, vertical and thickness distribution is possibly influenced by the reactivation of Tumarline Strik-Slip fault and its conjugate faults. A pronounced structural paleohighs and paleolows, trending SE & NW through the Gargaf Saddle, is possibly indicative of the present of two sub-basins in the area of Atshan Saddle. A number of identified seismic reflectors from existing 2D seismic covering Atshan Saddle reflect M’rar deltaic 12 sandstone cycles. M’rar7, M’rar9, M’rar10 and M’rar12 are characterized by high amplitude reflectors, while M’rar2 and M’rar6 are characterized by medium amplitude reflectors. These horizons are productive reservoirs in the study area. Available seismic data in the study area contributed significantly to the identification of M’rar potential traps, which are prominently 3- way dip closure against fault zone. Also seismic data indicates the presence of a significant strikeslip component with the development of flower-structure. The M'rar Formation hydrocarbon discoveries are concentrated mainly in the Atshan Saddle located in southern Ghadamis Basin, Libya and Illizi Basin in southeast of Algeria. Significant additional hydrocarbons may be present in areas adjacent to the Gargaf Uplift, along structural highs and fringing the Hoggar Uplift, providing suitable migration pathways.

Keywords: hydrocarbon potential, stratigraphy, Ghadamis basin, seismic, well data integration

Procedia PDF Downloads 74
307 Correlations Between Electrical Resistivity and Some Properties of Clayey Soils

Authors: F. A. Hassona, M. M. Abu-Heleika, M. A. Hassan, A. E. Sidhom

Abstract:

Application of electrical measurements to evaluate engineering properties of soils has gained a wide, promising field of research in recent years. So, understanding of the relation between in-situ electrical resistivity of clay soil, and their mechanical and physical properties consider a promising field of research. This would assist in introducing a new technique for the determination of soil properties based on electrical resistivity. In this work soil physical and mechanical properties of clayey soil have been determined by experimental tests and correlated with the in-situ electrical resistivity. The research program was conducted through measuring fifteen vertical electrical sounding stations along with fifteen selected boreholes. These samples were analyzed and subjected to experimental tests such as physical tests namely bulk density, water content, specific gravity, and grain size distribution, and Attereberg limits tests. Mechanical test was also conducted such as direct shear test. The electrical resistivity data were interpreted and correlated with each one of the measured experimental parameters. Based on this study mathematical relations were extracted and discussed. These results exhibit an excellent match with the results reported in the literature. This study demonstrates the utility of the developed methodology for determining the mechanical properties of soils easily and rapidly depending on their electrical resistivity measurements.

Keywords: electrical resistivity, clayey soil, physical properties, shear properties

Procedia PDF Downloads 294
306 Finite Element Modeling of Friction Stir Welding of Dissimilar Alloys

Authors: Fadi Al-Badour, Nesar Merah, Abdelrahman Shuaib, Abdelaziz Bazoune

Abstract:

In the current work, a Coupled Eulerian Lagrangian (CEL) model is developed to simulate the friction stir welding (FSW) process of dissimilar Aluminum alloys (Al 6061-T6 with Al 5083-O). The model predicts volumetric defects, material flow, developed temperatures, and stresses in addition to tool reaction loads. Simulation of welding phase is performed by employing a control volume approach, whereas the welding speed is defined as inflow and outflow over Eulerian domain boundaries. Only material softening due to inelastic heat generation is considered and material behavior is assumed to obey Johnson-Cook’s Model. The model was validated using published experimentally measured temperatures, at similar welding conditions, and by qualitative comparison of dissimilar weld microstructure. The FE results showed that most of developed temperatures were below melting and that the bulk of the deformed material in solid state. The temperature gradient on AL6061-T6 side was found to be less than that of Al 5083-O. Changing the position Al 6061-T6 from retreating (Ret.) side to advancing (Adv.) side led to a decrease in maximum process temperature and strain rate. This could be due to the higher resistance of Al 6061-T6 to flow as compared to Al 5083-O.

Keywords: friction stir welding, dissimilar metals, finite element modeling, coupled Eulerian Lagrangian Analysis

Procedia PDF Downloads 330
305 Coprophagus Beetles (Scarabaeidae: Coleoptera) of Buxa Tiger Reserve, West Bengal, India

Authors: Subhankar Kumar Sarkar

Abstract:

Scarab beetles composing the family Scarabaeidae is one of the largest families in the order Coleoptera. The family is comprised of 11 subfamilies. Of these, the subfamily Scarabaeinae includes 13 tribes globally. Indian species are however considered within 2 tribes Scarabaeini and Coprini. Scarab beetles under this subfamily also known as Coprophagus beetles play an indispensable role in forestry and agriculture. Both adults and larvae of these beetles do a remarkable job of carrying excrement into the soil thus enriching the soil to a great extent. Eastern and North Eastern states of India are heavily rich in diversity of organisms as this region exhibits the tropical rain forests of the eastern Himalayas, which exhibits one of the 18 biodiversity hotspots of the world and one of the three of India. Buxa Tiger Reserve located in Dooars between latitudes 26°30” to 26°55” North & longitudes 89°20” to 89°35” East is one such fine example of rain forests of the eastern Himalayas. Despite this, the subfamily is poorly known, particularly from this part of the globe and demands serious revisionary studies. It is with this background; the attempt is being made to assess the Scarabaeinae fauna of the forest. Both extensive and intensive surveys were conducted in different beats under different ranges of Buxa Tiger Reserve. For collection sweep nets, bush beating and collection in inverted umbrella, hand picking techniques were used. Several pit fall traps were laid in the collection localities of the Reserve to trap ground dwelling scarabs. Dung of various animals was also examined to make collections. In the evening hours UV light, trap was used to collect nocturnal beetles. The collected samples were studied under Stereozoom Binocular Microscopes Zeiss SV6, SV11 and Olympus SZ 30. The faunistic investigation of the forest revealed in the recognition of 19 species under 6 genera distributed over 2 tribes. Of these Heliocopris tyrannus Thomson, 1859 was recorded new from the Country, while Catharsius javanus Lansberge, 1886, Copris corpulentus Gillet, 1910, C. doriae Harold, 1877 and C. sarpedon Harold, 1868 from the state. 4 species are recorded as endemic to India. The forest is dominated by the members of the Genus Onthophagus, of which Onthophagus (Colobonthophagus) dama (Fabricius, 1798) is represented by highest number of individuals. Their seasonal distribution is most during Premonsoon followed by Monsoon and Postmonsoon. Zoogeographically all the recorded species are of oriental distribution.

Keywords: buxa tiger reserve, diversity, India, new records, scarabaeinae, scarabaeidae

Procedia PDF Downloads 241
304 Arabic Scholar’s Governance Advocacy and Nigeria’s National Security in Nigeria: Perspective of Al-Shaykh Usman Bin Fodio

Authors: Mohammad Jamiu Abdullahi, Shykh Ahmed Abdussalam

Abstract:

The emergence of Arabic on the shore of West Africa heralded the practise of Islam and advocation for a just and egalitarian society. Islam, it was argued, has been perverted and subverted by the Hausa leadership. This necessitated the call for reforming Islam. Al-Shaykh Usman Bin Fodio grabbed the opportunity and fought the perverts to restore the glory of Islam and establish shari'ah way of life. This was the practice, especially in the northern part of Nigeria until the incursion of colonialism. The conquest of the colonial master halted the rule of jihadi leaderships and subjected them to colonialism under which only some aspects of Islamic system considered potentially beneficial to the British interest were retained. The current socio-political and economic crises in Nigeria has necessitated the need to look inwardly to the bulk of works, in Arabic, left behind by the Muslim scholars to help to salvage the country from its present political crisis, economic paralysis and legal decadence. This paper, therefore, examines the relevance of Arabic literary works that housed political/legal theories to salvaging the country from its present political crises, economic paralysis and legal decadence.

Keywords: Arabic Fodio Nigeria security, advocacy governance scholar Usman, British colonial perspective shaykh, leadership Islam jihad politics

Procedia PDF Downloads 335
303 Enhancements to the Coupled Hydro-Mechanical Hypoplastic Model for Unsaturated Soils

Authors: Shanujah Mathuranayagam, William Fuentes, Samanthika Liyanapathirana

Abstract:

This paper introduces an enhanced version of the coupled hydro-mechanical hypoplastic model. The model is able to simulate volumetric collapse upon wetting and incorporates suction effects on stiffness and strength. Its mechanical constitutive equation links Bishop’s effective stress with strain and suction, featuring a normal consolidation line (NCL) with a compression index (λ) presenting a non-linear dependency with the degree of saturation. The Bulk modulus has been modified to ensure that under rapid volumetric collapse, the stress state remains at the NCL. The coupled model comprises eighteen parameters, with nine for the hydraulic component and nine for the mechanical component. Hydraulic parameters are calibrated with the use of water retention curves (IWRC) across varied soil densities, while mechanical parameters undergo calibration using isotropic and triaxial tests on both unsaturated and saturated samples. The model's performance is analyzed through the back-calculation of two experimental studies: (i) wetting under different vertical stresses for Lower Cromer Till and (ii) isotropic loading and triaxial loading for undisturbed loess. The results confirm that the proposed model is able to predict the hydro-mechanical behavior of unsaturated soils.

Keywords: hypoplastic model, volumetric collapse, normal consolidation line, compression index (λ), degree of saturation, soil suction

Procedia PDF Downloads 64
302 Fabrication and Characterization of Al2O3 Based Electrical Insulation Coatings Around SiC Fibers

Authors: S. Palaniyappan, P. K. Chennam, M. Trautmann, H. Ahmad, T. Mehner, T. Lampke, G. Wagner

Abstract:

In structural-health monitoring of fiber reinforced plastics (FRPs), every single inorganic fiber sensor that are integrated into the bulk material requires an electrical insulation around itself, when the surrounding reinforcing fibers are electrically conductive. This results in a more accurate data acquisition only from the sensor fiber without any electrical interventions. For this purpose, thin nano-films of aluminium oxide (Al2O3)-based electrical-insulation coatings have been fabricated around the Silicon Carbide (SiC) single fiber sensors through reactive DC magnetron sputtering technique. The sputtered coatings were amorphous in nature and the thickness of the coatings increased with an increase in the sputter time. Microstructural characterization of the coated fibers performed using scanning electron microscopy (SEM) confirmed a homogeneous circumferential coating with no detectable defects or cracks on the surface. X-ray diffraction (XRD) analyses of the as-sputtered and 2 hours annealed coatings (825 & 1125 ˚C) revealed the amorphous and crystalline phases of Al2O3 respectively. Raman spectroscopic analyses produced no characteristic bands of Al2O3, as the thickness of the films was in the nanometer (nm) range, which is too small to overcome the actual penetration depth of the laser used. In addition, the influence of the insulation coatings on the mechanical properties of the SiC sensor fibers has been analyzed.

Keywords: Al₂O₃ thin film, electrical insulation coating, PVD process, SiC fibre, single fibre tensile test

Procedia PDF Downloads 123
301 Integral Form Solutions of the Linearized Navier-Stokes Equations without Deviatoric Stress Tensor Term in the Forward Modeling for FWI

Authors: Anyeres N. Atehortua Jimenez, J. David Lambraño, Juan Carlos Muñoz

Abstract:

Navier-Stokes equations (NSE), which describe the dynamics of a fluid, have an important application on modeling waves used for data inversion techniques as full waveform inversion (FWI). In this work a linearized version of NSE and its variables, neglecting deviatoric terms of stress tensor, is presented. In order to get a theoretical modeling of pressure p(x,t) and wave velocity profile c(x,t), a wave equation of visco-acoustic medium (VAE) is written. A change of variables p(x,t)=q(x,t)h(ρ), is made on the equation for the VAE leading to a well known Klein-Gordon equation (KGE) describing waves propagating in variable density medium (ρ) with dispersive term α^2(x). KGE is reduced to a Poisson equation and solved by proposing a specific function for α^2(x) accounting for the energy dissipation and dispersion. Finally, an integral form solution is derived for p(x,t), c(x,t) and kinematics variables like particle velocity v(x,t), displacement u(x,t) and bulk modulus function k_b(x,t). Further, it is compared this visco-acoustic formulation with another form broadly used in the geophysics; it is argued that this formalism is more general and, given its integral form, it may offer several advantages from the modern parallel computing point of view. Applications to minimize the errors in modeling for FWI applied to oils resources in geophysics are discussed.

Keywords: Navier-Stokes equations, modeling, visco-acoustic, inversion FWI

Procedia PDF Downloads 520
300 Grassland Development on Evacuated Sites for Wildlife Conservation in Satpura Tiger Reserve, India

Authors: Anjana Rajput, Sandeep Chouksey, Bhaskar Bhandari, Shimpi Chourasia

Abstract:

Ecologically, grassland is any plant community dominated by grasses, whether they exist naturally or because of management practices. Most forest grasslands are anthropogenic and established plant communities planted for forage production, though some are established for soil and water conservation and wildlife habitat. In Satpura Tiger Reserve, Madhya Pradesh, India, most of the grasslands have been established on evacuated village sites. Total of 42 villages evacuated, and study was carried out in 23 sites to evaluate habitat improvement. Grasslands were classified into three categories, i.e., evacuated sites, established sites, and controlled sites. During the present study impact of various management interventions on grassland health was assessed. Grasslands assessment was done for its composition, status of palatable and non-palatable grasses, the status of herbs and legumes, status of weeds species, and carrying capacity of particular grassland. Presence of wild herbivore species in the grasslands with their abundance, availability of water resources was also assessed. Grassland productivity is dependent mainly on the biotic and abiotic components of the area, but management interventions may also play an important role in grassland composition and productivity. Variation in the status of palatable and non-palatable grasses, legumes, and weeds was recorded and found effected by management intervention practices. Overall in all the studied grasslands, the most dominant grasses recorded are Themeda quadrivalvis, Dichanthium annulatum, Ischaemum indicum, Oplismenus burmanii, Setaria pumilla, Cynodon dactylon, Heteropogon contortus, and Eragrostis tenella. Presence of wild herbivores, i.e., Chital, Sambar, Bison, Bluebull, Chinkara, Barking deer in the grassland area has been recorded through the installation of camera traps and estimated their abundance. Assessment of developed grasslands was done in terms of habitat suitability for Chital (Axis axis) and Sambar (Rusa unicolor). The parameters considered for suitability modeling are biotic and abiotic life requisite components existing in the area, i.e., density of grasses, density of legumes, availability of water, site elevation, site distance from human habitation. Findings of the present study would be useful for further grassland management and animal translocation programmes.

Keywords: carrying capacity, dominant grasses, grassland, habitat suitability, management intervention, wild herbivore

Procedia PDF Downloads 127
299 Intelligent Minimal Allocation of Capacitors in Distribution Networks Using Genetic Algorithm

Authors: S. Neelima, P. S. Subramanyam

Abstract:

A distribution system is an interface between the bulk power system and the consumers. Among these systems, radial distributions system is popular because of low cost and simple design. In distribution systems, the voltages at buses reduces when moved away from the substation, also the losses are high. The reason for a decrease in voltage and high losses is the insufficient amount of reactive power, which can be provided by the shunt capacitors. But the placement of the capacitor with an appropriate size is always a challenge. Thus, the optimal capacitor placement problem is to determine the location and size of capacitors to be placed in distribution networks in an efficient way to reduce the power losses and improve the voltage profile of the system. For this purpose, in this paper, two stage methodologies are used. In the first stage, the load flow of pre-compensated distribution system is carried out using ‘dimension reducing distribution load flow algorithm (DRDLFA)’. On the basis of this load flow the potential locations of compensation are computed. In the second stage, Genetic Algorithm (GA) technique is used to determine the optimal location and size of the capacitors such that the cost of the energy loss and capacitor cost to be a minimum. The above method is tested on IEEE 9 and 34 bus system and compared with other methods in the literature.

Keywords: dimension reducing distribution load flow algorithm, DRDLFA, genetic algorithm, electrical distribution network, optimal capacitors placement, voltage profile improvement, loss reduction

Procedia PDF Downloads 390
298 Displacement Fields in Footing-Sand Interactions under Cyclic Loading

Authors: S. Joseph Antony, Z. K. Jahanger

Abstract:

Soils are subjected to cyclic loading in situ in situations such as during earthquakes and in the compaction of pavements. Investigations on the local scale measurement of the displacements of the grain and failure patterns within the soil bed under the cyclic loading conditions are rather limited. In this paper, using the digital particle image velocimetry (DPIV), local scale displacement fields of a dense sand medium interacting with a rigid footing are measured under the plane-strain condition for two commonly used types of cyclic loading, and the quasi-static loading condition for the purposes of comparison. From the displacement measurements of the grains, the failure envelopes of the sand media are also presented. The results show that, the ultimate cyclic bearing capacity (qultcyc) occurred corresponding to a relatively higher settlement value when compared with that of under the quasi-static loading. For the sand media under the cyclic loading conditions considered here, the displacement fields in the soil media occurred more widely in the horizontal direction and less deeper along the vertical direction when compared with that of under the quasi-static loading. The 'dead zone' in the sand grains beneath the footing is identified for all types of the loading conditions studied here. These grain-scale characteristics have implications on the resulting bulk bearing capacity of the sand media in footing-sand interaction problems.

Keywords: cyclic loading, DPIV, settlement, soil-structure interactions, strip footing

Procedia PDF Downloads 167
297 Development, Optimization, and Validation of a Synchronous Fluorescence Spectroscopic Method with Multivariate Calibration for the Determination of Amlodipine and Olmesartan Implementing: Experimental Design

Authors: Noha Ibrahim, Eman S. Elzanfaly, Said A. Hassan, Ahmed E. El Gendy

Abstract:

Objectives: The purpose of the study is to develop a sensitive synchronous spectrofluorimetric method with multivariate calibration after studying and optimizing the different variables affecting the native fluorescence intensity of amlodipine and olmesartan implementing an experimental design approach. Method: In the first step, the fractional factorial design used to screen independent factors affecting the intensity of both drugs. The objective of the second step was to optimize the method performance using a Central Composite Face-centred (CCF) design. The optimal experimental conditions obtained from this study were; a temperature of (15°C ± 0.5), the solvent of 0.05N HCl and methanol with a ratio of (90:10, v/v respectively), Δλ of 42 and the addition of 1.48 % surfactant providing a sensitive measurement of amlodipine and olmesartan. The resolution of the binary mixture with a multivariate calibration method has been accomplished mainly by using partial least squares (PLS) model. Results: The recovery percentage for amlodipine besylate and atorvastatin calcium in tablets dosage form were found to be (102 ± 0.24, 99.56 ± 0.10, for amlodipine and Olmesartan, respectively). Conclusion: Method is valid according to some International Conference on Harmonization (ICH) guidelines, providing to be linear over a range of 200-300, 500-1500 ng mL⁻¹ for amlodipine and Olmesartan. The methods were successful to estimate amlodipine besylate and olmesartan in bulk powder and pharmaceutical preparation.

Keywords: amlodipine, central composite face-centred design, experimental design, fractional factorial design, multivariate calibration, olmesartan

Procedia PDF Downloads 149
296 Using Computational Fluid Dynamics (CFD) Modeling to Predict the Impact of Nuclear Reactor Mixed Tank Flows Using the Momentum Equation

Authors: Joseph Amponsah

Abstract:

This research proposes an equation to predict and determine the momentum source equation term after factoring in the radial friction between the fluid and the blades and the impeller's propulsive power. This research aims to look at how CFD software can be used to predict the effect of flows in nuclear reactor stirred tanks through a momentum source equation and the concentration distribution of tracers that have been introduced in reactor tanks. The estimated findings, including the dimensionless concentration curves, power, and pumping numbers, dimensionless velocity profiles, and mixing times 4, were contrasted with results from tests in stirred containers. The investigation was carried out in Part I for vessels that were agitated by one impeller on a central shaft. The two types of impellers employed were an ordinary Rushton turbine and a 6-bladed 45° pitched blade turbine. The simulations made use of numerous reference frame techniques and the common k-e turbulence model. The impact of the grid type was also examined; unstructured, structured, and unique user-defined grids were looked at. The CFD model was used to simulate the flow field within the Rushton turbine nuclear reactor stirred tank. This method was validated using experimental data that were available close to the impeller tip and in the bulk area. Additionally, analyses of the computational efficiency and time using MRF and SM were done.

Keywords: Ansys fluent, momentum equation, CFD, prediction

Procedia PDF Downloads 79