Search results for: bond stress
3946 The Influence of Married Women's Adult Children Care Burden and Stress on Depression: Testing the Moderated Mediating Effect of Satisfaction with Husbands’ Sharing of the Care
Authors: Soo-Bi Lee, Jun Young Jeong, Zehgn Lin, Chenminxi
Abstract:
Background: In South Korea, a problematic phenomenon has recently arisen whereby adult children continue to receive parentalcaregivingin some cases. These phenomena has been shown to affect the mental health of mothers. Study Goals: The purposes of this study are to verify whether the mediating effects of stress on the relationship between a woman’s care burden for their adult children and depression are moderated by their satisfaction about their husbands’ sharing of the caregiving. Methodology: This study analyzed 3,053 married women with adult children using the most recent data from the “Korean Longitudinal Survey of Women & Families 7th(2018)" conducted at the national level. The analysis was conducted using the SPSS Process Macro Model 7 to verify the moderated mediating effects and subsequently confirm their significance based on the bootstrapping method. Results and Implications: (1) Stress was identified a mediating factor in the relationship between the care burden for adult children and depression; and (2) the mediating effects of stress on depression from the burden of caring for adult children are modulated by the woman's satisfaction with her husband’s sharing of the care burden. In other words, the higher the caring burden of adult children, the higher the mother's stress, which increases depression. At this time, the higher the their satisfaction with the husband's share of care in the path of mother's care burden and stress, the lower the mother's stress and, ultimately, the depression be alleviated. Conclusion: Programs that promote the mental health of married women heavily with the caring burden for their adult children, as well as those that improve social awareness regarding husbands' sharing of the care burden, should be implemented. Also, social welfare policy alternatives are needed at the national level to reduce the caring burden caused by adult children.Keywords: married women, adult children care burden, stress, depression, satisfaction with husbands sharing of the care
Procedia PDF Downloads 2053945 Understanding the Fundamental Driver of Semiconductor Radiation Tolerance with Experiment and Theory
Authors: Julie V. Logan, Preston T. Webster, Kevin B. Woller, Christian P. Morath, Michael P. Short
Abstract:
Semiconductors, as the base of critical electronic systems, are exposed to damaging radiation while operating in space, nuclear reactors, and particle accelerator environments. What innate property allows some semiconductors to sustain little damage while others accumulate defects rapidly with dose is, at present, poorly understood. This limits the extent to which radiation tolerance can be implemented as a design criterion. To address this problem of determining the driver of semiconductor radiation tolerance, the first step is to generate a dataset of the relative radiation tolerance of a large range of semiconductors (exposed to the same radiation damage and characterized in the same way). To accomplish this, Rutherford backscatter channeling experiments are used to compare the displaced lattice atom buildup in InAs, InP, GaP, GaN, ZnO, MgO, and Si as a function of step-wise alpha particle dose. With this experimental information on radiation-induced incorporation of interstitial defects in hand, hybrid density functional theory electron densities (and their derived quantities) are calculated, and their gradient and Laplacian are evaluated to obtain key fundamental information about the interactions in each material. It is shown that simple, undifferentiated values (which are typically used to describe bond strength) are insufficient to predict radiation tolerance. Instead, the curvature of the electron density at bond critical points provides a measure of radiation tolerance consistent with the experimental results obtained. This curvature and associated forces surrounding bond critical points disfavors localization of displaced lattice atoms at these points, favoring their diffusion toward perfect lattice positions. With this criterion to predict radiation tolerance, simple density functional theory simulations can be conducted on potential new materials to gain insight into how they may operate in demanding high radiation environments.Keywords: density functional theory, GaN, GaP, InAs, InP, MgO, radiation tolerance, rutherford backscatter channeling
Procedia PDF Downloads 1713944 Effect of Pressure and Glue Spread on the Bonding Properties of CLT Panels Made from Low-Grade Hardwood
Authors: Sumanta Das, Miroslav Gašparík, Tomáš Kytka, Anil Kumar Sethy
Abstract:
In this modern century, Cross-laminated timber (CLT) evolved as an excellent material for building and high load-bearing structural applications worldwide. CLT is produced mainly from softwoods such as Norway spruce, White fir, Scots pine, European larch, Douglas fir, and Swiss stone pine. The use of hardwoods in CLT production is still at an early stage, and the utilization of hardwoods is expected to provide the opportunity for obtaining higher bending stiffness and shear resistance to CLT panels. In load-bearing structures like CLT, bonding is an important character that is needed to evaluate. One particular issue with using hardwood lumber in CLT panels is that it is often more challenging to achieve a strong, durable adhesive bond. Several researches in the past years have already evaluated the bonding properties of CLT panels from hardwood both from higher and lower densities. This research aims to identify the effect of pressure and glue spread and evaluate which poplar lumber characteristics affect adhesive bond quality. Three-layered CLT panels were prepared from poplar wood with one-component polyurethane (PUR) adhesive by applying pressure of 0.6 N/mm2 and 1 N/mm2 with a glue spread rate of 160 and 180 g/m2. The delamination and block shear tests were carried out as per EN 16351:2015, and the wood failure percentage was also evaluated. The results revealed that glue spread rate and applied pressure significantly influenced both the shear bond strength and wood failure percentage of the CLT. However, samples with lower pressure 0.6 N/mm2 and less glue spread rate showed delamination, and in samples with higher pressure 1 N/mm2 and higher glue spread rate, no delamination was observed. All the properties determined by this study met the minimum requirement mentioned in EN 16351:2015 standard.Keywords: cross-laminated timber, delamination, glue spread rate, poplar, pressure, PUR, shear strength, wood failure percentage
Procedia PDF Downloads 1613943 Prosodic Characteristics of Post Traumatic Stress Disorder Induced Speech Changes
Authors: Jarek Krajewski, Andre Wittenborn, Martin Sauerland
Abstract:
This abstract describes a promising approach for estimating post-traumatic stress disorder (PTSD) based on prosodic speech characteristics. It illustrates the validity of this method by briefly discussing results from an Arabic refugee sample (N= 47, 32 m, 15 f). A well-established standardized self-report scale “Reaction of Adolescents to Traumatic Stress” (RATS) was used to determine the ground truth level of PTSD. The speech material was prompted by telling about autobiographical related sadness inducing experiences (sampling rate 16 kHz, 8 bit resolution). In order to investigate PTSD-induced speech changes, a self-developed set of 136 prosodic speech features was extracted from the .wav files. This set was adapted to capture traumatization related speech phenomena. An artificial neural network (ANN) machine learning model was applied to determine the PTSD level and reached a correlation of r = .37. These results indicate that our classifiers can achieve similar results to those seen in speech-based stress research.Keywords: speech prosody, PTSD, machine learning, feature extraction
Procedia PDF Downloads 893942 A Mathematical Model of Pulsatile Blood Flow through a Bifurcated Artery
Authors: D. Srinivasacharya, G. Madhava Rao
Abstract:
In this article, the pulsatile flow of blood flow in bifurcated artery with mild stenosis is investigated. Blood is treated to be a micropolar fluid with constant density. The arteries forming bifurcation are assumed to be symmetric about its axes and straight cylinders of restricted length. As the geometry of the stenosed bifurcated artery is irregular, it is changed to regular geometry utilizing the appropriate transformations. The numerical solutions, using the finite difference method, are computed for the flow rate, the shear stress, and the impedance. The influence of time, coupling number, half of the bifurcated angle and Womersley number on shear stress, flow rate and impedance (resistance to the flow) on both sides of the flow divider is shown graphically. It has been observed that the shear stress and flow rate are increasing with increase in the values of Womersley number and bifurcation angle on both sides of the apex. The shear stress is increasing along the inner wall and decreasing along the outer wall of the daughter artery with an increase in the value of coupling number. Further, it has been noticed that the shear stress, flow rate, and impedance are perturbed largely near to the apex in the parent artery due to the presence of backflow near the apex.Keywords: micropolar fluid, bifurcated artery, stenosis, back flow, secondary flow, pulsatile flow, Womersley number
Procedia PDF Downloads 1923941 Impact of Stress on Physical-Mental Wellbeing of Working Women in India: Awareness and Acceptability
Authors: Meera Shanker
Abstract:
Excellent education and financial need have encouraged Indian women to go out and work in well-paid and high-status occupations. In the era of cutthroat competition, women are expected to work hard to produce the desired result; hence, workload and expectations haveincreased. At home, they are anticipated to take care of family members, children, and household work. Women are stretching themselves mechanically to remain in the job competition and try to give their best at home. Consequentially, they are under tremendous pressure, stressed, and having issues related to physical-mental wellness. Mental healthcare is often ignored and not accepted due to a lack of awareness and cultural barriers. These further compounds the problem, resulting in decreased productivity in economic terms and an increase in stress-related physical-mental ailments. The main objective of the study was to find out the impact of stress on the physical-mental wellbeing of working women in India, along with their awareness and acceptability related to mental health. Six hundred and one woman working at various levels took part in this study, responding to the items related to stress and physical-mental illness. Finally, 21 items were retained under four meaningful factors measuring stress dimensions along with 17 items with three factors measuring physical-mental wellbeing. Confirmatory Factor Analysis (CFA), path analysis, in Structural Equation Modeling (SEM), was used to get a relationship, validity of the instruments. The psychometric properties of items and Cronbach’s Alpha reliabilities calculated for the subscales were relatively acceptable. The subscale correlations, regression, and path analysis of stress dimensions with physical-mental illness were found to be positive, indicating the growing stress among working women in India, which is impacting their physical-mental health. Single item analysis revealed that 77 percent of women have never visited psychologists. However, 70 percent of working women were not ready to seek the help of a psychologist.Keywords: working women, stress, physical-mental well-being, confirmatory factor analysis
Procedia PDF Downloads 1833940 Stress Analysis of a Pressurizer in a Pressurized Water Reactor Using Finite Element Method
Authors: Tanvir Hasan, Minhaz Uddin, Anwar Sadat Anik
Abstract:
A pressurizer is a safety-related reactor component that maintains the reactor operating pressure to guarantee safety. Its structure is usually made of high thermal and pressure resistive material. The mechanical structure of these components should be maintained in all working settings, including transient to severe accidents conditions. The goal of this study is to examine the structural integrity and stress of the pressurizer in order to ensure its design integrity towards transient situations. For this, the finite element method (FEM) was used to analyze the mechanical stress on pressurizer components in this research. ANSYS MECHANICAL tool was used to analyze a 3D model of the pressurizer. The material for the body and safety relief nozzle is selected as low alloy steel i.e., SA-508 Gr.3 Cl.2. The model was put into ANSYS WORKBENCH and run under the boundary conditions of (internal Pressure, -17.2 MPa, inside radius, -1348mm, the thickness of the shell, -127mm, and the ratio of the outside radius to an inside radius, - 1.059). The theoretical calculation was done using the formulas and then the results were compared with the simulated results. When stimulated at design conditions, the findings revealed that the pressurizer stress analysis completely fulfilled the ASME standards.Keywords: pressurizer, stress analysis, finite element method, nuclear reactor
Procedia PDF Downloads 1573939 Clarifying the Possible Symptomatic Pathway of Comorbid Depression, Anxiety, and Stress Among Adolescents Exposed to Childhood Trauma: Insight from the Network Approach
Authors: Xinyuan Zou, Qihui Tang, Shujian Wang, Yulin Huang, Jie Gui, Xiangping Liu, Gang Liu, Yanqiang Tao
Abstract:
Childhood trauma can have a long-lasting influence on individuals and contribute to mental disorders, including depression and anxiety. The current study aimed to explore the symptomatic and developmental patterns of depression, anxiety, and stress among adolescents who have suffered from childhood trauma. A total of 3,598 college students (female = 1,617 (44.94%), Mean Age = 19.68, SD Age = 1.35) in China completed the Childhood Trauma Questionnaire (CTQ) and the Depression, Anxiety, and Stress Scales (DASS-21), and 2,337 participants met the selection standard based on the cut-off scores of the CTQ. The symptomatic network and directed acyclic graph (DAG) network approaches were used. The results revealed that males reported experiencing significantly more physical abuse, physical neglect, emotional neglect, and sexual abuse compared to females. However, females scored significantly higher than males on all items of DASS-21, except for “Worthless”. No significant difference between the two genders was observed in the network structure and global strength. Meanwhile, among all participants, “Down-hearted” and “Agitated” appeared to be the most interconnected symptoms, the bridge symptoms in the symptom network, as well as the most vital symptoms in the DAG network. Apart from that, “No-relax” also served as the most prominent symptom in the DAG network. The results suggested that intervention targeted at assisting adolescents in developing more adaptive coping strategies with stress and regulating emotion could benefit the alleviation of comorbid depression, anxiety, and stress.Keywords: symptom network, childhood trauma, depression, anxiety, stress
Procedia PDF Downloads 593938 Comparative Analysis of Short and Long Term Salt Stress on the Photosynthetic Apparatus and Chloroplast Ultrastructure of Thellungiella salsuginea
Authors: Rahma Goussi, Walid Derbali, Arafet Manaa, Simone Cantamessa, Graziella Berta, Chedly Abdelly, Roberto Barbato
Abstract:
Salinity is one of the most important abiotic affecting plant growth and productivity worldwide. Photosynthesis, together with cell growth, is among the primary processes to be affected by salinity. Here, we report the effects of salinity stress on the primary processes of photosynthesis in a model halophyte Thellungiella Salsuginea. Plants were cultivated in hydroponic system with different NaCl concentrations (0, 100, 200 and 400 mM) during 2 weeks. The obtained results showed an obvious change in the photosynthetic efficiency of photosystem I (PSI) and phostosytem II (PSII), related to NaCl concentration supplemented to the medium and the stress duration considered. With moderate salinity (100 and 200 mM NaCl), no significant variation was observed in photosynthetic parameters of PSI and PSII and Chl fluorescence whatever the time of stress application. Also, the photosynthesis apparatus Fo, Fm and Fv fluorescence, as well as Fv/Fm were not affected by salt stress. While a significant decrease was observed on quantum yields Y(I), Y(II) and electron transport rate ETR(I), ETR(II) under high salt treatment (400 mM NaCl) with prolonged period (15 days). This reduction is quantitatively compensated by a corresponding increase of energy dissipation Y(NPQ) and a progressive decrease in Fv/Fm under salt treatment. The intensity of the OJIP fluorescence transient decreased with increase in NaCl concentration, with a major effect observed during prolonged period of salt stress. Ultrastructural analysis with Light Microscopy and Transmission Electron Microscopy of T. salsuginea chloroplasts showed some cellular changes, such as the shape of the mesophyll cells and number of chloroplast/cell only under higher NaCl concentration. Salt-stress caused the swelling of thylakoids in T. Salsuginea mesophyll with more accumulation of starch as compared to control plant.Keywords: fluorescence, halophyte, photosynthesis, salt stress
Procedia PDF Downloads 3743937 Comparison Between Nano Composite and Pits and Fissure Sealant: In Vitro Study
Authors: Osama Safwat Mohamed
Abstract:
Pits and fissures dental caries can be prevented using sealant material. This study aimed to compare the microleakage and interfacial morphology of flowable nanocomposites and conventional pit and fissure sealants. 60 extracted intact and caries-free permanent mandibular third molars. The teeth were randomly divided into three groups (n = 20) according to the material used for pit and fissure sealant. Group I: Unfilled resin-based pits and fissure sealant, Group II: Unfilled resin-based pits and fissure sealant with bond and Group III: Nano flowable composite resin with bond. The results showed that nano-flowable composite was significantly better than the conventional sealants groups p = 0.000. As well there was better as well, there were gaps between sealants and the tooth surfaces in groups I and II, but for group III, there was close contact between the nano-flowable composite and tooth surfaces. It was concluded that nano-flowable composite showed better microleakage and interfacial morphology results than conventional pits and fissure sealant and offered promising results at the fissure sealing.Keywords: pits and fissures, Sealant, nanocomposite, dental caries
Procedia PDF Downloads 1263936 The Effect of Stress on Job Performance of Frontline Employees of Hotels: Reference to Star Class Hotels in North Central Province, Sri Lanka
Authors: W. M. M. Weerasooriya, K. T. N. P. Abeywickrama
Abstract:
There has been some research on stress in the hotel industry in Sri Lanka and elsewhere. Still, the amount is not proportionate to the severity of the issue. This paper examined the effect of stress on job performance of frontline employees of Sri Lankan hotel context. Duly completed 70 self-administered questionnaires filled by frontline employees of star class hotels in North Central Province in Sri Lanka were used for the purpose with a response rate of 70%. The researcher employed empirical analysis using statistical tools such as regression analysis of Pearson’s correlation of coefficient. It was found that there is a high level of workload and role ambiguity existing among the frontline employees of hotels located in North Central Province and existing role ambiguity significantly reduce the job performance of the frontline employees of star class hotels while the existing low level of physical work environment also leads to a low level of job performance.Keywords: hotel front line employees, job stress, job performance, Sri Lanka
Procedia PDF Downloads 1263935 Drought Detection and Water Stress Impact on Vegetation Cover Sustainability Using Radar Data
Authors: E. Farg, M. M. El-Sharkawy, M. S. Mostafa, S. M. Arafat
Abstract:
Mapping water stress provides important baseline data for sustainable agriculture. Recent developments in the new Sentinel-1 data which allow the acquisition of high resolution images and varied polarization capabilities. This study was conducted to detect and quantify vegetation water content from canopy backscatter for extracting spatial information to encourage drought mapping activities throughout new reclaimed sandy soils in western Nile delta, Egypt. The performance of radar imagery in agriculture strongly depends on the sensor polarization capability. The dual mode capabilities of Sentinel-1 improve the ability to detect water stress and the backscatter from the structure components improves the identification and separation of vegetation types with various canopy structures from other features. The fieldwork data allowed identifying of water stress zones based on land cover structure; those classes were used for producing harmonious water stress map. The used analysis techniques and results show high capability of active sensors data in water stress mapping and monitoring especially when integrated with multi-spectral medium resolution images. Also sub soil drip irrigation systems cropped areas have lower drought and water stress than center pivot sprinkler irrigation systems. That refers to high level of evaporation from soil surface in initial growth stages. Results show that high relationship between vegetation indices such as Normalized Difference Vegetation Index NDVI the observed radar backscattering. In addition to observational evidence showed that the radar backscatter is highly sensitive to vegetation water stress, and essentially potential to monitor and detect vegetative cover drought.Keywords: canopy backscatter, drought, polarization, NDVI
Procedia PDF Downloads 1423934 Activation Parameters of the Low Temperature Creep Controlling Mechanism in Martensitic Steels
Abstract:
Martensitic steels with an ultimate tensile strength beyond 2000 MPa are applied in the powertrain of vehicles due to their excellent fatigue strength and high creep resistance. However, the creep controlling mechanism in martensitic steels at ambient temperatures up to 423 K is not evident. The purpose of this study is to review the low temperature creep (LTC) behavior of martensitic steels at temperatures from 363 K to 523 K. Thus, the validity of a logarithmic creep law is reviewed and the stress and temperature dependence of the creep parameters α and β are revealed. Furthermore, creep tests are carried out, which include stepped changes in temperature or stress, respectively. On one hand, the change of the creep rate due to a temperature step provides information on the magnitude of the activation energy of the LTC controlling mechanism and on the other hand, the stress step approach provides information on the magnitude of the activation volume. The magnitude, the temperature dependency, and the stress dependency of both material specific activation parameters may deliver a significant contribution to the disclosure of the nature of the LTC rate controlling mechanism.Keywords: activation parameters, creep mechanisms, high strength steels, low temperature creep
Procedia PDF Downloads 1693933 Inverse Prediction of Thermal Parameters of an Annular Hyperbolic Fin Subjected to Thermal Stresses
Authors: Ashis Mallick, Rajeev Ranjan
Abstract:
The closed form solution for thermal stresses in an annular fin with hyperbolic profile is derived using Adomian decomposition method (ADM). The conductive-convective fin with variable thermal conductivity is considered in the analysis. The nonlinear heat transfer equation is efficiently solved by ADM considering insulated convective boundary conditions at the tip of fin. The constant of integration in the solution is to be estimated using minimum decomposition error method. The solution of temperature field is represented in a polynomial form for convenience to use in thermo-elasticity equation. The non-dimensional thermal stress fields are obtained using the ADM solution of temperature field coupled with the thermo-elasticity solution. The influence of the various thermal parameters in temperature field and stress fields are presented. In order to show the accuracy of the ADM solution, the present results are compared with the results available in literature. The stress fields in fin with hyperbolic profile are compared with those of uniform thickness profile. Result shows that hyperbolic fin profile is better choice for enhancing heat transfer. Moreover, less thermal stresses are developed in hyperbolic profile as compared to rectangular profile. Next, Nelder-Mead based simplex search method is employed for the inverse estimation of unknown non-dimensional thermal parameters in a given stress fields. Owing to the correlated nature of the unknowns, the best combinations of the model parameters which are satisfying the predefined stress field are to be estimated. The stress fields calculated using the inverse parameters give a very good agreement with the stress fields obtained from the forward solution. The estimated parameters are suitable to use for efficient and cost effective fin designing.Keywords: Adomian decomposition, inverse analysis, hyperbolic fin, variable thermal conductivity
Procedia PDF Downloads 3263932 Anisotropic Shear Strength of Sand Containing Plastic Fine Materials
Authors: Alaa H. J. Al-Rkaby, A. Chegenizadeh, H. R. Nikraz
Abstract:
Anisotropy is one of the major aspects that affect soil behavior, and extensive efforts have investigated its effect on the mechanical properties of soil. However, very little attention has been given to the combined effect of anisotropy and fine contents. Therefore, in this paper, the anisotropic strength of sand containing different fine content (F) of 5%, 10%, 15%, and 20%, was investigated using hollow cylinder tests under different principal stress directions of α = 0° and α = 90°. For a given principal stress direction (α), it was found that increasing fine content resulted in decreasing deviator stress (q). Moreover, results revealed that all fine contents showed anisotropic strength where there is a clear difference between the strength under 0° and the strength under 90°. This anisotropy was greatest under F = 5% while it decreased with increasing fine contents, particularly at F = 10%. Mixtures with low fine content show low contractive behavior and tended to show more dilation. Moreover, all sand-clay mixtures exhibited less dilation and more compression at α = 90° compared with that at α = 0°.Keywords: anisotropy, principal stress direction, fine content, hollow cylinder sample
Procedia PDF Downloads 3103931 Assessment of Genetic Variability of Potato Genotypes for Proline Under Salt Stress Conditions
Authors: Elchin Hajiyev, Afet Memmedova Dadash, Sabina Hajiyeva, Aynur Karimova, Ramiz Aliyev
Abstract:
Although potatoes have a wide distribution range, the yield potential of varieties varies greatly depending on the region. Our country is made up of agricultural regions with very different environmental characteristics.In this case, we cannot expect the introduced varieties to show the same adaptation to the different conditions of our country. For this reason, in our country, varieties with high general adaptability should be used, rather than varieties with special adaptability in certain areas. Soil salinization has become a global problem.Increased salinity has a serious impact on food security by reducing plant productivity. Plants have protective mechanisms of adaptation to salt stress, such as the synthesis of physiologically active substances, resistance to antioxidant stress and oxidation of membrane lipids. One of these substances is free proline. Our study revealed genetic variation in proline accumulation among samples exposed to stress factors.Changes in proline content under stress conditions were studied in 50 samples. There was wide variation across all treatments.The amount of proline varied between 7.2–37.7 μM/g under salinity conditions.The lowest rate was in the SF33 genotype (1.5 times more than the control (2.5 μM/g)).The highest level of proline under the influence of salt stress was in the SF45 genotype (7.25 times higher than the control (32.5 μM/g)). Our studies have found that the protective system reacts differently to the influence of stress factors. According to the results obtained on the amount of proline, adaptation mechanisms must be more actively activated to maintain metabolism and ensure viability in sensitive forms under the influence of stress factors. At high doses of the salt stressor, a tenfold increase in proline compared to the control indicates significant damage to the plant organism as a result of stress.To prevent damage to the body, the antioxidant system needs to quickly mobilize and work at full capacity in adverse conditions. An increase in the dose of the stress factor salt in our study caused a greater increase in the amount of free proline in plant tissues. Considering the functions of proline as an osmoprotector and antioxidant, it was found that increasing its amount is aimed at protecting the plant from the acute effects of stressors.Keywords: genetic variability, potato, genotypes, proline, stress
Procedia PDF Downloads 473930 Failure Inference and Optimization for Step Stress Model Based on Bivariate Wiener Model
Authors: Soudabeh Shemehsavar
Abstract:
In this paper, we consider the situation under a life test, in which the failure time of the test units are not related deterministically to an observable stochastic time varying covariate. In such a case, the joint distribution of failure time and a marker value would be useful for modeling the step stress life test. The problem of accelerating such an experiment is considered as the main aim of this paper. We present a step stress accelerated model based on a bivariate Wiener process with one component as the latent (unobservable) degradation process, which determines the failure times and the other as a marker process, the degradation values of which are recorded at times of failure. Parametric inference based on the proposed model is discussed and the optimization procedure for obtaining the optimal time for changing the stress level is presented. The optimization criterion is to minimize the approximate variance of the maximum likelihood estimator of a percentile of the products’ lifetime distribution.Keywords: bivariate normal, Fisher information matrix, inverse Gaussian distribution, Wiener process
Procedia PDF Downloads 3163929 Effect of Zinc-Lysine on Growth, Photosynthesis, Oxidative Stress and Antioxidant System and Chromium Uptake in Rice under Cr Stress
Authors: Shafaqat Ali, Afzal Hussain, Muhammad Rizwan, Longhua Wu
Abstract:
Chromium (Cr) is one of the widespread and toxic trace elements present in the agricultural land. Chromium can enter into the food chain mainly through agricultural crops grown on Cr-contaminated soils such as rice (Oryza sativa L.). The current study was done to evaluate the effects of increasing concentrations foliar applied zinc (Zn) chelated with lysine (Zn-lys) (0, 10, 20, and 30 mg L⁻¹) on rice biomass, photosynthesis, oxidative stress, key antioxidant enzyme activities and Cr uptake under increasing levels of Cr in the soil (0, 100, 500 mg kg⁻¹). Cr-induced toxicity reduced the height of plants, biomass, chlorophyll contents, gas exchange parameters, and antioxidant enzyme activities while increased the Cr concentrations and oxidative stress (malondialdehyde, electrolyte leakage, and H₂O₂) in shoots and roots than control plants. Foliar application of Zn-lys increased the plant growth, photosynthesis, Zn concentrations, and enzyme activities in rice seedlings. In addition, Zn-lys reduced the Cr concentrations and oxidative stress compared to the respective Cr treatments alone. The present results indicate that foliar Zn-lys stimulates the antioxidant defense system in rice, increase the rice growth while reduced the Cr concentrations in plants by promoting the Zn uptake and photosynthesis. Taken together, foliar spray of Zn-lys chelate can efficiently be employed for improving plant growth and Zn contents while reducing Cr concentration in rice grown in Cr-contaminated and Zn-deficient soils.Keywords: antioxidants, chromium, zinc-lysine, oxidative stress, photosynthesis, tolerance
Procedia PDF Downloads 1923928 Stress Study in Implants Dental
Authors: M. Benlebna, B. Serier, B. Bachir Bouiadjra, S. Khalkhal
Abstract:
This study focuses on the mechanical behavior of a dental prosthesis subjected to dynamic loads chewing. It covers a three-dimensional analysis by the finite element method, the level of distribution of equivalent stresses induced in the bone between the implants (depending on the number of implants). The studied structure, consisting of a braced, implant and mandibular bone is subjected to dynamic loading of variable amplitude in three directions corrono-apical, mesial-distal and bucco-lingual. These efforts simulate those of mastication. We show that compared to the implantation of a single implant, implantology using two implants promotes the weakening of the bones. This weakness is all the more likely that the implants are located in close proximity to one another.Keywords: stress, bone, dental implant, distribution, stress levels, dynamic, effort, interaction, prosthesis
Procedia PDF Downloads 4013927 Influence of Structural Cracks on Transport Performance of Reinforced Concrete
Authors: V. A. Okenyi, K. Yang, P. A. M. Basheer
Abstract:
Concrete structures in service are constantly under the influence of load. Microstructural cracks often develop in them and considering those in the marine environment; these microcracks often serve as a means for transportation of harmful fluids into the concrete. This paper studies the influence of flexural tensile stress that structural elements undergo on the transport properties of such concrete in the tensile zone of the structural member. Reinforced concrete beams of 1200mm ⨉ 230mm ⨉ 150mm in dimension in a four-point bending set up were subjected to various levels of the loading required to cause a microcrack width of 100µm. The use of Autoclam permeability tests, sorptivity tests as well as the Permit chloride ion migration tests were employed, and results showed that air permeability, sorptivity and water permeability all increased as the load increased in the concrete tensile zone. For air permeability, an increase in stress levels led to more permeability, and the addition of steel macrofibers had no significant effect until at 75% of stress level where it decreased air permeability. For sorptivity, there was no absorption into concrete when no load was added, but water sorptivity index was high at 75% stress levels and higher in steel fiber reinforced concrete (SFRC). Steel macrofibers produced more water permeability into the concrete at 75% stress level under the 100µm crack width considered while steel macrofibers helped in slightly reducing the migration of chloride into concrete by 8.8% reduction, compared to control samples at 75% stress level. It is clear from this research that load-induced cracking leads to an increase in fluid permeability into concrete and the effect of the addition of steel macrofiber to concrete for durability is not significant under 100µm crack width.Keywords: durability, microcracks, SFRC, stress Level, transport properties
Procedia PDF Downloads 1253926 The Microstructural Evolution of X45CrNiW189 Valve Steel during Hot Deformation
Authors: A. H. Meysami
Abstract:
In this paper, the hot compression tests were carried on X45CrNiW189 valve steel (X45) in the temperature range of 1000–1200°C and the strain rate range of 0.004–0.5 s^(-1) in order to study the high temperature softening behavior of the steel. For the exact prediction of flow stress, the effective stress - effective strain curves were obtained from experiments under various conditions. On the basis of experimental results, the dynamic recrystallization fraction (DRX), AGS, hot deformation and activation energy behavior were investigated. It was found that the calculated results were in a good agreement with the experimental flow stress and microstructure of the steel for different conditions of hot deformation.Keywords: X45CrNiW189, valve steel, hot compression test, dynamic recrystallization, hot deformation
Procedia PDF Downloads 2763925 Elastic Stress Analysis of Composite Cantilever Beam Loaded Uniformly
Authors: Merve Tunay Çetin, Ali Kurşun, Erhan Çetin, Halil Aykul
Abstract:
In this investigation an elastic stress analysis is carried out a woven steel fiber reinforced thermoplastic cantilever beam loaded uniformly at the upper surface. The composite beam material consists of low density polyethylene as a thermoplastic (LDFE, f.2.12) and woven steel fibers. Granules of the polyethylene is put into the moulds and they are heated up to 160°C by using electrical resistance. Subsequently, the material is held for 5min under 2.5 MPa at this temperature. The temperature is decreased to 30°C under 15 MPa pressure in 3 min. Closed form solution is found satisfying both the governing differential equation and boundary conditions. We investigated orientation angle effect on stress distribution of composite cantilever beams. The results show that orientation angle play an important role in determining the responses of a woven steel fiber reinforced thermoplastic cantilever beams and an optimal design of these structures.Keywords: cantilever beam, elastic stress analysis, orientation angle, thermoplastic
Procedia PDF Downloads 4973924 The Association of Excessive Work Stress with Job Satisfaction and Turnover Intention in Operating Room Nurses: A Cross-Sectional Study in a Metropolitan Teaching Hospital in Southern Taiwan
Authors: Chia Yu Chen, Shu Fen Wu, Chen-Fuh Lam, I-Ling Tsai, Shu Jiuan Chen, Yen Ling Liu
Abstract:
Aim: It remains undetermined that whether increased work stress may affect the job satisfaction and career loyalty among nursing staffs in the operating room. The long-term goal of this study is to lengthen the professional life of operating room nurses by attenuating the work stress and enhancing their contentment in work. Method: This was a cross-sectional, descriptive study performed in a metropolitan teaching hospital in the southern Taiwan between May 2017 to July 2017. A structured self-administered questionnaire, modified from the Occupational Stress Indicator-2 (OSI-2) and Maslach Burnout Inventory (MBI) manual was collected from the operating room nurses. Chi-square test was used to analyze the categorical data and Pearson correlation was used to analyze the association between two numerical datasets (SPSS version 20.0). Results: The response rate was 80% (80/100) and a total of 73 (73%) completed forms were eventually proceeded for analysis. The average scores for work stress and job satisfaction of the operating room nurses were 145.96±32.91 and 47.38±6.07, respectively. The correlation coefficients of work stress versus job satisfaction and organizational identity were (r=-0.338, p=0.003 and r=-0.354, p=0.002), respectively. There were more nurses who took rotating shift quitted works from the operating room than those who took only dayshift (2=5.176, p<0.05). Nurses who reported of having lower job satisfaction were associated with significantly higher turnover intention (t=3.714, p< 0.01). Following multivariate regression analysis, rotating shift and low job satisfaction were identified as the two independent predictors of intention to quit from working in the operating room. Conclusion: Our study clearly demonstrates that increased work stress significantly attenuates job satisfaction and organizational identity. Rotating shift is associated with higher work stress, lower job satisfaction, and higher turnover intention, which is consistent with the previous surveys carried out in the department of medical technology. Therefore, improvement of working quality in the operating rooms is essential to increase the retain intention of the well-trained nursing staffs. Further investigation into types of work shifts and other strategies of attenuating stress in workplace is currently undertaken in order to improve the job satisfaction and to decrease turnover intention in the operating room.Keywords: rotating shift, work stress, job satisfaction, turnover intention
Procedia PDF Downloads 1963923 Assessment of Modern RANS Models for the C3X Vane Film Cooling Prediction
Authors: Mikhail Gritskevich, Sebastian Hohenstein
Abstract:
The paper presents the results of a detailed assessment of several modern Reynolds Averaged Navier-Stokes (RANS) turbulence models for prediction of C3X vane film cooling at various injection regimes. Three models are considered, namely the Shear Stress Transport (SST) model, the modification of the SST model accounting for the streamlines curvature (SST-CC), and the Explicit Algebraic Reynolds Stress Model (EARSM). It is shown that all the considered models face with a problem in prediction of the adiabatic effectiveness in the vicinity of the cooling holes; however, accounting for the Reynolds stress anisotropy within the EARSM model noticeably increases the solution accuracy. On the other hand, further downstream all the models provide a reasonable agreement with the experimental data for the adiabatic effectiveness and among the considered models the most accurate results are obtained with the use EARMS.Keywords: discrete holes film cooling, Reynolds Averaged Navier-Stokes (RANS), Reynolds stress tensor anisotropy, turbulent heat transfer
Procedia PDF Downloads 4173922 First-Principles Study of Inter-Cage Interactions in Inorganic Molecular Crystals
Authors: Abdul Majid, Alia Jabeen, Nimra Zulifqar
Abstract:
The inorganic molecular crystal (IMCs) due to their unusual structure has grabbed a lot of attention due to anisotropy in crystal structure. The IMCs consist of the molecular structures joined together via weak forces. Therefore, a difference between the bonding between the inter-cage and intra-cage interactions exists. To look closely at the bonding and interactions, we investigated interactions between two cages of Sb2O3 structure. The interactions were characterized via Extended Transition State-Natural Orbital for Chemical Valence-method (ETS-NOCV), Natural Bond Orbitals (NBO) and Quantum Theory of Atoms in Molecules (QTAIM). The results revealed strong intra-cage covalent bonding while weak van der Waals (vdWs) interactions along inter-cages exits. This structure cannot be termed as layered material although they have anisotropy in bonding and presence of weak vdWs interactions but its bulk is termed as inorganic layered clusters. This is due to the fact that the free standing sheet/films with these materials are not possible. This type of structures may be the most feasible to be used for the system to deal with high pressures and stress bearing materials.Keywords: inorganic molecular crystals, density functional theory, cages, interactions
Procedia PDF Downloads 913921 A Fuzzy Satisfactory Optimization Method Based on Stress Analysis for a Hybrid Composite Flywheel
Authors: Liping Yang, Curran Crawford, Jr. Ren, Zhengyi Ren
Abstract:
Considering the cost evaluation and the stress analysis, a fuzzy satisfactory optimization (FSO) method has been developed for a hybrid composite flywheel. To evaluate the cost, the cost coefficients of the flywheel components are obtained through calculating the weighted sum of the scores of the material manufacturability, the structure character, and the material price. To express the satisfactory degree of the energy, the cost, and the mass, the satisfactory functions are proposed by using the decline function and introducing a satisfactory coefficient. To imply the different significance of the objectives, the object weight coefficients are defined. Based on the stress analysis of composite material, the circumferential and radial stresses are considered into the optimization formulation. The simulations of the FSO method with different weight coefficients and storage energy density optimization (SEDO) method of a flywheel are contrasted. The analysis results show that the FSO method can satisfy different requirements of the designer and the FSO method with suitable weight coefficients can replace the SEDO method.Keywords: flywheel energy storage, fuzzy, optimization, stress analysis
Procedia PDF Downloads 3453920 The Relationship between Spanish Economic Variables: Evidence from the Wavelet Techniques
Authors: Concepcion Gonzalez-Concepcion, Maria Candelaria Gil-Fariña, Celina Pestano-Gabino
Abstract:
We analyze six relevant economic and financial variables for the period 2000M1-2015M3 in the context of the Spanish economy: a financial index (IBEX35), a commodity (Crude Oil Price in euros), a foreign exchange index (EUR/USD), a bond (Spanish 10-Year Bond), the Spanish National Debt and the Consumer Price Index. The goal of this paper is to analyze the main relations between them by computing the Wavelet Power Spectrum and the Cross Wavelet Coherency associated with Morlet wavelets. By using a special toolbox in MATLAB, we focus our interest on the period variable. We decompose the time-frequency effects and improve the interpretation of the results by non-expert users in the theory of wavelets. The empirical evidence shows certain instability periods and reveals various changes and breaks in the causality relationships for sample data. These variables were individually analyzed with Daubechies Wavelets to visualize high-frequency variance, seasonality, and trend. The results are included in Proceeding 20th International Academic Conference, 2015, International Institute of Social and Economic Sciences (IISES), Madrid.Keywords: economic and financial variables, Spain, time-frequency domain, wavelet coherency
Procedia PDF Downloads 2403919 Calculating Stress Intensity Factor of Cracked Axis by Using a Meshless Method
Authors: S. Shahrooi, A. Talavari
Abstract:
Numeral study on the crack and discontinuity using element-free methods has been widely spread in recent years. In this study, for stress intensity factor calculation of the cracked axis under torsional loading has been used from a new element-free method as MLPG method. Region range is discretized by some dispersed nodal points. From method of moving least square (MLS) utilized to create the functions using these nodal points. Then, results of meshless method and finite element method (FEM) were compared. The results is shown which the element-free method was of good accuracy.Keywords: stress intensity factor, crack, torsional loading, meshless method
Procedia PDF Downloads 5633918 Night Shift Work as an Oxidative Stressor: A Systematic Review
Authors: Madeline Gibson
Abstract:
Night shift workers make up an essential part of the modern workforce. However, night shift workers have higher incidences of late in life diseases and earlier mortality. Night shift workers are exposed to constant light and experience circadian rhythm disruption. Sleep disruption is thought to increase oxidative stress, defined as an imbalance of excess pro-oxidative factors and reactive oxygen species over anti-oxidative activity. Oxidative stress can damage cells, proteins and DNA and can eventually lead to varied chronic diseases such as cancer, diabetes, cardiovascular disease, Alzheimer’s and dementia. This review aimed to understand whether night shift workers were at greater risk of oxidative stress and to contribute to a consensus on this relationship. Twelve studies published in 2001-2019 examining 2,081 workers were included in the review. Studies compared both the impact of working a single shift and in comparisons between those who regularly work night shifts and only day shifts. All studies had evidence to support this relationship across a range of oxidative stress indicators, including increased DNA damage, reduced DNA repair capacity, increased lipid peroxidation, higher levels of reactive oxygen species, and to a lesser extent, a reduction in antioxidant defense. This research supports the theory that melatonin and the sleep-wake cycle mediate the relationship between shift work and oxidative stress. It is concluded that night shift work increases the risk for oxidative stress and, therefore, future disease. Recommendations are made to promote the long-term health of shift workers considering these findings.Keywords: night shift work, coxidative stress, circadian rhythm, melatonin, disease, circadian rhythm disruption
Procedia PDF Downloads 2653917 Experimental Squeeze Flow of Bitumen: Rheological Properties
Abstract:
The squeeze flow tests were studied by many authors to measure the rheological properties of fluid. Experimental squeezing flow test with constant area between two parallel disks of bitumen is investigated in the present work. The effect of the temperature, the process of preparing the sample and the gap between the discs were discussed. The obtained results were compared with the theoretical models. The behavior of bitumen depends on the viscosity and the yield stress. Thus, the bitumen was presented as a power law for a small power law exponent and as a biviscous fluid when the viscosity ratio was smaller than one. Also, the influence of the ambient temperature is required for the compression test. Therefore, for a high temperature the yield stress decrease.Keywords: bitumen, biviscous fluid, squeeze flow, viscosity, yield stress
Procedia PDF Downloads 137