Search results for: back propagation learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9281

Search results for: back propagation learning

8801 Three-Dimensional Jet Refraction Simulation Using a Gradient Term Suppression and Filtering Method

Authors: Lican Wang, Rongqian Chen, Yancheng You, Ruofan Qiu

Abstract:

In the applications of jet engine, open-jet wind tunnel and airframe, there wildly exists a shear layer formed by the velocity and temperature gradients between jet flow and surrounded medium. The presence of shear layer will refract and reflect the sound path that consequently influences the measurement results in far-field. To investigate and evaluate the shear layer effect, a gradient term suppression and filtering method is adopted to simulate sound propagation through a steady sheared flow in three dimensions. Two typical configurations are considered: one is an incompressible and cold jet flow in wind tunnel and the other is a compressible and hot jet flow in turbofan engine. A numerically linear microphone array is used to localize the position of given sound source. The localization error is presented and linearly fitted.

Keywords: aeroacoustic, linearized Euler equation, acoustic propagation, source localization

Procedia PDF Downloads 204
8800 Review of Hydrologic Applications of Conceptual Models for Precipitation-Runoff Process

Authors: Oluwatosin Olofintoye, Josiah Adeyemo, Gbemileke Shomade

Abstract:

The relationship between rainfall and runoff is an important issue in surface water hydrology therefore the understanding and development of accurate rainfall-runoff models and their applications in water resources planning, management and operation are of paramount importance in hydrological studies. This paper reviews some of the previous works on the rainfall-runoff process modeling. The hydrologic applications of conceptual models and artificial neural networks (ANNs) for the precipitation-runoff process modeling were studied. Gradient training methods such as error back-propagation (BP) and evolutionary algorithms (EAs) are discussed in relation to the training of artificial neural networks and it is shown that application of EAs to artificial neural networks training could be an alternative to other training methods. Therefore, further research interest to exploit the abundant expert knowledge in the area of artificial intelligence for the solution of hydrologic and water resources planning and management problems is needed.

Keywords: artificial intelligence, artificial neural networks, evolutionary algorithms, gradient training method, rainfall-runoff model

Procedia PDF Downloads 454
8799 Optimize Data Evaluation Metrics for Fraud Detection Using Machine Learning

Authors: Jennifer Leach, Umashanger Thayasivam

Abstract:

The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, though, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate people. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease this advancement. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent data, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which testing split and technique would lead to the most optimal results.

Keywords: data science, fraud detection, machine learning, supervised learning

Procedia PDF Downloads 196
8798 Harnessing the Opportunities of E-Learning and Education in Promoting Literacy in Nigeria

Authors: Victor Oluwaseyi Olowonisi

Abstract:

The paper aimed at presenting an overview on the concept of e-learning as it relates to higher education and how it provides opportunities for students, instructors and the government in developing the educational sector. It also touched on the benefits and challenges attached to e-learning as a new medium of reaching more students especially in the Nigerian context. The opportunities attributed to e-learning in the paper includes breaking boundaries barriers, reaching a larger number of students, provision of jobs for ICT experts, etc. In contrary, poor power supply, cost of implementation, poor computer literacy, technophobia (fear of technology), computer crime and system failure were some of the challenges of e-learning discussed in the paper. The paper proffered that the government can help the people gain more from e-learning through its financing. Also, it was stated that instructors/lecturers and students need to undergo training on computer application in order for e-learning to be more effective in developing higher education in Nigeria.

Keywords: e-learning, education, higher education, increasing literacy

Procedia PDF Downloads 268
8797 Motivation and Quality Teaching of Chinese Language: Analysis of Secondary School Studies

Authors: Robyn Moloney, HuiLing Xu

Abstract:

Many countries wish to produce Asia-literate citizens, through language education. International contexts of Chinese language education are seeking pedagogical innovation to meet local contextual factors frequently holding back learner success. In multicultural Australia, innovative pedagogy is urgently needed to support motivation in sustained study, with greater strategic integration of technology. This research took a qualitative approach to identify need and solutions. The paper analyses strategies that three secondary school teachers are adopting to meet specific challenges in the Australian context. The data include teacher interviews, classroom observations and student interviews. We highlight the use of task-based learning and differentiated teaching for multilevel classes, and the role which digital technologies play in facilitating both areas. The strategy examples are analysed in reference both to a research-based framework for describing quality teaching, and to current understandings of motivation in language learning. The analysis of data identifies learning featuring deep knowledge, higher-order thinking, engagement, social support, utilisation of background knowledge, and connectedness, all of which work towards the learners having a sense of autonomy and an imagination of becoming an adult Chinese language user.

Keywords: Chinese pedagogy, digital technologies, motivation, secondary school

Procedia PDF Downloads 268
8796 Students Perception of a Gamified Student Engagement Platform as Supportive Technology in Learning

Authors: Pinn Tsin Isabel Yee

Abstract:

Students are increasingly turning towards online learning materials to supplement their education. One such approach would be the gamified student engagement platforms (GSEPs) to instill a new learning culture. Data was collected from closed-ended questions via content analysis techniques. About 81.8% of college students from the Monash University Foundation Year agreed that GSEPs (Quizizz) was an effective tool for learning. Approximately 85.5% of students disagreed that games were a waste of time. GSEPs were highly effective among students to facilitate the learning process.

Keywords: engagement, gamified, Quizizz, technology

Procedia PDF Downloads 108
8795 Design an Development of an Agorithm for Prioritizing the Test Cases Using Neural Network as Classifier

Authors: Amit Verma, Simranjeet Kaur, Sandeep Kaur

Abstract:

Test Case Prioritization (TCP) has gained wide spread acceptance as it often results in good quality software free from defects. Due to the increase in rate of faults in software traditional techniques for prioritization results in increased cost and time. Main challenge in TCP is difficulty in manually validate the priorities of different test cases due to large size of test suites and no more emphasis are made to make the TCP process automate. The objective of this paper is to detect the priorities of different test cases using an artificial neural network which helps to predict the correct priorities with the help of back propagation algorithm. In our proposed work one such method is implemented in which priorities are assigned to different test cases based on their frequency. After assigning the priorities ANN predicts whether correct priority is assigned to every test case or not otherwise it generates the interrupt when wrong priority is assigned. In order to classify the different priority test cases classifiers are used. Proposed algorithm is very effective as it reduces the complexity with robust efficiency and makes the process automated to prioritize the test cases.

Keywords: test case prioritization, classification, artificial neural networks, TF-IDF

Procedia PDF Downloads 397
8794 University Clusters Using ICT for Teaching and Learning

Authors: M. Roberts Masillamani

Abstract:

There is a phenomenal difference, as regard to the teaching methodology adopted at the urban and the rural area colleges. However, bright and talented student may be from rural back ground even. But there is huge dearth of the digitization in the rural areas and lesser developed countries. Today’s students need new skills to compete and successful in the future. Education should be combination of practical, intellectual, and social skills. What does this mean for rural classrooms and how can it be achieved. Rural colleges are not able to hire the best resources, since the best teacher’s aim is to move towards the city. If city is provided everywhere, then there will be no rural area. This is possible by forming university clusters (UC). The University cluster is a group of renowned and accredited universities coming together to bridge this dearth. The UC will deliver the live lectures and allow the students’ from remote areas to actively participate in the classroom. This paper tries to present a plan of action of providing a better live classroom teaching and learning system from the city to the rural and the lesser developed countries. This paper titled “University Clusters using ICT for teaching and learning” provides a true concept of opening live digital classroom windows for rural colleges, where resources are not available, thus reducing the digital divide. This is different from pod casting a lecture or distance learning and eLearning. The live lecture can be streamed through digital equipment to another classroom. The rural students can collaborate with their peers and critiques, be assessed, collect information, acquire different techniques in assessment and learning process. This system will benefit rural students and teachers and develop socio economic status. This will also will increase the degree of confidence of the Rural students and teachers. Thus bringing about the concept of ‘Train the Trainee’ in reality. An educational university cloud for each cluster will be built remote infrastructure facilities (RIF) for the above program. The users may be informed, about the available lecture schedules, through the RIF service. RIF with an educational cloud can be set by the universities under one cluster. This paper talks a little more about University clusters and the methodology to be adopted as well as some extended features like, tutorial classes, library grids, remote laboratory login, research and development.

Keywords: lesser developed countries, digital divide, digital learning, education, e-learning, ICT, library grids, live classroom windows, RIF, rural, university clusters and urban

Procedia PDF Downloads 472
8793 Examining E-learning Capability in Chinese Higher Education: A Case Study of Hong Kong

Authors: Elson Szeto

Abstract:

Over the past 15 years, digital technology has ubiquitously penetrated societies around the world. New values of e-learning are emerging in the preparation of future talents, while e-learning is a key driver of widening participation and knowledge transfer in Chinese higher education. As a vibrant, Chinese society in Asia, Hong Kong’s new generation university students, perhaps the digital natives, have been learning with e-learning since their basic education. They can acquire new knowledge with the use of different forms of e-learning as a generic competence. These students who embrace this competence further their study journeys in higher education. This project reviews the Government’s policy of Information Technology in Education which has largely put forward since 1998. So far, primary to secondary education has embraced advantages of e-learning capability to advance the learning of different subject knowledge. Yet, e-learning capacity in higher education is yet to be fully examined in Hong Kong. The study reported in this paper is a pilot investigation into e-learning capacity in Chinese higher education in the region. By conducting a qualitative case study of Hong Kong, the investigation focuses on (1) the institutional ICT settings in general; (2) the pedagogic responses to e-learning in specific; and (3) the university students’ satisfaction of e-learning. It is imperative to revisit the e-learning capacity for promoting effective learning amongst university students, supporting new knowledge acquisition and embracing new opportunities in the 21st century. As a pilot case study, data will be collected from individual interviews with the e-learning management team members of a university, teachers who use e-learning for teaching and students who attend courses comprised of e-learning components. The findings show the e-learning capacity of the university and the key components of leveraging e-learning capability as a university-wide learning settings. The findings will inform institutions’ senior management, enabling them to effectively enhance institutional e-learning capacity for effective learning and teaching and new knowledge acquisition. Policymakers will be aware of new potentials of e-learning for the preparation of future talents in this society at large.

Keywords: capability, e-learning, higher education, student learning

Procedia PDF Downloads 275
8792 Factors of English Language Learning and Acquisition at Bisha College of Technology

Authors: Khlaid Albishi

Abstract:

This paper participates in giving new vision and explains the learning and acquisition processes of English language by analyzing a certain context. Five important factors in English language acquisition and learning are discussed and suitable solutions are provided. The factors are compared with the learners' linguistic background at Bisha College of Technology BCT attempting to link the issues faced by students and the research done on similar situations. These factors are phonology, age of acquisition, motivation, psychology and courses of English. These factors are very important; because they interfere and affect specific learning processes at BCT context and general English learning situations.

Keywords: language acquisition, language learning, factors, Bisha college

Procedia PDF Downloads 499
8791 ILearn, a Pathway to Progress

Authors: Reni Francis

Abstract:

Learning has transcended the classroom boundaries to create a learner centric, interactive, and integrative teaching learning environment. This study analysed the impact of iLearn on the teaching, learning, and evaluation among 100 teacher trainees. The objectives were to cater to the different learning styles of the teacher trainees, to incorporate innovative teaching learning activities, to assist in peer tutoring, to implement different evaluation processes. i: Identifying the learning styles among the teacher trainees through VARK Learning style checklist was followed by planning the teaching-learning process to meet the learning styles of the teacher trainees. L: Leveraging innovations in teaching- learning by planning and creating modules incorporating innovative teaching learning and hence the concept based year plan was prepared. E: Engage learning through constructivism using different teaching methodology to engage the teacher trainees in the learning process through Workshop, Round Robin, Gallery walk, Co-Operative learning, Think-Pair-Share, EDMODO, Course Networking, Concept Map, Brainstorming Sessions, Video Clippings. A: Assessing the learning through an Open Book assignment, Closed book assignment, and Multiple Choice Questions and Seminar presentation. R: Remediation through peer tutoring through Mentor-mentee approach in the tutorial groups, Group work, Library Hours. N: Norming new standards. This was done in the form of extended remediation and tutorials to understand the need of the teacher trainee and support them for further achievements in learning through Face to face interaction, Supervised Study Circle, Mobile (Device) learning. The findings of the study revealed the positive impact of iLearn towards student achievement and enhanced social skills.

Keywords: academic achievement, innovative strategy, learning styles, social skills

Procedia PDF Downloads 356
8790 Shear Elastic Waves in Disordered Anisotropic Multi-Layered Periodic Structure

Authors: K. B. Ghazaryan, R. A. Ghazaryan

Abstract:

Based on the constitutive model and anti-plane equations of anisotropic elastic body of monoclinic symmetry we consider the problem of shear wave propagation in multi-layered disordered composite structure with point defect. Using transfer matrix method the analytic expression is obtained providing solutions of shear Floquet wave propagation in periodic disordered anisotropic structure. The usefulness of the obtained analytical expression was discussed also in reflection and refraction problems from multi-layered reflector as well as in vibration problem of multi-layered waveguides. Numerical results are presented highlighting the effects arising in disordered periodic structure due to defects of multi-layered structure.

Keywords: shear elastic waves, monoclinic anisotropic media, periodic structure, disordered multilayer laminae, multi-layered waveguide

Procedia PDF Downloads 408
8789 Unsupervised Learning of Spatiotemporally Coherent Metrics

Authors: Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun

Abstract:

Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric.

Keywords: machine learning, pattern clustering, pooling, classification

Procedia PDF Downloads 456
8788 Expansion of Subjective Learning at Japanese Universities: Experiential Learning Based on Social Participation

Authors: Kumiko Inagaki

Abstract:

Qualitative changes to the undergraduate education have recently become the focus of attention in Japan. This is occurring against the backdrop of declining birthrate and increasing university enrollment, as well as drastic societal changes of advance toward globalization and a knowledge-based society. This paper describes the cases of Japanese universities that promoted various forms of experiential learning around the theme of social participation. The opportunity of learning through practical experience, where students turn their attention to social problems and take pains to consider means of resolving them, creates opportunities to demonstrate “human power” applicable to all sorts of activities the following graduation, thereby guaranteeing students’ continuous growth throughout their careers.

Keywords: career education, experiential learning, subjective learning, university education

Procedia PDF Downloads 310
8787 Blended Learning and English Language Teaching: Instructors' Perceptions and Aspirations

Authors: Rasha Alshaye

Abstract:

Blended learning has become an innovative model that combines face-to-face with e-learning approaches. The Saudi Electronic University (SEU) has adopted blended learning as a flexible approach that provides instructors and learners with a motivating learning environment to stimulate the teaching and learning process. This study investigates the perceptions of English language instructors, teaching the four English language skills at Saudi Electronic University. Four main domains were examined in this study; challenges that the instructors encounter while implementing the blended learning approach, enhancing student-instructor interaction, flexibility in teaching, and the lack of technical skills. Furthermore, the study identifies and represents the instructors’ aspirations and plans to utilize this approach in enhancing the teaching and learning experience. Main findings indicate that instructors at Saudi Electronic University experience some challenges while teaching the four language skills. However, they find the blended learning approach motivating and flexible for them and their students. This study offers some important understandings into how instructors are applying the blended learning approach and how this process can be enriched.

Keywords: blended learning, English language skills, English teaching, instructors' perceptions

Procedia PDF Downloads 140
8786 Analyzing Log File of Community Question Answering for Online Learning

Authors: Long Chen

Abstract:

With the proliferation of E-Learning, collaborative learning becomes more and more popular in various teaching and learning occasions. Studies over the years have proved that actively participating in classroom discussion can enhance student's learning experience, consolidating their knowledge and understanding of the class content. Collaborative learning can also allow students to share their resources and knowledge by exchanging, absorbing, and observing one another's opinions and ideas. Community Question Answering (CQA) services are particularly suitable paradigms for collaborative learning, since it is essentially an online collaborative learning platform where one can get information from multiple sources for he/her to choose from. However, current CQA services have only achieved limited success in collaborative learning due to the uncertainty of answers' quality. In this paper, we predict the quality of answers in a CQA service, i.e. Yahoo! Answers, for the use of online education and distance learning, which would enable a student to find relevant answers and potential answerers more effectively and efficiently, and thus greatly increase students' user experience in CQA services. Our experiment reveals that the quality of answers is influenced by a series of factors such as asking time, relations between users, and his/her experience in the past. We also show that by modelling user's profile with our proposed personalized features, student's satisfaction towards the provided answers could be accurately estimated.

Keywords: Community Question Answering, Collaborative Learning, Log File, Co-Training

Procedia PDF Downloads 441
8785 Use of Self-Monitoring Strategy on Homework Completion among Pupils with Learning Disabilities in Ondo State, Nigeria

Authors: Olusegun Omoluwa, Kolawole Israel Anthony

Abstract:

Pupils with learning disabilities are found in every classroom, but because learning disabilities cannot be seen, the condition is often too neglected. Unless these pupils are recognised and treated, they are likely to become educational discards. This study consequently attempted to determine effects of self-monitoring strategy on homework completion among pupils with learning disabilities. Ninety (90) participants were engaged in the study. Pre-test, post-test, control group quasi experimental design was adopted. Purposive sampling technique was used to select pupils with evidence of learning disabilities from three primary schools in Ondo State. Findings showed that self-monitoring strategy was significant in enhancing homework completion among pupils with learning disabilities. However, gender and self-esteem did not significantly contribute to homework completion. The study therefore recommended that measures such that would uncover unsettling academic, psychological and emotional deficiencies of these pupils through appropriate diagnosis should be undertaken by the parents and teachers, in order for them to have a sense of belonging in the society.

Keywords: self monitoring, home work completion, learning dissabilities, learning

Procedia PDF Downloads 352
8784 A Study on the Difficulties and Countermeasures of Uyghur Students’ English Learning in Hotan District, Xinjiang

Authors: Tingting Zou

Abstract:

This paper firstly presents an overview of the situation of Xinjiang and Hotan, and describes the current status and features of Uyghur students’ English education. Then it summarizes the research on the theories of Third Language Acquisition and Foreign Language Learning Motivation at home and abroad. Further, through the data collected by the questionnaire, the paper points out the three main problems and causes of Uyghur students’ English learning in Hotan, Xinjiang. Finally, the paper draws a conclusion and puts forward some suggestions on how to improve their English learning quality based on the theory of Foreign Language Learning Motivation.

Keywords: countermeasures and difficulties, English learning, Hotan Xinjiang, Uyghur students

Procedia PDF Downloads 96
8783 Diagnostic Assessment for Mastery Learning of Engineering Students with a Bayesian Network Model

Authors: Zhidong Zhang, Yingchen Yang

Abstract:

In this study, a diagnostic assessment model for Mastery Engineering Learning was established based on a group of undergraduate students who studied in an engineering course. A diagnostic assessment model can examine both students' learning process and report achievement results. One very unique characteristic is that the diagnostic assessment model can recognize the errors and anything blocking students in their learning processes. The feedback is provided to help students to know how to solve the learning problems with alternative strategies and help the instructor to find alternative pedagogical strategies in the instructional designs. Dynamics is a core course in which is a common course being shared by several engineering programs. This course is a very challenging for engineering students to solve the problems. Thus knowledge acquisition and problem-solving skills are crucial for student success. Therefore, developing an effective and valid assessment model for student learning are of great importance. Diagnostic assessment is such a model which can provide effective feedback for both students and instructor in the mastery of engineering learning.

Keywords: diagnostic assessment, mastery learning, engineering, bayesian network model, learning processes

Procedia PDF Downloads 152
8782 Assessing the Effectiveness of Machine Learning Algorithms for Cyber Threat Intelligence Discovery from the Darknet

Authors: Azene Zenebe

Abstract:

Deep learning is a subset of machine learning which incorporates techniques for the construction of artificial neural networks and found to be useful for modeling complex problems with large dataset. Deep learning requires a very high power computational and longer time for training. By aggregating computing power, high performance computer (HPC) has emerged as an approach to resolving advanced problems and performing data-driven research activities. Cyber threat intelligence (CIT) is actionable information or insight an organization or individual uses to understand the threats that have, will, or are currently targeting the organization. Results of review of literature will be presented along with results of experimental study that compares the performance of tree-based and function-base machine learning including deep learning algorithms using secondary dataset collected from darknet.

Keywords: deep-learning, cyber security, cyber threat modeling, tree-based machine learning, function-based machine learning, data science

Procedia PDF Downloads 154
8781 Measuring Learning Independence and Transition through the First Year in Architecture

Authors: Duaa Al Maani, Andrew Roberts

Abstract:

Students in higher education are expected to learn actively and independently. Whilst quite work has been done to understand the perceptions of students’ learning transition regarding independent learning, to author’s best knowledge, it seems relatively few published research on independent learning in studio-based subjects such as architecture. Another major issue in independent learning research concerned the inconsistency in terminology; there appears to be a paucity of research on its definition, challenges, and tools within the UK university sector. It is not always clear how independent learning works in practice, or what are the challenges that face students toward being independent learners. Accordingly, this paper seeks to highlight these problems by analyzing previous and current literature of independent learning, in addition, to measure students’ independence at the very begging of their first academic year and compare it with their level of learning independence at the end of the same year. Eighty-seven student enrolled in 2017/2018 at Cardiff University completed the Autonomous Learning Questionnaire in order to measure their level of learning independence. Students’ initial responses were very positive and showed high level of learning independence. Interestingly, these responses significantly decreased at the end of the year. Time management was the most obvious challenge facing students transition into higher education, and contrary to expectations, we found no effect of student maturity on their level of independence. Moreover, we found no significant differences among students’ gender, but we did find differences among nationalities.

Keywords: autonomous learning, first year, learning independence, transition

Procedia PDF Downloads 146
8780 Artificial Neural Networks Application on Nusselt Number and Pressure Drop Prediction in Triangular Corrugated Plate Heat Exchanger

Authors: Hany Elsaid Fawaz Abdallah

Abstract:

This study presents a new artificial neural network(ANN) model to predict the Nusselt Number and pressure drop for the turbulent flow in a triangular corrugated plate heat exchanger for forced air and turbulent water flow. An experimental investigation was performed to create a new dataset for the Nusselt Number and pressure drop values in the following range of dimensionless parameters: The plate corrugation angles (from 0° to 60°), the Reynolds number (from 10000 to 40000), pitch to height ratio (from 1 to 4), and Prandtl number (from 0.7 to 200). Based on the ANN performance graph, the three-layer structure with {12-8-6} hidden neurons has been chosen. The training procedure includes back-propagation with the biases and weight adjustment, the evaluation of the loss function for the training and validation dataset and feed-forward propagation of the input parameters. The linear function was used at the output layer as the activation function, while for the hidden layers, the rectified linear unit activation function was utilized. In order to accelerate the ANN training, the loss function minimization may be achieved by the adaptive moment estimation algorithm (ADAM). The ‘‘MinMax’’ normalization approach was utilized to avoid the increase in the training time due to drastic differences in the loss function gradients with respect to the values of weights. Since the test dataset is not being used for the ANN training, a cross-validation technique is applied to the ANN network using the new data. Such procedure was repeated until loss function convergence was achieved or for 4000 epochs with a batch size of 200 points. The program code was written in Python 3.0 using open-source ANN libraries such as Scikit learn, TensorFlow and Keras libraries. The mean average percent error values of 9.4% for the Nusselt number and 8.2% for pressure drop for the ANN model have been achieved. Therefore, higher accuracy compared to the generalized correlations was achieved. The performance validation of the obtained model was based on a comparison of predicted data with the experimental results yielding excellent accuracy.

Keywords: artificial neural networks, corrugated channel, heat transfer enhancement, Nusselt number, pressure drop, generalized correlations

Procedia PDF Downloads 88
8779 Pain Intensity, Functional Disability and Physical Activity among Elderly Individuals with Chronic Mechanical Low Back Pain

Authors: Adesola Odole, Nse Odunaiya, Samuel Adewale

Abstract:

Chronic Mechanical Low Back Pain (CMLBP) is prevalent in the aging population; some studies have documented the association among pain intensity, functional disability and physical activity in the general population but very few studies in the elderly. This study was designed to investigate the association among pain intensity, functional disability and physical activity of elderly individuals with CMLBP in the University College Hospital (UCH), Ibadan, Nigeria and also to determine the difference in physical activity, pain intensity and functional disability between males and females. A total of 96 participants diagnosed with CMLBP participated in this cross-sectional survey. They were conveniently sampled from selected units in the UCH, Ibadan, Nigeria. Data on sex, marital status, occupation and duration of onset of pain of participants were obtained from the participants. The Physical Activity Scale for the Elderly, Visual Analogue Scale and Oswestry Disability Questionnaire were used to measure the physical activity, pain intensity and functional disability of the participants respectively. Data was analysed using Spearman correlation, independent t-test; and α was set at 0.05. Participants (25 males, 71 females) were aged 69.64±7.43 years. The majority (76.0%) of the participants were married, and over half (55.2%) were retirees. Participants’ mean pain intensity score was 5.21±2.03 and mean duration of onset of low back pain was 63.63 ± 90.01 months. The majority (67.6%) of the participants reported severe to crippled functional disability. Their mean functional disability was 46.91 ± 13.99. Participants’ mean physical activity score was 97.47 ± 82.55. There was significant association between physical activity and pain intensity (r = -0.21, p = 0.04). There was significant association between physical activity and functional disability (r = -0.47, p = 0.00). Male (87.26 ± 79.94) and female (101.07 ± 83.71) participants did not differ significantly in physical activity (t = 0.00, p = 0.48). In addition, male (5.48 ± 2.06) and female (5.11 ± 2.02) participants’ pain intensity were comparable (t = 0.26, p = 0.44). There was also no significant difference in functional disability (t = 0.05, p = 0.07) between male (42.56 ±13.85) and female (48.45 ± 13.81) participants. It can be concluded from this study that majority of the elderly individuals with chronic mechanical low back pain had a severe to crippled functional disability. Those who reported increased physical activity had reduced pain intensity and functional disability. Male and female elderly individuals with chronic mechanical low back pain are comparable in their pain intensity, functional disability, and physical activity. Elderly individuals with CMLBP should be educated on the importance of participating in physical activity which could reduce their pain symptoms and improve functional disability.

Keywords: elderly, functional disability, mechanical low back pain, pain intensity, physical activity

Procedia PDF Downloads 320
8778 Artificial Intelligence in Duolingo

Authors: Elana Mahboub, Lamar Bakhurji, Hind Alhindi, Sara Alesayi

Abstract:

Duolingo is a revolutionary language learning platform that offers an interactive and accessible learning experience. Its gamified approach makes language learning engaging and enjoyable, with a diverse range of languages available. The platform's adaptive learning system tailors lessons to individual proficiency levels, ensuring a personalized and efficient learning journey. The incorporation of multimedia elements enhances the learning experience and promotes practical language application. Duolingo's success is attributed to its mobile accessibility, offering basic access to language courses for free, with optional premium features for those seeking additional resources. Research shows positive outcomes for users, and the app's global impact extends beyond individual learning to formal language education initiatives. Duolingo is a transformative force in language education, breaking down barriers and making language learning an attainable goal for millions worldwide.

Keywords: duolingo, artificial intelligence, artificial intelligence in duolingo, benefit of artificial intelligence

Procedia PDF Downloads 72
8777 Dynamics of Piaget’s Cognitive Learning Approach and Vygotsky’s Sociocultural Theory in Different Stages of Medical and Allied Health Education

Authors: Ferissa B. Ablola

Abstract:

The two learning theories which were evidently used in medical education include cognitive and sociocultural frameworks. The interplay of different learning theories in education is vital since most of the existing theories have specific focus of development. In addition, a certain theory is best fit with a particular learning outcome and audience profile. The application of learning theories is education is said to be dynamic and becomes more complex with increasing educational level. This systematic review aims to describe the possible shift from integration of cognitive learning theory to employment of socio-cultural approach in medical and health-allied education over the years among students, educators and the learning institution through systematic review following the PRISMA guidelines. In addition, the changes in teaching modality and individual acceptance of the shift of learning framework among cognitive constructivist and social constructivist will also be documented. This present review may serve as baseline information on the connection of two widely used theories in medical education in different year levels. Further, this study emphasizes the significance of the alignment of different learning theories and combination of insights from several educational frameworks, would permit the creation of a teaching/learning design with real theoretical depth. A more inclusive systematic review is necessary to involve more related studies, and exploration of interaction among other learning theories in health and other fields of study is encouraged.

Keywords: learning theory, cognitive, sociocultural, medical education

Procedia PDF Downloads 27
8776 Analysis of Cooperative Learning Behavior Based on the Data of Students' Movement

Authors: Wang Lin, Li Zhiqiang

Abstract:

The purpose of this paper is to analyze the cooperative learning behavior pattern based on the data of students' movement. The study firstly reviewed the cooperative learning theory and its research status, and briefly introduced the k-means clustering algorithm. Then, it used clustering algorithm and mathematical statistics theory to analyze the activity rhythm of individual student and groups in different functional areas, according to the movement data provided by 10 first-year graduate students. It also focused on the analysis of students' behavior in the learning area and explored the law of cooperative learning behavior. The research result showed that the cooperative learning behavior analysis method based on movement data proposed in this paper is feasible. From the results of data analysis, the characteristics of behavior of students and their cooperative learning behavior patterns could be found.

Keywords: behavior pattern, cooperative learning, data analyze, k-means clustering algorithm

Procedia PDF Downloads 187
8775 A Comparison of Methods for Neural Network Aggregation

Authors: John Pomerat, Aviv Segev

Abstract:

Recently, deep learning has had many theoretical breakthroughs. For deep learning to be successful in the industry, however, there need to be practical algorithms capable of handling many real-world hiccups preventing the immediate application of a learning algorithm. Although AI promises to revolutionize the healthcare industry, getting access to patient data in order to train learning algorithms has not been easy. One proposed solution to this is data- sharing. In this paper, we propose an alternative protocol, based on multi-party computation, to train deep learning models while maintaining both the privacy and security of training data. We examine three methods of training neural networks in this way: Transfer learning, average ensemble learning, and series network learning. We compare these methods to the equivalent model obtained through data-sharing across two different experiments. Additionally, we address the security concerns of this protocol. While the motivating example is healthcare, our findings regarding multi-party computation of neural network training are purely theoretical and have use-cases outside the domain of healthcare.

Keywords: neural network aggregation, multi-party computation, transfer learning, average ensemble learning

Procedia PDF Downloads 162
8774 Virtua-Gifted and Non-Gifted Students’ Motivation toward Virtual Flipped Learning from L2 Motivational Self-System Lense

Authors: Kamal Heidari

Abstract:

Covid-19 has borne drastic effects on different areas of society, including the education area, in that it brought virtual education to the center of attention, as an alternative to in-person education. In virtual education, the importance of flipped learning doubles, as students are supposed to take the main responsibility of teaching/learning process; and teachers play merely a facilitative/monitoring role. Given the students’ responsibility in virtual flipped learning, students’ motivation plays a pivotal role in the effectiveness of this learning method. The L2 Motivational Self-System (L2MSS) model is a currently proposed model elaborating on students’ motivation based on three sub-components: ideal L2 self, ought-to L2 self, and L2 learning experience. Drawing on an exploratory sequential mixed-methods research design, this study probed the effect of virtual flipped learning (via SHAD platform) on 112 gifted and non-gifted students’ motivation based on the L2 MSS. This study uncovered that notwithstanding the point that virtual flipped learning improved both gifted and non-gifted students’ motivation, it differentially affected their motivation. In other words, gifted students mostly referred to ideal L2 self, while non-gifted ones referred to ought-to L2 self and L2 learning experience aspects of motivation.

Keywords: virtual flipped learning, giftedness, motivation, L2MSS

Procedia PDF Downloads 91
8773 Models and Metamodels for Computer-Assisted Natural Language Grammar Learning

Authors: Evgeny Pyshkin, Maxim Mozgovoy, Vladislav Volkov

Abstract:

The paper follows a discourse on computer-assisted language learning. We examine problems of foreign language teaching and learning and introduce a metamodel that can be used to define learning models of language grammar structures in order to support teacher/student interaction. Special attention is paid to the concept of a virtual language lab. Our approach to language education assumes to encourage learners to experiment with a language and to learn by discovering patterns of grammatically correct structures created and managed by a language expert.

Keywords: computer-assisted instruction, language learning, natural language grammar models, HCI

Procedia PDF Downloads 519
8772 Using Diagnostic Assessment as a Learning and Teaching Approach to Identify Learning Gaps at a Polytechnic

Authors: Vijayan Narayananayar

Abstract:

Identifying learning gaps is crucial in ensuring learners have the necessary knowledge and skills to succeed. The Learning and Teaching (L&T) approach requires tutors to identify gaps in knowledge and improvise learning activities to close them. One approach to identifying learning gaps is through diagnostic assessment, which uses well-structured questions and answer options. The paper focuses on the use of diagnostic assessment as a learning and teaching approach in a foundational module at a polytechnic. The study used diagnostic assessment over two semesters, including the COVID and post-COVID semesters, to identify gaps in learning. The design of the diagnostic activity, pedagogical intervention, and survey responses completed by learners were analyzed. Results showed that diagnostic assessment can be an effective tool for identifying learning gaps and designing interventions to address them. Additionally, the use of diagnostic assessment provides an opportunity for tutors to engage with learners on a one-to-one basis, tailoring teaching to individual needs. The paper also discusses the design of diagnostic questions and answer options, including characteristics that need to be considered in achieving the target of identifying learning gaps. The implications of using diagnostic assessment as a learning and teaching approach include bridging the gap between theory and practice, and ensuring learners are equipped with skills necessary for their future careers. This paper can be useful in helping educators and practitioners to incorporate diagnostic assessment into their L&T approach.

Keywords: assessment, learning & teaching, diagnostic assessment, analytics

Procedia PDF Downloads 112