Search results for: medium density
1094 Woody Carbon Stock Potentials and Factor Affecting Their Storage in Munessa Forest, Southern Ethiopia
Authors: Mojo Mengistu Gelasso
Abstract:
The tropical forest is considered the most important forest ecosystem for mitigating climate change by sequestering a high amount of carbon. The potential carbon stock of the forest can be influenced by many factors. Therefore, studying these factors is crucial for understanding the determinants that affect the potential for woody carbon storage in the forest. This study was conducted to evaluate the potential for woody carbon stock and how it varies based on plant community types, as well as along altitudinal, slope, and aspect gradients in the Munessa dry Afromontane forest. Vegetation data was collected using systematic sampling. Five line transects were established at 100 m intervals along the altitudinal gradient between two consecutive transect lines. On each transect, 10 quadrats (20 x 20 m), separated by 200 m, were established. The woody carbon was estimated using an appropriate allometric equation formulated for tropical forests. The data was analyzed using one-way ANOVA in R software. The results showed that the total woody carbon stock of the Munessa forest was 210.43 ton/ha. The analysis of variance revealed that woody carbon density varied significantly based on environmental factors, while community types had no significant effect. The highest mean carbon stock was found at middle altitudes (2367-2533 m.a.s.l), lower slopes (0-13%), and west-facing aspects. The Podocarpus falcatus-Croton macrostachyus community type also contributed a higher woody carbon stock, as larger tree size classes and older trees dominated it. Overall, the potential for woody carbon sequestration in this study was strongly associated with environmental variables. Additionally, the uneven distribution of species with larger diameter at breast height (DBH) in the study area might be linked to anthropogenic factors, as the current forest growth indicates characteristics of a secondary forest. Therefore, our study suggests that the development and implementation of a sustainable forest management plan is necessary to increase the carbon sequestration potential of this forest and mitigate climate change.Keywords: munessa forest, woody carbon stock, environmental factors, climate mitigation
Procedia PDF Downloads 801093 Woody Carbon Stock Potentials and Factor Affecting Their Storage in Munessa Forest, Southern Ethiopia
Authors: Mengistu Gelasso Mojo
Abstract:
The tropical forest is considered the most important forest ecosystem for mitigating climate change by sequestering a high amount of carbon. The potential carbon stock of the forest can be influenced by many factors. Therefore, studying these factors is crucial for understanding the determinants that affect the potential for woody carbon storage in the forest. This study was conducted to evaluate the potential for woody carbon stock and how it varies based on plant community types, as well as along altitudinal, slope, and aspect gradients in the Munessa dry Afromontane forest. Vegetation data was collected using systematic sampling. Five line transects were established at 100 m intervals along the altitudinal gradient between two consecutive transect lines. On each transect, 10 quadrats (20 x 20 m), separated by 200 m, were established. The woody carbon was estimated using an appropriate allometric equation formulated for tropical forests. The data was analyzed using one-way ANOVA in R software. The results showed that the total woody carbon stock of the Munessa forest was 210.43 ton/ha. The analysis of variance revealed that woody carbon density varied significantly based on environmental factors, while community types had no significant effect. The highest mean carbon stock was found at middle altitudes (2367-2533 m.a.s.l), lower slopes (0-13%), and west-facing aspects. The Podocarpus falcatus-Croton macrostachyus community type also contributed a higher woody carbon stock, as larger tree size classes and older trees dominated it. Overall, the potential for woody carbon sequestration in this study was strongly associated with environmental variables. Additionally, the uneven distribution of species with larger diameter at breast height (DBH) in the study area might be linked to anthropogenic factors, as the current forest growth indicates characteristics of a secondary forest. Therefore, our study suggests that the development and implementation of a sustainable forest management plan is necessary to increase the carbon sequestration potential of this forest and mitigate climate change.Keywords: munessa forest, woody carbon stock, environmental factors, climate mitigation
Procedia PDF Downloads 831092 Foamability and Foam Stability of Gelatine-Sodium Dodecyl Sulfate Solutions
Authors: Virginia Martin Torrejon, Song Hang
Abstract:
Gelatine foams are widely explored materials due to their biodegradability, biocompatibility, and availability. They exhibit outstanding properties and are currently subject to increasing scientific research due to their potential use in different applications, such as biocompatible cellular materials for biomedical products or biofoams as an alternative to fossil-fuel-derived packaging. Gelatine is a highly surface-active polymer, and its concentrated solutions usually do not require surfactants to achieve low surface tension. Still, anionic surfactants like sodium dodecyl sulfate (SDS) strongly interact with gelatine, impacting its viscosity and rheological properties and, in turn, their foaming behaviour. Foaming behaviour is a key parameter for cellular solids produced by mechanical foaming as it has a significant effect on the processing and properties of cellular materials. Foamability mainly impacts the density and the mechanical properties of the foams, while foam stability is crucial to achieving foams with low shrinkage and desirable pore morphology. This work aimed to investigate the influence of SDS on the foaming behaviour of concentrated gelatine foams by using a dynamic foam analyser. The study of maximum foam height created, foam formation behaviour, drainage behaviour, and foam structure with regard to bubble size and distribution were carried out in 10 wt% gelatine solutions prepared at different SDS/gelatine concentration ratios. Comparative rheological and viscometry measurements provided a good correlation with the data from the dynamic foam analyser measurements. SDS incorporation at optimum dosages and gelatine gelation led to highly stable foams at high expansion ratios. The viscosity increase of the hydrogel solution at SDS content increased was a key parameter for foam stabilization. In addition, the impact of SDS content on gelling time and gel strength also considerably impacted the foams' stability and pore structure.Keywords: dynamic foam analyser, gelatine foams stability and foamability, gelatine-surfactant foams, gelatine-SDS rheology, gelatine-SDS viscosity
Procedia PDF Downloads 1541091 Humins: From Industrial By-Product to High Value Polymers
Authors: Pierluigi Tosi, Ed de Jong, Gerard van Klink, Luc Vincent, Alice Mija
Abstract:
During the last decades renewable and low-cost resources have attracted increasingly interest. Carbohydrates can be derived by lignocellulosic biomasses, which is an attractive option since they represent the most abundant carbon source available in nature. Carbohydrates can be converted in a plethora of industrially relevant compounds, such as 5-hydroxymethylfurfural (HMF) and levulinic acid (LA), within acid catalyzed dehydration of sugars with mineral acids. Unfortunately, these acid catalyzed conversions suffer of the unavoidable formation of highly viscous heterogeneous poly-disperse carbon based materials known as humins. This black colored low value by-product is made by a complex mixture of macromolecules built by covalent random condensations of the several compounds present during the acid catalyzed conversion. Humins molecular structure is still under investigation but seems based on furanic rings network linked by aliphatic chains and decorated by several reactive moieties (ketones, aldehydes, hydroxyls, …). Despite decades of research, currently there is no way to avoid humins formation. The key parameter for enhance the economic viability of carbohydrate conversion processes is, therefore, increasing the economic value of the humins by-product. Herein are presented new humins based polymeric materials that can be prepared starting from the raw by-product by thermal treatment, without any step of purification or pretreatment. Humins foams can be produced with the control of reaction key parameters, obtaining polymeric porous materials with designed porosity, density, thermal and electrical conductivity, chemical and electrical stability, carbon amount and mechanical properties. Physico chemical properties can be enhanced by modifications on the starting raw material or adding different species during the polymerization. A comparisons on the properties of different compositions will be presented, along with tested applications. The authors gratefully acknowledge the European Community for financial support through Marie-Curie H2020-MSCA-ITN-2015 "HUGS" Project.Keywords: by-product, humins, polymers, valorization
Procedia PDF Downloads 1431090 Determining Optimum Locations for Runoff Water Harvesting in W. Watir, South Sinai, Using RS, GIS, and WMS Techniques
Authors: H. H. Elewa, E. M. Ramadan, A. M. Nosair
Abstract:
Rainfall water harvesting is considered as an important tool for overcoming water scarcity in arid and semi-arid region. Wadi Watir in the southeastern part of Sinai Peninsula is considered as one of the main and active basins in the Gulf of Aqaba drainage system. It is characterized by steep hills mainly consist of impermeable rocks, whereas the streambeds are covered by a highly permeable mixture of gravel and sand. A comprehensive approach involving the integration of geographic information systems, remote sensing and watershed modeling was followed to identify the RWH capability in this area. Eight thematic layers, viz volume of annual flood, overland flow distance, maximum flow distance, rock or soil infiltration, drainage frequency density, basin area, basin slope and basin length were used as a multi-parametric decision support system for conducting weighted spatial probability models (WSPMs) to determine the potential areas for the RWH. The WSPMs maps classified the area into five RWH potentiality classes ranging from the very low to very high. Three performed WSPMs' scenarios for W. Watir reflected identical results among their maps for the high and very high RWH potentiality classes, which are the most suitable ones for conducting surface water harvesting techniques. There is also a reasonable match with respect to the potentiality of runoff harvesting areas with a probability of moderate, low and very low among the three scenarios. WSPM results have shown that the high and very high classes, which are the most suitable for the RWH are representing approximately 40.23% of the total area of the basin. Accordingly, several locations were decided for the establishment of water harvesting dams and cisterns to improve the water conditions and living environment in the study area.Keywords: Sinai, Wadi Watir, remote sensing, geographic information systems, watershed modeling, runoff water harvesting
Procedia PDF Downloads 3581089 The Risk and Prevention of Peer-To-Peer Network Lending in China
Authors: Zhizhong Yuan, Lili Wang, Chenya Zheng, Wuqi Yang
Abstract:
How to encourage and support peer-to-peer (P2P) network lending, and effectively monitor the risk of P2P network lending, has become the focus of the Chinese government departments, industrialists, experts and scholars in recent years. The reason is that this convenient online micro-credit service brings a series of credit risks and other issues. Avoiding the risks brought by the P2P network lending model, it can better play a benign role and help China's small and medium-sized private enterprises with vigorous development to solve the capital needs; otherwise, it will bring confusion to the normal financial order. As a form of financial services, P2P network lending has injected new blood into China's non-government finance in the past ten years, and has found a way out for idle funds and made up for the shortage of traditional financial services in China. However, it lacks feasible measures in credit evaluation and government supervision. This paper collects a large amount of data about P2P network lending of China. The data collection comes from the official media of the Chinese government, the public achievements of existing researchers and the analysis and collation of correlation data by the authors. The research content of this paper includes literature review; the current situation of China's P2P network lending development; the risk analysis of P2P network lending in China; the risk prevention strategy of P2P network lending in China. The focus of this paper is to try to find a specific program to strengthen supervision and avoid risks from the perspective of government regulators, operators of P2P network lending platform, investors and users of funds. These main measures include: China needs to develop self-discipline organization of P2P network lending industry and formulate self-discipline norms as soon as possible; establish a regular information disclosure system of P2P network lending platform; establish censorship of credit rating of borrowers; rectify the P2P network lending platform in compliance through the implementation of bank deposition. The results and solutions will benefit all the P2P network lending platforms, creditors, debtors, bankers, independent auditors and government agencies of China and other countries.Keywords: peer-to-peer(P2P), regulation, risk prevention, supervision
Procedia PDF Downloads 1661088 Jute Based Biocomposites: The Future of Automobiles
Authors: D. P. Ray, L. Ammayappan, S. Debnath, R. K. Ghosh, D. Mondal, S. Dasgupta, S. Islam, S. Chakroborty, P. K. Ganguly, D. Nag
Abstract:
Nature being bountiful is generous enough to provide rich resources to mankind. These resources can be used as an alternative to synthetics, thereby reducing the chances of environmental pollution. Natural fibre based composites have emerged as a successful trend in recent automobile industry. Natural fibre based composites used in automobile industries not only reduces their fuel consumption but also do not pose any health hazards. In spite of the use of natural fibre based bio composite in automobile industries, its use is only being limited to interior products. However, its major drawbacks which contributed to limited scope in the field of industry are reduced durability and mechanical strength. Thereby, the use of natural fibre based bio composites as headliner in case of automobile industries is also not successfully deployed. Out of all the natural fibres available, jute can widely be used as automobile parts because of its easy availability, comparatively higher specific strength, lower density, low thermal conductivity and most importantly its non polluting and non abrasive nature. Various research outcomes in the field of jute based biocomposites for the use of automobile industries has not successfully being deployed due to certain inherent problem of the fibre. Jute being hydrophilic in nature is not readily adhered to the hydrophobic polyester resin. Therefore introduction of a chemical compatibilizer, in the preparation of jute based composites have been tested to enhance the mechanical and durable properties of the material to a greater extent. This present work therefore focuses on the synthesis of a suitable compatibilizer, acting as a chemical bridge between the polar jute fabric and the non polar resin matrix. This in turn results in imparting better interfacial bonding between the two, thereby inducing higher mechanical strength. These coupling treated fabrics are casted into composites and tested for their mechanical properties. The test reports show a remarkable change in all of its properties. The durability test was performed by soil burial test method.Keywords: jute, automobile industry, biodegradability, chemical compatibilizer
Procedia PDF Downloads 4571087 Core-Shell Nanofibers for Prevention of Postsurgical Adhesion
Authors: Jyh-Ping Chen, Chia-Lin Sheu
Abstract:
In this study, we propose to use electrospinning to fabricate porous nanofibrous membranes as postsurgical anti-adhesion barriers and to improve the properties of current post-surgical anti-adhesion products. We propose to combine FDA-approved biomaterials with anti-adhesion properties, polycaprolactone (PCL), polyethylene glycol (PEG), hyaluronic acid (HA) with silver nanoparticles (Ag) and ibuprofen (IBU), to produce anti-adhesion barrier nanofibrous membranes. For this purpose, PEG/PCL/Ag/HA/IBU core-shell nanofibers were prepared. The shell layer contains PEG + PCL to provide mechanical supports and Ag was added to the outer PEG-PCL shell layer during electrospinning to endow the nanofibrous membrane with anti-bacterial properties. The core contains HA to exert anti-adhesion and IBU to exert anti-inflammation effects, respectively. The nanofibrous structure of the membranes can reduce cell penetration while allowing nutrient and waste transports to prevent postsurgical adhesion. Nanofibers with different core/shell thickness ratio were prepared. The nanofibrous membranes were first characterized for their physico-chemical properties in detail, followed by in vitro cell culture studies for cell attachment and proliferation. The HA released from the core region showed extended release up to 21 days for prolonged anti-adhesion effects. The attachment of adhesion-forming fibroblasts is reduced using the nanofibrous membrane from DNA assays and confocal microscopic observation of adhesion protein vinculin expression. The Ag released from the shell showed burst release to prevent E Coli and S. aureus infection immediately and prevent bacterial resistance to Ag. Minimum cytotoxicity was observed from Ag and IBU when fibroblasts were culture with the extraction medium of the nanofibrous membranes. The peritendinous anti-adhesion model in rabbits and the peritoneal anti-adhesion model in rats were used to test the efficacy of the anti-adhesion barriers as determined by gross observation, histology, and biomechanical tests. Within all membranes, the PEG/PCL/Ag/HA/IBU core-shell nanofibers showed the best reduction in cell attachment and proliferation when tested with fibroblasts in vitro. The PEG/PCL/Ag/HA/IBU nanofibrous membranes also showed significant improvement in preventing both peritendinous and peritoneal adhesions when compared with other groups and a commercial adhesion barrier film.Keywords: anti-adhesion, electrospinning, hyaluronic acid, ibuprofen, nanofibers
Procedia PDF Downloads 1811086 Design and Development of an Innovative MR Damper Based on Intelligent Active Suspension Control of a Malaysia's Model Vehicle
Authors: L. Wei Sheng, M. T. Noor Syazwanee, C. J. Carolyna, M. Amiruddin, M. Pauziah
Abstract:
This paper exhibits the alternatives towards active suspension systems revised based on the classical passive suspension system to improve comfort and handling performance. An active Magneto rheological (MR) suspension system is proposed as to explore the active based suspension system to enhance performance given its freedom to independently specify the characteristics of load carrying, handling, and ride quality. Malaysian quarter car with two degrees of freedom (2DOF) system is designed and constructed to simulate the actions of an active vehicle suspension system. The structure of a conventional twin-tube shock absorber is modified both internally and externally to comprehend with the active suspension system. The shock absorber peripheral structure is altered to enable the assembling and disassembling of the damper through a non-permanent joint whereby the stress analysis of the designed joint is simulated using Finite Element Analysis. Simulation on the internal part where an electrified copper coil of 24AWG is winded is done using Finite Element Method Magnetics to measure the magnetic flux density inside the MR damper. The primary purpose of this approach is to reduce the vibration transmitted from the effects of road surface irregularities while maintaining solid manoeuvrability. The aim of this research is to develop an intelligent control system of a consecutive damping automotive suspension system. The ride quality is improved by means of the reduction of the vertical body acceleration caused by the car body when it experiences disturbances from speed bump and random road roughness. Findings from this research are expected to enhance the quality of ride which in return can prevent the deteriorating effect of vibration on the vehicle condition as well as the passengers’ well-being.Keywords: active suspension, FEA, magneto rheological damper, Malaysian quarter car model, vibration control
Procedia PDF Downloads 2091085 20th-Century River Course Changes and Their Relation to Sediment Carbon Distribution Patterns in the Yellow River Delta
Authors: Dongxue Li, Zhonghua Ning, Yi’na Li, Baoshan Cui, Wasner Daniel, Sebastian Dötterl
Abstract:
Most of the world's coastal alluvial plains can be significant carbon (C) eservoirs in which upland sediments are deposited and bury former topsoil, thereby contributing to soil C preservation, especially in river-controlled deltas like the Yellow River Delta, China. These deltas are affected by the continuous large amount of sediment transport and strong river dynamics from the upper reaches, which makes the river course in the deltas change frequently. However, the impact of varying river course changes on C stocks in these estuary wetlands is unclear. To investigate this, we drilled five 2 m cores along a sediment deposition sequence of the Yellow River Delta, which shifted its main course flow in the delta several times throughout the 20th century. Covering 80 years of sediment deposition, we explored both soil C stocks and their potential sources, and identified key soil physicochemical and hydrometeorological variables that correlate to C density and deposition rate. Further, the spatiotemporal C distribution and its relationship with these variables was examined. Our results showed that sediments at a soil depth of 200 cm in the main courses of the Yellow River corresponded to deposition ages ranging from 1942 to 1989. The oldest course has the lowest C stocks and showed C-enriched compared with younger courses. Contributions of soil C stemming from fresh particulate organic carbon from deposited upstream sources were significantly higher than local, in-situ vegetation. In addition, the carbon of the oldest and relatively young courses tends to be affected by interaction effects of hydrometeorological and physiochemical varibales, and that of the middle courses tends to be affected by independent variables. Our findings can help prioritize conservation efforts across different river courses and provide quantitative support for global carbon emission reduction by assessing sediment carbon reservoirs.Keywords: alluvial plains, coastal wetland, core drilling, course diversion, organic carbon, sediment deposition rate, soil deposition
Procedia PDF Downloads 271084 Dielectric Study of Ethanol Water Mixtures at Different Concentration Using Hollow Channel Cantilever Platform
Authors: Maryam S. Ghoraishi, John E. Hawk, Thomas Thundat
Abstract:
Understanding liquid properties in small scale has become important in recent decades as immerging new microelectromechanical systems (MEMS) devices have been widely used for micro pumps, drug delivery, and many other laboratory-on-microchips analysis. Often in microfluidic devices, fluids are transported electrokinetically. Therefore, extensive knowledge of fluid flow, heat transport, electrokinetics and electrochemistry are key to successful lab on a chip design. Among different microfluidic devices, recently developed hollow channel cantilever offers an ideal platform to study different fluid properties simultaneously without drastic decrease in quality factor which normally occurs when traditional cantilevers operate in the liquid phase. Using hollow channel cantilever, we monitor changes in density and viscosity of liquid while simultaneously investigating dielectric properties of alcohol water binary mixtures. Considerable research has been conducted on alcohol-water mixtures since such a mixture is a typical prototype for biomolecules, Micelle formation, and structural stability of proteins (to name a few). Here we show that hollow channel cantilever can be employed to investigate dielectric properties of ethanol/water mixtures in different concentrations. We study dynamic amplitude shifts of hollow channel cantilever oscillation at different concentrations of ethanol/water for different voltages. Our results show how interactions between solute and solvent, and possibly cluster formation, could change dielectric properties and dipole reorientation of the mixture, as well as the resulting force on the hollow cantilever. For comparison, we also examine higher conductivity ionic mixtures of sodium sulfate solution under the same conditions as low conductivity ethanol/water mixtures. We will show the results from systematic investigation of solvent effects on dielectric properties of the binary mixture. We will also address the question of resolution limits in dielectric study of analyte molecules imposed by solvent concentrations.Keywords: dielectric constant, cantilever sensors, ethanol water mixtures, low frequency
Procedia PDF Downloads 2021083 Field Evaluation of Different Aubergine Cultivars against Infestation of Brinjal Shoot and Fruit Borer
Authors: Ajmal Khan Kassi, Humayun Javed, Muhammad Asif Aziz
Abstract:
Response of different aubergine cultivars against Brinjal shoot and fruit borer (Leucinodes orbonalis Guenee.) was evaluated at research farm of PMAS, Arid Agriculture University, Rawalpindi, during 2013. Field trials were conducted in randomized completed block design with four replications for the screening of five cultivars of Brinjal (Solanum melongena L) (Short Purpal, Singhnath 666, Brinjal long 6275, Round Brinjal 86602, Round Egg Plant White). Cultivar Round White Brinjal showed maximum fruit infestation (54.44%) followed by Singhnath 666 (53.19%), while minimum fruit infestation was observed in Round Brinjal 86602 (42.39%). Cultivar Short Purpal showed maximum larval population (0.43) followed by Round White Brinjal (0.39), while the minimum larval population was observed in Round Brinjal 86602 with (0.27). It was observed that Round Brinjal 86602 cultivar showed comparatively minimum (L. orbonalis) larval population per leaf. The correlation of Brinjal fruit infestation and larval population of (L. orbonalis) with the different environmental factors showed that, the average relative humidity was positively and significantly correlated with fruit infestation on cultivars average precipitation showed positive but non- significant correlation on all the cultivars except Singhnath 666 with the value of (0.79) which was positive and significant. The average temperature showed non-significant and negative correlation with Brinjal long 6275, Round Brinjal 86602 and Singhnath 666, but significant negative correlation with Short Purpal and Round White Brinjal. Maximum temperature also showed the significant and negative correlation on all the five Brinjal cultivars which were significant and highly significant. Minimum temperature showed negative correlation and not significant correlation with all the cultivars. Consequently, based on the (L. orbonalis) larval density and Brinjal fruit infestation, the Round Brinjal 86602 proved least susceptible and Short Purpal highly susceptible cultivar.Keywords: evaluation, Brinjal (Solanum melongena L), Cultivars, L. orbonalis
Procedia PDF Downloads 1961082 Utilization of Oat in Rabbit Feed for the Development of Healthier Rabbit Meat and Its Impact on Human Blood Lipid Profile
Authors: Muhammad Rizwan Tariq, Muhammad Issa Khan, Zulfiqar Ahmad, Muhammad Adnan Nasir, Muhammad Sameem Javed, Sheraz Ahmed
Abstract:
Functional foods may be a good tool that can be simply utilized in reducing community health expenses. Regular consumption of rabbit meat can offer patrons with bioactive components because the manipulation in rabbit feed is much successful to raise the levels of conjugated linoleic acid, ecosapentaenoic acid, decosahexaenoic acid, polyunsaturated fatty acids, selenium, tocopherol etc. and to reduce the ω-3/ω-6 ratio which is performing a major role in curing of cardiovascular and several other diseases. In comparison to the meats of other species, rabbit meat has higher amounts of protein with essential amino acids, especially in the muscles and low cholesterol contents that also have elevated digestibility. The present study was carried out to develop the functional rabbit meat by modifying feed ingredient of rabbit diet. Thirty-day old rabbits were fed with feeds containing 2 % and 4 % oat. The feeding trial was carried out for eight weeks. Rabbits were divided into three different groups and reared for the period of two months. T0 rabbits were considered control group while T1 rabbits were reared on 4% oat, and T2 were on 2% oat in the feed. At the end of the 8 weeks, the rabbits were slaughtered. Results presented in this study concluded that 4 % oat seed supplementation enhanced n-3 PUFA in meat. It was observed that oat seed supplementation also reduced fat percentage in the meat. Utilization of oat in the feed of rabbits significantly affected the pH, protein, fat, textural and concentration of polyunsaturated fatty acids. A study trial was conducted in order to examine the impact of functional meat on the blood lipid profile of human subjects. They were given rabbit meat in comparison to the chicken meat for the period of one month. The cholesterol, triglycerides and low density lipoprotein were found to be lower in blood serum of human subject group treated with 4 % oat meat.Keywords: functional food, functional rabbit meat, meat quality, rabbit
Procedia PDF Downloads 3671081 The Collective Memory, Node Reconstruction and Local Belongingness in the Settlement of Outlying Islands: By Taking the Important Architectural Complex of Wang-an Hua-Zhai Settlement as an Example
Authors: Shu-Yen Wang, Shyh-Huei Hwang
Abstract:
Designated as an important architectural complex of settlement by the Ministry of Culture, Hua-Zhai Settlement located in Wang-An Township, Peng-Hu County, of Taiwan has been progressively restored year by year and is now at the revitalization and reutilization stage. Over the last 5 years, YunTech has participated in the restoration project while being in compliance with the Bureau of Cultural Heritage’s spirit of 'Living Heritage Conservation'. In this study, reflections have been made to evaluate the contemporariness of traditional settlement development from the aspects of revitalization and reutilization. On the one hand, the connection between settlers’ experiences and emotions have been clarified through the living nodes, collective memory, and social-cultural connotation. On the other hand, activity design has promoted the reconstruction of living nodes and facilitated the reconnection of collective memory, enabling us to explore the contemporariness of living nodes after the reconstruction. With the adoption of literature review, participant observation, and interview analysis methods, this study concludes the following results: 1) The node reconstruction brings back the memories and makes emotional connections: the spatial collective memory is composed of different components. During the reconstruction of node space, villagers participated not only in the narration of the history but also in the restoration of the space. This process enables villagers to bring back their memories and make emotional connections thereto. 2) Villagers’ understanding towards revitalization has been facilitated through node reconstruction: as a medium of this project, activity design has facilitated node reconstruction by offering villagers a natural environment to build up emotional connections to the settlement. This also enables us to better understand the meaning of settlement activation for the local community. 3) New connections are established in life between villagers and the university through the construction of living nodes: through the local implementation of node reconstruction, new connections have been established in life between villagers who participated in the project and the university. In the meantime, the university’s entrance to the community has also been revalued.Keywords: collective memory, local sense of belonging, reconstruction of living nodes, the important architectural complex of Wang-An Hua-Zhai settlement
Procedia PDF Downloads 1321080 An International Curriculum Development for Languages and Technology
Authors: Miguel Nino
Abstract:
When considering the challenges of a changing and demanding globalizing world, it is important to reflect on how university students will be prepared for the realities of internationalization, marketization and intercultural conversation. The present study is an interdisciplinary program designed to respond to the needs of the global community. The proposal bridges the humanities and science through three different fields: Languages, graphic design and computer science, specifically, fundamentals of programming such as python, java script and software animation. Therefore, the goal of the four year program is twofold: First, enable students for intercultural communication between English and other languages such as Spanish, Mandarin, French or German. Second, students will acquire knowledge in practical software and relevant employable skills to collaborate in assisted computer projects that most probable will require essential programing background in interpreted or compiled languages. In order to become inclusive and constructivist, the cognitive linguistics approach is suggested for the three different fields, particularly for languages that rely on the traditional method of repetition. This methodology will help students develop their creativity and encourage them to become independent problem solving individuals, as languages enhance their common ground of interaction for culture and technology. Participants in this course of study will be evaluated in their second language acquisition at the Intermediate-High level. For graphic design and computer science students will apply their creative digital skills, as well as their critical thinking skills learned from the cognitive linguistics approach, to collaborate on a group project design to find solutions for media web design problems or marketing experimentation for a company or the community. It is understood that it will be necessary to apply programming knowledge and skills to deliver the final product. In conclusion, the program equips students with linguistics knowledge and skills to be competent in intercultural communication, where English, the lingua franca, remains the medium for marketing and product delivery. In addition to their employability, students can expand their knowledge and skills in digital humanities, computational linguistics, or increase their portfolio in advertising and marketing. These students will be the global human capital for the competitive globalizing community.Keywords: curriculum, international, languages, technology
Procedia PDF Downloads 4431079 Extreme Heat and Workforce Health in Southern Nevada
Authors: Erick R. Bandala, Kebret Kebede, Nicole Johnson, Rebecca Murray, Destiny Green, John Mejia, Polioptro Martinez-Austria
Abstract:
Summertemperature data from Clark County was collected and used to estimate two different heat-related indexes: the heat index (HI) and excess heat factor (EHF). These two indexes were used jointly with data of health-related deaths in Clark County to assess the effect of extreme heat on the exposed population. The trends of the heat indexes were then analyzed for the 2007-2016 decadeandthe correlation between heat wave episodes and the number of heat-related deaths in the area was estimated. The HI showed that this value has increased significantly in June, July, and August over the last ten years. The same trend was found for the EHF, which showed a clear increase in the severity and number of these events per year. The number of heat wave episodes increased from 1.4 per year during the 1980-2016 period to 1.66 per yearduring the 2007-2016 period. However, a different trend was found for heat-wave-event duration, which decreasedfrom an average of 20.4 days during the trans-decadal period (1980-2016) to 18.1 days during the most recent decade(2007-2016). The number of heat-related deaths was also found to increase from 2007 to 2016, with 2016 with the highest number of heat-related deaths. Both HI and the number of deaths showeda normal-like distribution for June, July, and August, with the peak values reached in late July and early August. The average maximum HI values better correlated with the number of deaths registered in Clark County than the EHF, probably because HI uses the maximum temperature and humidity in its estimation,whereas EHF uses the average medium temperature. However, it is worth testing the EHF of the study zone because it was reported to fit properly in the case of heat-related morbidity. For the overall period, 437 heat-related deaths were registered in Clark County, with 20% of the deaths occurring in June, 52% occurring in July, 18% occurring in August,and the remaining 10% occurring in the other months of the year. The most vulnerable subpopulation was people over 50 years old, for which 76% of the heat-related deaths were registered.Most of the cases were associated with heart disease preconditions. The second most vulnerable subpopulation was young adults (20-50), which accounted for 23% of the heat-related deaths. These deathswere associated with alcoholic/illegal drug intoxication.Keywords: heat, health, hazards, workforce
Procedia PDF Downloads 1041078 Prevalence and Predictors of Metabolic Syndrome among Diabetic Clinic Attendees in Sokoto, Nigeria
Authors: Kehinde Joseph Awosan, Balarabe Adami Isah, Edzu Usman Yunusa, Sarafadeen Adeniyi Arisegi, Izuchukwu Obasi, Oluchi Solomon-Anucha
Abstract:
Background: Metabolic syndrome (MetS) is prevalent in patients with diabetes mellitus and a significant risk for major cardiovascular events. Identifying its burden and peculiarities is crucial to preventing complications among those at risk. Aim: This study was conducted to determine the prevalence and predictors of metabolic syndrome among diabetes clinic attendees in Sokoto, Nigeria. Materials and Methods: A cross-sectional study was conducted among 365 patients with type 2 diabetes attending the diabetes clinic of Specialist Hospital, Sokoto, Nigeria. A structured questionnaire was used to obtain data on the respondents’ socio-demographic variables, treatment history, and lifestyle. Blood pressure and anthropometric measurements (including weight, height, and waist circumference) were done for the patients. Likewise, biochemical assessment (including fasting plasma glucose, high-density lipoprotein cholesterol (HDL-c), and triglyceride (TG) was done. Metabolic syndrome was defined according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III). Data were analyzed using the IBM Statistical Package for Social Sciences (SPSS) version 25. Results: The ages of the patients ranged from 30 to 78 (mean = 50.9 ±11.7) years. The overall prevalence of MetS was 57.3%, with a higher prevalence in females (68.1%) than males (43.0%). The most common components of MetS observed were hypertension (69.2%), and elevated fasting plasma glucose (65.7%); while the predictors of MetS were age > 50 years (OR 6.960, 95% CI: 3.836-12.628, p < 0.001), female sex (OR 2.300, 95% CI: 1.355-3.903, p = 0.002), physical activity (OR 0.214, 95% CI: 0.126-0.363, p < 0.001), and overweight/obesity (OR 3.356, 95% CI: 1.838-6.127, p < 0.001). Conclusion: Metabolic syndrome is prevalent among patients with type 2 diabetes in Sokoto, Nigeria, and the predictors were age > 50 years, female sex, physical activity, and overweight/obesity. Diabetes care providers should screen their patients for MetS to prevent adverse cardiovascular events.Keywords: prevalence, predictors, metabolic syndrome, diabetes
Procedia PDF Downloads 1441077 Removal of Heavy Metals from Municipal Wastewater Using Constructed Rhizofiltration System
Authors: Christine A. Odinga, G. Sanjay, M. Mathew, S. Gupta, F. M. Swalaha, F. A. O. Otieno, F. Bux
Abstract:
Wastewater discharged from municipal treatment plants contain an amalgamation of trace metals. The presence of metal pollutants in wastewater poses a huge challenge to the choice and applications of the preferred treatment method. Conventional treatment methods are inefficient in the removal of trace metals due to their design approach. This study evaluated the treatment performance of a constructed rhizofiltration system in the removal of heavy metals from municipal wastewater. The study was conducted at an eThekwni municipal wastewater treatment plant in Kingsburgh - Durban in the province of KwaZulu-Natal. The construction details of the pilot-scale rhizofiltration unit included three different layers of substrate consisting of medium stones, coarse gravel and fine sand. The system had one section planted with Phragmites australis L. and Kyllinga nemoralis L. while the other section was unplanted and acted as the control. Influent, effluent and sediment from the system were sampled and assessed for the presence of and removal of selected trace heavy metals using standard methods. Efficiency of metals removal was established by gauging the transfer of metals into leaves, roots and stem of the plants by calculations based on standard statistical packages. The Langmuir model was used to assess the heavy metal adsorption mechanisms of the plants. Heavy metals were accumulated in the entire rhizofiltration system at varying percentages of 96.69% on planted and 48.98% on control side for cadmium. Chromium was 81% and 24%, Copper was 23.4% and 1.1%, Nickel was 72% and 46.5, Lead was 63% and 31%, while Zinc was 76% and 84% on the on the water and sediment of the planted and control sides of the rhizofilter respectively. The decrease in metal adsorption efficiencies on the planted side followed the pattern of Cd>Cr>Zn>Ni>Pb>Cu and Ni>Cd>Pb>Cr>Cu>Zn on the control side. Confirmatory analysis using Electron Scanning Microscopy revealed that higher amounts of metals was deposited in the root system with values ranging from 0.015mg/kg (Cr), 0.250 (Cu), 0.030 (Pb) for P. australis, and 0.055mg/kg (Cr), 0.470mg/kg (Cu) and 0.210mg/kg,(Pb) for K. nemoralis respectively. The system was found to be efficient in removing and reducing metals from wastewater and further research is necessary to establish the immediate mechanisms that the plants display in order to achieve these reductions.Keywords: wastewater treatment, Phragmites australis L., Kyllinga nemoralis L., heavy metals, pathogens, rhizofiltration
Procedia PDF Downloads 2641076 Analysis of the Impact of Suez Canal on the Robustness of Global Shipping Networks
Abstract:
The Suez Canal plays an important role in global shipping networks and is one of the most frequently used waterways in the world. The 2021 canal obstruction by ship Ever Given in March 2021, however, completed blocked the Suez Canal for a week and caused significant disruption to world trade. Therefore, it is very important to quantitatively analyze the impact of the accident on the robustness of the global shipping network. However, the current research on maritime transportation networks is usually limited to local or small-scale networks in a certain region. Based on the complex network theory, this study establishes a global shipping complex network covering 2713 nodes and 137830 edges by using the real trajectory data of the global marine transport ship automatic identification system in 2018. At the same time, two attack modes, deliberate (Suez Canal Blocking) and random, are defined to calculate the changes in network node degree, eccentricity, clustering coefficient, network density, network isolated nodes, betweenness centrality, and closeness centrality under the two attack modes, and quantitatively analyze the actual impact of Suez Canal Blocking on the robustness of global shipping network. The results of the network robustness analysis show that Suez Canal blocking was more destructive to the shipping network than random attacks of the same scale. The network connectivity and accessibility decreased significantly, and the decline decreased with the distance between the port and the canal, showing the phenomenon of distance attenuation. This study further analyzes the impact of the blocking of the Suez Canal on Chinese ports and finds that the blocking of the Suez Canal significantly interferes withChina's shipping network and seriously affects China's normal trade activities. Finally, the impact of the global supply chain is analyzed, and it is found that blocking the canal will seriously damage the normal operation of the global supply chain.Keywords: global shipping networks, ship AIS trajectory data, main channel, complex network, eigenvalue change
Procedia PDF Downloads 1821075 Identifying Environmental Adaptive Genetic Loci in Caloteropis Procera (Estabragh): Population Genetics and Landscape Genetic Analyses
Authors: Masoud Sheidaei, Mohammad-Reza Kordasti, Fahimeh Koohdar
Abstract:
Calotropis procera (Aiton) W.T.Aiton, (Apocynaceae), is an economically and medicinally important plant species which is an evergreen, perennial shrub growing in arid and semi-arid climates, and can tolerate very low annual rainfall (150 mm) and a dry season. The plant can also tolerate temperature ran off 20 to30°C and is not frost tolerant. This plant species prefers free-draining sandy soils but can grow also in alkaline and saline soils.It is found at a range of altitudes from exposed coastal sites to medium elevations up to 1300 m. Due to morpho-physiological adaptations of C. procera and its ability to tolerate various abiotic stresses. This taxa can compete with desirable pasture species and forms dense thickets that interfere with stock management, particularly mustering activities. Caloteropis procera grows only in southern part of Iran where in comprises a limited number of geographical populations. We used different population genetics and r landscape analysis to produce data on geographical populations of C. procera based on molecular genetic study using SCoT molecular markers. First, we used spatial principal components (sPCA), as it can analyze data in a reduced space and can be used for co-dominant markers as well as presence / absence data as is the case in SCoT molecular markers. This method also carries out Moran I and Mantel tests to reveal spatial autocorrelation and test for the occurrence of Isolation by distance (IBD). We also performed Random Forest analysis to identify the importance of spatial and geographical variables on genetic diversity. Moreover, we used both RDA (Redundency analysis), and LFMM (Latent factor mixed model), to identify the genetic loci significantly associated with geographical variables. A niche modellng analysis was carried our to predict present potential area for distribution of these plants and also the area present by the year 2050. The results obtained will be discussed in this paper.Keywords: population genetics, landscape genetic, Calotreropis procera, niche modeling, SCoT markers
Procedia PDF Downloads 931074 Investigation of Supercapacitor Properties of Nanocomposites Obtained from Acid and Base-functionalized Multi-walled Carbon Nanotube (MWCNT) and Polypyrrole (PPy)
Authors: Feridun Demir, Pelin Okdem
Abstract:
Polymers are versatile materials with many unique properties, such as low density, reasonable strength, flexibility, and easy processability. However, the mechanical properties of these materials are insufficient for many engineering applications. Therefore, there is a continuous search for new polymeric materials with improved properties. Polymeric nanocomposites are an advanced class of composite materials that have attracted great attention in both academic and industrial fields. Since nano-reinforcement materials are very small in size, they provide ultra-large interfacial area per volume between the nano-element and the polymer matrix. This allows the nano-reinforcement composites to exhibit enhanced toughness without compromising hardness or optical clarity. PPy and MWCNT/PPy nanocomposites were synthesized by the chemical oxidative polymerization method and the supercapacitor properties of the obtained nanocomposites were investigated. In addition, pure MWCNT was functionalized with acid (H₂SO₄/H₂O₂) and base (NH₄OH/H₂O₂) solutions at a ratio of 3:1 and a-MWCNT/d-PPy, and b-MWCNT/d-PPy nanocomposites were obtained. The homogeneous distribution of MWCNTs in the polypyrrole matrix and shell-core type morphological structures of the nanocomposites was observed with SEM images. It was observed with SEM, FTIR and XRD analyses that the functional groups formed by the functionalization of MWCNTs caused the MWCNTs to come together and partially agglomerate. It was found that the conductivity of the nanocomposites consisting of MWCNT and d-PPy was higher than that of pure d-PPy. CV, GCD and EIS results show that the use of a-MWCNT and b-MWCNTs in nanocomposites with low particle content positively affects the supercapacitor properties of the materials but negatively at high particle content. It was revealed that the functional MWCNT particles combined in nanocomposites with high particle content cause a decrease in the conductivity and distribution of ions in the electrodes and, thus, a decrease in their energy storage capacity.Keywords: polypyrrole, multi-walled carbon nanotube (MWCNT), conducting polymer, chemical oxidative polymerization, nanocomposite, supercapacitor
Procedia PDF Downloads 221073 Manufacturing New Insulating Materials: A Study on Thermal Properties of Date Palm Wood
Authors: K. Almi, S. Lakel, A. Benchabane, A. Kriker
Abstract:
The fiber–matrix compatibility can be improved if suitable enforcements are chosen. Whenever the reinforcements have more thermal stability, they can resist to the main processes for wood–thermoplastic composites. Several researches are focused on natural resources for the production of biomaterials intended for technical applications. Date palm wood present one of the world’s most important natural resource. Its use as insulating materials will help to solve the severe environmental and recycling problems which other artificial insulating materials caused. This paper reports the results of an experimental investigation on the thermal proprieties of date palm wood from Algeria. A study of physical, chemical and mechanical properties is also carried out. The goal is to use this natural material in the manufacture of thermal insulation materials for buildings. The local natural resources used in this study are the date palm fibers from Biskra oasis in Algeria. The results have shown that there is no significant difference in the morphological proprieties of the four types of residues. Their chemical composition differed slightly; with the lowest amounts of cellulose and lignin content belong to Petiole. Water absorption study proved that Rachis has a low value of sorption whereas Petiole and Fibrillium have a high value of sorption what influenced their mechanical properties. It is seen that the Rachis and leaflets exhibit a high tensile strength values compared to the other residue. On the other hand the low value of bulk density of Petiole and Fibrillium leads to high value of specific tensile strength and young modulus. It was found that the specific young modulus of Petiole and Fibrillium was higher than that of Rachis and Leaflets and that of other natural fibers or even artificial fibers. Compared to the other materials date palm wood provide a good thermal proprieties thus, date palm wood will be a good candidate for the manufacturing efficient and safe insulating materials.Keywords: composite materials, date palm fiber, natural fibers, tensile tests, thermal proprieties
Procedia PDF Downloads 6421072 Copula Autoregressive Methodology for Simulation of Solar Irradiance and Air Temperature Time Series for Solar Energy Forecasting
Authors: Andres F. Ramirez, Carlos F. Valencia
Abstract:
The increasing interest in renewable energies strategies application and the path for diminishing the use of carbon related energy sources have encouraged the development of novel strategies for integration of solar energy into the electricity network. A correct inclusion of the fluctuating energy output of a photovoltaic (PV) energy system into an electric grid requires improvements in the forecasting and simulation methodologies for solar energy potential, and the understanding not only of the mean value of the series but the associated underlying stochastic process. We present a methodology for synthetic generation of solar irradiance (shortwave flux) and air temperature bivariate time series based on copula functions to represent the cross-dependence and temporal structure of the data. We explore the advantages of using this nonlinear time series method over traditional approaches that use a transformation of the data to normal distributions as an intermediate step. The use of copulas gives flexibility to represent the serial variability of the real data on the simulation and allows having more control on the desired properties of the data. We use discrete zero mass density distributions to assess the nature of solar irradiance, alongside vector generalized linear models for the bivariate time series time dependent distributions. We found that the copula autoregressive methodology used, including the zero mass characteristics of the solar irradiance time series, generates a significant improvement over state of the art strategies. These results will help to better understand the fluctuating nature of solar energy forecasting, the underlying stochastic process, and quantify the potential of a photovoltaic (PV) energy generating system integration into a country electricity network. Experimental analysis and real data application substantiate the usage and convenience of the proposed methodology to forecast solar irradiance time series and solar energy across northern hemisphere, southern hemisphere, and equatorial zones.Keywords: copula autoregressive, solar irradiance forecasting, solar energy forecasting, time series generation
Procedia PDF Downloads 3231071 Study of Mixing Conditions for Different Endothelial Dysfunction in Arteriosclerosis
Authors: Sara Segura, Diego Nuñez, Miryam Villamil
Abstract:
In this work, we studied the microscale interaction of foreign substances with blood inside an artificial transparent artery system that represents medium and small muscular arteries. This artery system had channels ranging from 75 μm to 930 μm and was fabricated using glass and transparent polymer blends like Phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide, Poly(ethylene glycol) and PDMS in order to be monitored in real time. The setup was performed using a computer controlled precision micropump and a high resolution optical microscope capable of tracking fluids at fast capture. Observation and analysis were performed using a real time software that reconstructs the fluid dynamics determining the flux velocity, injection dependency, turbulence and rheology. All experiments were carried out with fully computer controlled equipment. Interactions between substances like water, serum (0.9% sodium chloride and electrolyte with a ratio of 4 ppm) and blood cells were studied at microscale as high as 400nm of resolution and the analysis was performed using a frame-by-frame observation and HD-video capture. These observations lead us to understand the fluid and mixing behavior of the interest substance in the blood stream and to shed a light on the use of implantable devices for drug delivery at arteries with different Endothelial dysfunction. Several substances were tested using the artificial artery system. Initially, Milli-Q water was used as a control substance for the study of the basic fluid dynamics of the artificial artery system. However, serum and other low viscous substances were pumped into the system with the presence of other liquids to study the mixing profiles and behaviors. Finally, mammal blood was used for the final test while serum was injected. Different flow conditions, pumping rates, and time rates were evaluated for the determination of the optimal mixing conditions. Our results suggested the use of a very fine controlled microinjection for better mixing profiles with and approximately rate of 135.000 μm3/s for the administration of drugs inside arteries.Keywords: artificial artery, drug delivery, microfluidics dynamics, arteriosclerosis
Procedia PDF Downloads 2951070 Effects of Vegetable Oils Supplementation on in Vitro Rumen Fermentation and Methane Production in Buffaloes
Authors: Avijit Dey, Shyam S. Paul, Satbir S. Dahiya, Balbir S. Punia, Luciano A. Gonzalez
Abstract:
Methane emitted from ruminant livestock not only reduces the efficiency of feed energy utilization but also contributes to global warming. Vegetable oils, a source of poly unsaturated fatty acids, have potential to reduce methane production and increase conjugated linoleic acid in the rumen. However, characteristics of oils, level of inclusion and composition of basal diet influences their efficacy. Therefore, this study was aimed to investigate the effects of sunflower (SFL) and cottonseed (CSL) oils on methanogenesis, volatile fatty acids composition and feed fermentation pattern by in vitro gas production (IVGP) test. Four concentrations (0, 0.1, 0.2 and 0.4ml /30ml buffered rumen fluid) of each oil were used. Fresh rumen fluid was collected before morning feeding from two rumen cannulated buffalo steers fed a mixed ration. In vitro incubation was carried out with sorghum hay (200 ± 5 mg) as substrate in 100 ml calibrated glass syringes following standard IVGP protocol. After 24h incubation, gas production was recorded by displacement of piston. Methane in the gas phase and volatile fatty acids in the fermentation medium were estimated by gas chromatography. Addition of oils resulted in increase (p<0.05) in total gas production and decrease (p<0.05) in methane production, irrespective of type and concentration. Although the increase in gas production was similar, methane production (ml/g DM) and its concentration (%) in head space gas was lower (p< 0.01) in CSL than in SFL at corresponding doses. Linear decrease (p<0.001) in degradability of DM was evident with increasing doses of oils (0.2ml onwards). However, these effects were more pronounced with SFL. Acetate production tended to decrease but propionate and butyrate production increased (p<0.05) with addition of oils, irrespective of type and doses. The ratio of acetate to propionate was reduced (p<0.01) with addition of oils but no difference between the oils was noted. It is concluded that both the oils can reduce methane production. However, feed degradability was also affected with higher doses. Cotton seed oil in small dose (0.1ml/30 ml buffered rumen fluid) exerted greater inhibitory effects on methane production without impeding dry matter degradability. Further in vivo studies need to be carried out for their practical application in animal ration.Keywords: buffalo, methanogenesis, rumen fermentation, vegetable oils
Procedia PDF Downloads 4061069 Changes in Forest Cover Regulate Streamflow in Central Nigerian Gallery Forests
Authors: Rahila Yilangai, Sonali Saha, Amartya Saha, Augustine Ezealor
Abstract:
Gallery forests in sub-Saharan Africa are drastically disappearing due to intensive anthropogenic activities thus reducing ecosystem services, one of which is water provisioning. The role played by forest cover in regulating streamflow and water yield is not well understood, especially in West Africa. This pioneering 2-year study investigated the interrelationships between plant cover and hydrology in protected and unprotected gallery forests. Rainfall, streamflow, and evapotranspiration (ET) measurements/estimates over 2015-2016 were obtained to form a water balance for both catchments. In addition, transpiration in the protected gallery forest with high vegetation cover was calculated from stomatal conductance readings of selected species chosen from plot level data of plant diversity and abundance. Results showed that annual streamflow was significantly higher in the unprotected site than the protected site, even when normalized by catchment area. However, streamflow commenced earlier and lasted longer in the protected site than the degraded unprotected site, suggesting regulation by the greater tree density in the protected site. Streamflow correlated strongly with rainfall with the highest peak in August. As expected, transpiration measurements were less than potential evapotranspiration estimates, while rainfall exceeded ET in the water cycle. The water balance partitioning suggests that the lower vegetation cover in the unprotected catchment leads to a larger runoff in the rainy season and less infiltration, thereby leading to streams drying up earlier, than in the protected catchment. This baseline information is important in understanding the contribution of plants in water cycle regulation, for modeling integrative water management in applied research and natural resource management in sustaining water resources with changing the land cover and climate uncertainties in this data-poor region.Keywords: evapotranspiration, gallery forest, rainfall, streamflow, transpiration
Procedia PDF Downloads 1731068 Voltage and Frequency Regulation Using the Third-Party Mid-Size Battery
Authors: Roghieh A. Biroon, Zoleikha Abdollahi
Abstract:
The recent growth of renewables, e.g., solar panels, batteries, and electric vehicles (EVs) in residential and small commercial sectors, has potential impacts on the stability and operation of power grids. Considering approximately 50 percent share of the residential and the commercial sectors in the electricity demand market, the significance of these impacts, and the necessity of addressing them are more highlighted. Utilities and power system operators should manage the renewable electricity sources integration with power systems in such a way to extract the most possible advantages for the power systems. The most common effect of high penetration level of the renewables is the reverse power flow in the distribution feeders when the customers generate more power than their needs. The reverse power flow causes voltage rise and thermal issues in the power grids. To overcome the voltage rise issues in the distribution system, several techniques have been proposed including reducing transformers short circuit resistance and feeder impedance, installing autotransformers/voltage regulators along the line, absorbing the reactive power by distributed generators (DGs), and limiting the PV and battery sizes. In this study, we consider a medium-scale battery energy storage to manage the power energy and address the aforementioned issues on voltage deviation and power loss increase. We propose an optimization algorithm to find the optimum size and location for the battery. The optimization for the battery location and size is so that the battery maintains the feeder voltage deviation and power loss at a certain desired level. Moreover, the proposed optimization algorithm controls the charging/discharging profile of the battery to absorb the negative power flow from residential and commercial customers in the feeder during the peak time and sell the power back to the system during the off-peak time. The proposed battery regulates the voltage problem in the distribution system while it also can play frequency regulation role in islanded microgrids. This battery can be regulated and controlled by the utilities or a third-party ancillary service provider for the utilities to reduce the power system loss and regulate the distribution feeder voltage and frequency in standard level.Keywords: ancillary services, battery, distribution system and optimization
Procedia PDF Downloads 1311067 Towards a Vulnerability Model Assessment of The Alexandra Jukskei Catchment in South Africa
Authors: Vhuhwavho Gadisi, Rebecca Alowo, German Nkhonjera
Abstract:
This article sets out to detail an investigation of groundwater management in the Juksei Catchment of South Africa through spatial mapping of key hydrological relationships, interactions, and parameters in catchments. The Department of Water Affairs (DWA) noted gaps in the implementation of the South African National Water Act 1998: article 16, including the lack of appropriate models for dealing with water quantity parameters. For this reason, this research conducted a drastic GIS-based groundwater assessment to improve groundwater monitoring system in the Juksei River basin catchment of South Africa. The methodology employed was a mixed-methods approach/design that involved the use of DRASTIC analysis, questionnaire, literature review and observations to gather information on how to help people who use the Juskei River. GIS (geographical information system) mapping was carried out using a three-parameter DRASTIC (Depth to water, Recharge, Aquifer media, Soil media, Topography, Impact of the vadose zone, Hydraulic conductivity) vulnerability methodology. In addition, the developed vulnerability map was subjected to sensitivity analysis as a validation method. This approach included single-parameter sensitivity, sensitivity to map deletion, and correlation analysis of DRASTIC parameters. The findings were that approximately 5.7% (45km2) of the area in the northern part of the Juksei watershed is highly vulnerable. Approximately 53.6% (428.8 km^2) of the basin is also at high risk of groundwater contamination. This area is mainly located in the central, north-eastern, and western areas of the sub-basin. The medium and low vulnerability classes cover approximately 18.1% (144.8 km2) and 21.7% (168 km2) of the Jukskei River, respectively. The shallow groundwater of the Jukskei River belongs to a very vulnerable area. Sensitivity analysis indicated that water depth, water recharge, aquifer environment, soil, and topography were the main factors contributing to the vulnerability assessment. The conclusion is that the final vulnerability map indicates that the Juksei catchment is highly susceptible to pollution, and therefore, protective measures are needed for sustainable management of groundwater resources in the study area.Keywords: contamination, DRASTIC, groundwater, vulnerability, model
Procedia PDF Downloads 831066 Antifungal Potential of Higher Basidiomycetes Mushrooms
Authors: Tamar Khardziani, Violeta Berikashvili, Mariam Rusitashvili, Eva Kachlishvili, Vladimir Elisashvili, Mikheil Asatiani
Abstract:
Last years, the search for natural sources of novel and effective antifungal substances became a scientific and technological challenge. In the present research, thirty basidiomycetes isolated from various ecological niches of Georgia and belonging to different taxonomic groups were screened for their antifungal activities against pathogenic fungi such as Aspergillus, Fusarium, and Guignardia bidwellii. Among mushroom tested, several potential producers of antifungal substances have been revealed, such as Schizophyllum commune, Lentinula edodes, Ganoderma abietinum, Fomes fomentarius, Hericium erinaceus, and Trametes versicolor. For mushroom cultivation and expression of antifungal potential, submerged and solid-state fermentations of different plant raw materials were performed and various approaches and strategies have been exploited. Sch. commune appeared as a most promising producer of antifungal compounds. It was established that among different agro-industrial wastes, the presence of mandarin juice production waste in a nutrient medium, causing the significant increase of antifungal activity Sch. commune (growth inhibition: Aspergillus – 59 %, Fusarium – 55 %, G. bidwellii – 78 %, after 3, 2 and 4 days of cultivation, respectively). Besides this, Sch. commune demonstrate similar antifungal activities in the presence of glucose, glycerol, maltose, mannitol, and xylose, and growth inhibition of Fusarium ranged in 41 % - 49 % during 6 days of cultivation. Inhibition of Aspergillus growth inhibition varied in 27 % - 36 %, and inhibition of G. bidwellii was in the range 49 % - 61 %, respectively. Sch. commune under solid-state fermentation of mandarin peels at 13 days of cultivation demonstrates powerful growth inhibition of pathogenic fungi (growth inhibition: Aspergillus – 50 %, Fusarium – 61 %, G. bidwellii – 68 %, after 3, 4, and 4 days of cultivation, respectively) as well as at 20 days old mushroom (growth inhibition: Aspergillus – 41 %, Fusarium – 54 %, G. bidwellii – 66 %, after 3 days of cultivation). It was established that Sch. commune was effective as a producer of antifungal compounds in submerged as well as in solid-state fermentation. Finally, performed study confirms that the higher basidiomycetes possess antifungal potential, which strongly depends on the physiological factors of growth. Acknowledgments: The work was implemented with the financial support of fundamental science project FR-19-3719 by the Shota Rustaveli National Science Foundation of Georgia.Keywords: antifungal potential, higher basidiomycetes, pathogenic fungi, submerged and solid-state fermentation
Procedia PDF Downloads 1441065 Limos Lactobacillus Fermentum from Buffalo Milk Is Suitable for Potential Biotechnological Process Development
Authors: Sergio D’Ambrosioa, Azza Dobousa, Chiara Schiraldia, Donatella Ciminib
Abstract:
Probiotics are living microorganisms that give beneficial effects while consumed. Lactic acid bacteria and bifidobacteria are among the most representative strains assessed as probiotics and exploited as food supplements. Numerous studies demonstrated their potential as a therapeutic candidate for a variety of diseases (restoring gut flora, lowering cholesterol, immune response-enhancing, anti-inflammation and anti-oxidation activities). These beneficial actions are also due to biomolecules produced by probiotics, such as exopolysaccharides (EPSs), that demonstrate plenty of beneficial properties such as antimicrobial, antitumor, anti-biofilm, antiviral and immunomodulatory activities. Limosilactobacillus fermentum is a widely studied member of probiotics; however, few data are available on the development of fermentation and downstream processes for the production of viable biomasses for potential industrial applications. However, few data are available on the development of fermentation processes for the large-scale production of probiotics biomass for industrial applications and for purification processes of EPSs at an industrial scale. For this purpose, L. fermentum strain was isolated from buffalo milk and used as a test example for biotechnological process development. The strain was able to produce up to 109 CFU/mL on a (glucose-based) semi-defined medium deprived of animal-derived raw materials up to the pilot scale (150 L), demonstrating improved results compared to commonly used, although industrially not suitable, media-rich of casein and beef extract. Biomass concentration via microfiltration on hollow fibers, and subsequent spray-drying allowed to recover of about 5.7 × 1010CFU/gpowder of viable cells, indicating strain resistance to harsh processing conditions. Overall, these data demonstrate the possibility of obtaining and maintaining adequate levels of viable L. fermentum cells by using a simple approach that is potentially suitable for industrial development. A downstream EPS purification protocol based on ultrafiltration, precipitation and activated charcoal treatments showed a purity of the recovered polysaccharides of about 70-80%.Keywords: probiotics, fermentation, exopolysaccharides (EPSs), purification
Procedia PDF Downloads 83