Search results for: data mining applications and discovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30893

Search results for: data mining applications and discovery

25853 Quality of Life of Patients on Oral Antiplatelet Therapy in Outpatient Cardiac Department Dr. Hasan Sadikin Central General Hospital Bandung

Authors: Andhiani Sharfina Arnellya, Mochammad Indra Permana, Dika Pramita Destiani, Ellin Febrina

Abstract:

Health Research Data, Ministry of Health of Indonesia in 2007, showed coronary heart disease (CHD) or coronary artery disease (CAD) was the third leading cause of death in Indonesia after hypertension and stroke with 7.2% incidence rate. Antiplatelet is one of the important therapy in management of patients with CHD. In addition to therapeutic effect on patients, quality of life is one aspect of another assessment to see the success of antiplatelet therapy. The purpose of this study was to determine the quality of life of patients on oral antiplatelet therapy in outpatient cardiac department Dr. Hasan Sadikin central general hospital, Bandung, Indonesia. This research is a cross sectional by collecting data through quality of life questionnaire of patients which performed prospectively as primary data and secondary data from medical record of patients. The results of this study showed that 54.3% of patients had a good quality of life, 45% had a moderate quality of life, and 0.7% had a poor quality of life. There are no significant differences in quality of life-based on age, gender, diagnosis, and duration of drug use.

Keywords: antiplatelet, quality of life, coronary artery disease, coronary heart disease

Procedia PDF Downloads 329
25852 Commissioning of a Flattening Filter Free (FFF) using an Anisotropic Analytical Algorithm (AAA)

Authors: Safiqul Islam, Anamul Haque, Mohammad Amran Hossain

Abstract:

Aim: To compare the dosimetric parameters of the flattened and flattening filter free (FFF) beam and to validate the beam data using anisotropic analytical algorithm (AAA). Materials and Methods: All the dosimetric data’s (i.e. depth dose profiles, profile curves, output factors, penumbra etc.) required for the beam modeling of AAA were acquired using the Blue Phantom RFA for 6 MV, 6 FFF, 10MV & 10FFF. Progressive resolution Optimizer and Dose Volume Optimizer algorithm for VMAT and IMRT were are also configured in the beam model. Beam modeling of the AAA were compared with the measured data sets. Results: Due to the higher and lover energy component in 6FFF and 10 FFF the surface doses are 10 to 15% higher compared to flattened 6 MV and 10 MV beams. FFF beam has a lower mean energy compared to the flattened beam and the beam quality index were 6 MV 0.667, 6FFF 0.629, 10 MV 0.74 and 10 FFF 0.695 respectively. Gamma evaluation with 2% dose and 2 mm distance criteria for the Open Beam, IMRT and VMAT plans were also performed and found a good agreement between the modeled and measured data. Conclusion: We have successfully modeled the AAA algorithm for the flattened and FFF beams and achieved a good agreement with the calculated and measured value.

Keywords: commissioning of a Flattening Filter Free (FFF) , using an Anisotropic Analytical Algorithm (AAA), flattened beam, parameters

Procedia PDF Downloads 304
25851 Synthesis, Characterization and Applications of Novel Hydrogels Based On Chitosan Derivatives

Authors: Mahmoud H. Aboul-Ela, Riham R. Mohamed, Magdy W. Sabaa

Abstract:

Synthesis of cross-linked hydrogels composed of trimethyl chitosan (TMC) and poly(vinyl alcohol) (PVA) in different weight ratios in presence of glutaraldehyde as cross-linking agent. Characterization of the prepared hydrogels was done using FTIR, XRD, SEM and TGA. The prepared hydrogels were investigated as adsorbent materials for some transition metal ions from their aqueous solutions. Moreover, the swell ability of the prepared hydrogels was also investigated in both acidic and alkaline pHs, as well as in simulated body fluid (SBF).

Keywords: trimethyl chitosan, hydrogels, metal uptake, superabsorbent materials

Procedia PDF Downloads 395
25850 Chemical and Biomolecular Detection at a Polarizable Electrical Interface

Authors: Nicholas Mavrogiannis, Francesca Crivellari, Zachary Gagnon

Abstract:

Development of low-cost, rapid, sensitive and portable biosensing systems are important for the detection and prevention of disease in developing countries, biowarfare/antiterrorism applications, environmental monitoring, point-of-care diagnostic testing and for basic biological research. Currently, the most established commercially available and widespread assays for portable point of care detection and disease testing are paper-based dipstick and lateral flow test strips. These paper-based devices are often small, cheap and simple to operate. The last three decades in particular have seen an emergence in these assays in diagnostic settings for detection of pregnancy, HIV/AIDS, blood glucose, Influenza, urinary protein, cardiovascular disease, respiratory infections and blood chemistries. Such assays are widely available largely because they are inexpensive, lightweight, and portable, are simple to operate, and a few platforms are capable of multiplexed detection for a small number of sample targets. However, there is a critical need for sensitive, quantitative and multiplexed detection capabilities for point-of-care diagnostics and for the detection and prevention of disease in the developing world that cannot be satisfied by current state-of-the-art paper-based assays. For example, applications including the detection of cardiac and cancer biomarkers and biothreat applications require sensitive multiplexed detection of analytes in the nM and pM range, and cannot currently be satisfied with current inexpensive portable platforms due to their lack of sensitivity, quantitative capabilities and often unreliable performance. In this talk, inexpensive label-free biomolecular detection at liquid interfaces using a newly discovered electrokinetic phenomenon known as fluidic dielectrophoresis (fDEP) is demonstrated. The electrokinetic approach involves exploiting the electrical mismatches between two aqueous liquid streams forced to flow side-by-side in a microfluidic T-channel. In this system, one fluid stream is engineered to have a higher conductivity relative to its neighbor which has a higher permittivity. When a “low” frequency (< 1 MHz) alternating current (AC) electrical field is applied normal to this fluidic electrical interface the fluid stream with high conductivity displaces into the low conductive stream. Conversely, when a “high” frequency (20MHz) AC electric field is applied, the high permittivity stream deflects across the microfluidic channel. There is, however, a critical frequency sensitive to the electrical differences between each fluid phase – the fDEP crossover frequency – between these two events where no fluid deflection is observed, and the interface remains fixed when exposed to an external field. To perform biomolecular detection, two streams flow side-by-side in a microfluidic T-channel: one fluid stream with an analyte of choice and an adjacent stream with a specific receptor to the chosen target. The two fluid streams merge and the fDEP crossover frequency is measured at different axial positions down the resulting liquid

Keywords: biodetection, fluidic dielectrophoresis, interfacial polarization, liquid interface

Procedia PDF Downloads 448
25849 Top-Down Approach for Fabricating Hematite Nanowire Arrays

Authors: Seungmin Shin, Jin-Baek Kim

Abstract:

Hematite (α-Fe2O3) has very good semiconducting properties with a band gap of 2.1 eV and is antiferromagnetic. Due to its electrochemical stability, low toxicity, wide abundance, and low-cost, hematite, it is a particularly attractive material for photoelectrochemical cells. Additionally, hematite has also found applications in gas sensing, field emission, heterogeneous catalysis, and lithium-ion battery electrodes. Here, we discovered a new universal top-down method for the synthesis of one-dimensional hematite nanowire arrays. Various shapes and lengths of hematite nanowire have been easily fabricated over large areas by sequential processes. The obtained hematite nanowire arrays are promising candidates as photoanodes in photoelectrochemical solar cells.

Keywords: hematite, lithography, nanowire, top-down process

Procedia PDF Downloads 252
25848 A Novel Method for Face Detection

Authors: H. Abas Nejad, A. R. Teymoori

Abstract:

Facial expression recognition is one of the open problems in computer vision. Robust neutral face recognition in real time is a major challenge for various supervised learning based facial expression recognition methods. This is due to the fact that supervised methods cannot accommodate all appearance variability across the faces with respect to race, pose, lighting, facial biases, etc. in the limited amount of training data. Moreover, processing each and every frame to classify emotions is not required, as the user stays neutral for the majority of the time in usual applications like video chat or photo album/web browsing. Detecting neutral state at an early stage, thereby bypassing those frames from emotion classification would save the computational power. In this work, we propose a light-weight neutral vs. emotion classification engine, which acts as a preprocessor to the traditional supervised emotion classification approaches. It dynamically learns neutral appearance at Key Emotion (KE) points using a textural statistical model, constructed by a set of reference neutral frames for each user. The proposed method is made robust to various types of user head motions by accounting for affine distortions based on a textural statistical model. Robustness to dynamic shift of KE points is achieved by evaluating the similarities on a subset of neighborhood patches around each KE point using the prior information regarding the directionality of specific facial action units acting on the respective KE point. The proposed method, as a result, improves ER accuracy and simultaneously reduces the computational complexity of ER system, as validated on multiple databases.

Keywords: neutral vs. emotion classification, Constrained Local Model, procrustes analysis, Local Binary Pattern Histogram, statistical model

Procedia PDF Downloads 343
25847 Big Data Analysis Approach for Comparison New York Taxi Drivers' Operation Patterns between Workdays and Weekends Focusing on the Revenue Aspect

Authors: Yongqi Dong, Zuo Zhang, Rui Fu, Li Li

Abstract:

The records generated by taxicabs which are equipped with GPS devices is of vital importance for studying human mobility behavior, however, here we are focusing on taxi drivers' operation strategies between workdays and weekends temporally and spatially. We identify a group of valuable characteristics through large scale drivers' behavior in a complex metropolis environment. Based on the daily operations of 31,000 taxi drivers in New York City, we classify drivers into top, ordinary and low-income groups according to their monthly working load, daily income, daily ranking and the variance of the daily rank. Then, we apply big data analysis and visualization methods to compare the different characteristics among top, ordinary and low income drivers in selecting of working time, working area as well as strategies between workdays and weekends. The results verify that top drivers do have special operation tactics to help themselves serve more passengers, travel faster thus make more money per unit time. This research provides new possibilities for fully utilizing the information obtained from urban taxicab data for estimating human behavior, which is not only very useful for individual taxicab driver but also to those policy-makers in city authorities.

Keywords: big data, operation strategies, comparison, revenue, temporal, spatial

Procedia PDF Downloads 228
25846 Hydrometallurgical Processing of a Nigerian Chalcopyrite Ore

Authors: Alafara A. Baba, Kuranga I. Ayinla, Folahan A. Adekola, Rafiu B. Bale

Abstract:

Due to increasing demands and diverse applications of copper oxide as pigment in ceramics, cuprammonium hydroxide solution for rayon, p-type semi-conductor, dry cell batteries production and as safety disposal of hazardous materials, a study on the hydrometallurgical operations involving leaching, solvent extraction and precipitation for the recovery of copper for producing high grade copper oxide from a Nigerian chalcopyrite ore in chloride media has been examined. At a particular set of experimental parameter with respect to acid concentration, reaction temperature and particle size, the leaching investigation showed that the ore dissolution increases with increasing acid concentration, temperature and decreasing particle diameter at a moderate stirring. The kinetics data has been analyzed and was found to follow diffusion control mechanism. At optimal conditions, the extent of ore dissolution reached 94.3%. The recovery of the total copper from the hydrochloric acid-leached chalcopyrite ore was undertaken by solvent extraction and precipitation techniques, prior to the beneficiation of the purified solution as copper oxide. The purification of the leach liquor was firstly done by precipitation of total iron and manganese using Ca(OH)2 and H2O2 as oxidizer at pH 3.5 and 4.25, respectively. An extraction efficiency of 97.3% total copper was obtained by 0.2 mol/L Dithizone in kerosene at 25±2ºC within 40 minutes, from which ≈98% Cu from loaded organic phase was successfully stripped by 0.1 mol/L HCl solution. The beneficiation of the recovered pure copper solution was carried out by crystallization through alkali addition followed by calcination at 600ºC to obtain high grade copper oxide (Tenorite, CuO: 05-0661). Finally, a simple hydrometallurgical scheme for the operational extraction procedure amenable for industrial utilization and economic sustainability was provided.

Keywords: chalcopyrite ore, Nigeria, copper, copper oxide, solvent extraction

Procedia PDF Downloads 398
25845 Using Morlet Wavelet Filter to Denoising Geoelectric ‘Disturbances’ Map of Moroccan Phosphate Deposit ‘Disturbances’

Authors: Saad Bakkali

Abstract:

Morocco is a major producer of phosphate, with an annual output of 19 million tons and reserves in excess of 35 billion cubic meters. This represents more than 75% of world reserves. Resistivity surveys have been successfully used in the Oulad Abdoun phosphate basin. A Schlumberger resistivity survey over an area of 50 hectares was carried out. A new field procedure based on analytic signal response of resistivity data was tested to deal with the presence of phosphate deposit disturbances. A resistivity map was expected to allow the electrical resistivity signal to be imaged in 2D. 2D wavelet is standard tool in the interpretation of geophysical potential field data. Wavelet transform is particularly suitable in denoising, filtering and analyzing geophysical data singularities. Wavelet transform tools are applied to analysis of a moroccan phosphate deposit ‘disturbances’. Wavelet approach applied to modeling surface phosphate “disturbances” was found to be consistently useful.

Keywords: resistivity, Schlumberger, phosphate, wavelet, Morocco

Procedia PDF Downloads 424
25844 Imputation of Incomplete Large-Scale Monitoring Count Data via Penalized Estimation

Authors: Mohamed Dakki, Genevieve Robin, Marie Suet, Abdeljebbar Qninba, Mohamed A. El Agbani, Asmâa Ouassou, Rhimou El Hamoumi, Hichem Azafzaf, Sami Rebah, Claudia Feltrup-Azafzaf, Nafouel Hamouda, Wed a.L. Ibrahim, Hosni H. Asran, Amr A. Elhady, Haitham Ibrahim, Khaled Etayeb, Essam Bouras, Almokhtar Saied, Ashrof Glidan, Bakar M. Habib, Mohamed S. Sayoud, Nadjiba Bendjedda, Laura Dami, Clemence Deschamps, Elie Gaget, Jean-Yves Mondain-Monval, Pierre Defos Du Rau

Abstract:

In biodiversity monitoring, large datasets are becoming more and more widely available and are increasingly used globally to estimate species trends and con- servation status. These large-scale datasets challenge existing statistical analysis methods, many of which are not adapted to their size, incompleteness and heterogeneity. The development of scalable methods to impute missing data in incomplete large-scale monitoring datasets is crucial to balance sampling in time or space and thus better inform conservation policies. We developed a new method based on penalized Poisson models to impute and analyse incomplete monitoring data in a large-scale framework. The method al- lows parameterization of (a) space and time factors, (b) the main effects of predic- tor covariates, as well as (c) space–time interactions. It also benefits from robust statistical and computational capability in large-scale settings. The method was tested extensively on both simulated and real-life waterbird data, with the findings revealing that it outperforms six existing methods in terms of missing data imputation errors. Applying the method to 16 waterbird species, we estimated their long-term trends for the first time at the entire North African scale, a region where monitoring data suffer from many gaps in space and time series. This new approach opens promising perspectives to increase the accuracy of species-abundance trend estimations. We made it freely available in the r package ‘lori’ (https://CRAN.R-project.org/package=lori) and recommend its use for large- scale count data, particularly in citizen science monitoring programmes.

Keywords: biodiversity monitoring, high-dimensional statistics, incomplete count data, missing data imputation, waterbird trends in North-Africa

Procedia PDF Downloads 162
25843 Introduction of an Approach of Complex Virtual Devices to Achieve Device Interoperability in Smart Building Systems

Authors: Thomas Meier

Abstract:

One of the major challenges for sustainable smart building systems is to support device interoperability, i.e. connecting sensor or actuator devices from different vendors, and present their functionality to the external applications. Furthermore, smart building systems are supposed to connect with devices that are not available yet, i.e. devices that become available on the market sometime later. It is of vital importance that a sustainable smart building platform provides an appropriate external interface that can be leveraged by external applications and smart services. An external platform interface must be stable and independent of specific devices and should support flexible and scalable usage scenarios. A typical approach applied in smart home systems is based on a generic device interface used within the smart building platform. Device functions, even of rather complex devices, are mapped to that generic base type interface by means of specific device drivers. Our new approach, presented in this work, extends that approach by using the smart building system’s rule engine to create complex virtual devices that can represent the most diverse properties of real devices. We examined and evaluated both approaches by means of a practical case study using a smart building system that we have developed. We show that the solution we present allows the highest degree of flexibility without affecting external application interface stability and scalability. In contrast to other systems our approach supports complex virtual device configuration on application layer (e.g. by administration users) instead of device configuration at platform layer (e.g. platform operators). Based on our work, we can show that our approach supports almost arbitrarily flexible use case scenarios without affecting the external application interface stability. However, the cost of this approach is additional appropriate configuration overhead and additional resource consumption at the IoT platform level that must be considered by platform operators. We conclude that the concept of complex virtual devices presented in this work can be applied to improve the usability and device interoperability of sustainable intelligent building systems significantly.

Keywords: Internet of Things, smart building, device interoperability, device integration, smart home

Procedia PDF Downloads 274
25842 Statistical Investigation Projects: A Way for Pre-Service Mathematics Teachers to Actively Solve a Campus Problem

Authors: Muhammet Şahal, Oğuz Köklü

Abstract:

As statistical thinking and problem-solving processes have become increasingly important, teachers need to be more rigorously prepared with statistical knowledge to teach their students effectively. This study examined preservice mathematics teachers' development of statistical investigation projects using data and exploratory data analysis tools, following a design-based research perspective and statistical investigation cycle. A total of 26 pre-service senior mathematics teachers from a public university in Turkiye participated in the study. They formed groups of 3-4 members voluntarily and worked on their statistical investigation projects for six weeks. The data sources were audio recordings of pre-service teachers' group discussions while working on their projects in class, whole-class video recordings, and each group’s weekly and final reports. As part of the study, we reviewed weekly reports, provided timely feedback specific to each group, and revised the following week's class work based on the groups’ needs and development in their project. We used content analysis to analyze groups’ audio and classroom video recordings. The participants encountered several difficulties, which included formulating a meaningful statistical question in the early phase of the investigation, securing the most suitable data collection strategy, and deciding on the data analysis method appropriate for their statistical questions. The data collection and organization processes were challenging for some groups and revealed the importance of comprehensive planning. Overall, preservice senior mathematics teachers were able to work on a statistical project that contained the formulation of a statistical question, planning, data collection, analysis, and reaching a conclusion holistically, even though they faced challenges because of their lack of experience. The study suggests that preservice senior mathematics teachers have the potential to apply statistical knowledge and techniques in a real-world context, and they could proceed with the project with the support of the researchers. We provided implications for the statistical education of teachers and future research.

Keywords: design-based study, pre-service mathematics teachers, statistical investigation projects, statistical model

Procedia PDF Downloads 92
25841 The Study on the Tourism Routes to Create Interpretation for Promote Cultural Tourism in Bangnoi Floating Market, Bangkontee District, Samut Songkhram Province, Thailand

Authors: Pornnapat Berndt

Abstract:

The purpose of this research is to study the tourism routes in Bangnoi Floating Market, Bangkhontee District, Samut Songkhram province, Thailand in order to create type and form of interpretation to promote cultural tourism based on local community and visitor requirement. To accomplish the goals and objectives, qualitative research will be applied. The research instruments used are observation, questionnaires, basic interviews, in-depth interviews, focus group, interviewed of key local informants including site visitors. The study also uses both primary data and secondary data. A Statistical Package for Social Sciences (SPSS) was used to analyze the data. Descriptive and inferential statistics such as tables, percentage, mean and standard deviation were used for data analysis and summary. From research result, it is revealed that the local community requirement on types of interpretation conforms to visitors require which need guide post, guide book, etc. with up to date and informally content to present Bangnoi Floating Market which got the most demand score (3.78) considered as most wanted demand.

Keywords: interpretation, cultural tourism, tourism route, local community, stakeholders participated

Procedia PDF Downloads 296
25840 Modular Data and Calculation Framework for a Technology-based Mapping of the Manufacturing Process According to the Value Stream Management Approach

Authors: Tim Wollert, Fabian Behrendt

Abstract:

Value Stream Management (VSM) is a widely used methodology in the context of Lean Management for improving end-to-end material and information flows from a supplier to a customer from a company’s perspective. Whereas the design principles, e.g. Pull, value-adding, customer-orientation and further ones are still valid against the background of an increasing digitalized and dynamic environment, the methodology itself for mapping a value stream is characterized as time- and resource-intensive due to the high degree of manual activities. The digitalization of processes in the context of Industry 4.0 enables new opportunities to reduce these manual efforts and make the VSM approach more agile. The paper at hand aims at providing a modular data and calculation framework, utilizing the available business data, provided by information and communication technologies for automizing the value stream mapping process with focus on the manufacturing process.

Keywords: lean management 4.0, value stream management (VSM) 4.0, dynamic value stream mapping, enterprise resource planning (ERP)

Procedia PDF Downloads 155
25839 Self-Organizing Maps for Credit Card Fraud Detection and Visualization

Authors: Peng Chun-Yi, Chen Wei-Hsuan, Ueng Shyh-Kuang

Abstract:

This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.

Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies

Procedia PDF Downloads 65
25838 A Single-Channel BSS-Based Method for Structural Health Monitoring of Civil Infrastructure under Environmental Variations

Authors: Yanjie Zhu, André Jesus, Irwanda Laory

Abstract:

Structural Health Monitoring (SHM), involving data acquisition, data interpretation and decision-making system aim to continuously monitor the structural performance of civil infrastructures under various in-service circumstances. The main value and purpose of SHM is identifying damages through data interpretation system. Research on SHM has been expanded in the last decades and a large volume of data is recorded every day owing to the dramatic development in sensor techniques and certain progress in signal processing techniques. However, efficient and reliable data interpretation for damage detection under environmental variations is still a big challenge. Structural damages might be masked because variations in measured data can be the result of environmental variations. This research reports a novel method based on single-channel Blind Signal Separation (BSS), which extracts environmental effects from measured data directly without any prior knowledge of the structure loading and environmental conditions. Despite the successful application in audio processing and bio-medical research fields, BSS has never been used to detect damage under varying environmental conditions. This proposed method optimizes and combines Ensemble Empirical Mode Decomposition (EEMD), Principal Component Analysis (PCA) and Independent Component Analysis (ICA) together to separate structural responses due to different loading conditions respectively from a single channel input signal. The ICA is applying on dimension-reduced output of EEMD. Numerical simulation of a truss bridge, inspired from New Joban Line Arakawa Railway Bridge, is used to validate this method. All results demonstrate that the single-channel BSS-based method can recover temperature effects from mixed structural response recorded by a single sensor with a convincing accuracy. This will be the foundation of further research on direct damage detection under varying environment.

Keywords: damage detection, ensemble empirical mode decomposition (EEMD), environmental variations, independent component analysis (ICA), principal component analysis (PCA), structural health monitoring (SHM)

Procedia PDF Downloads 309
25837 The Role of Financial Literacy in Driving Consumer Well-Being

Authors: Amin Nazifi, Amir Raki, Doga Istanbulluoglu

Abstract:

The incorporation of technological advancements into financial services, commonly referred to as Fintech, is primarily aimed at promoting services that are accessible, convenient, and inclusive, thereby benefiting both consumers and businesses. Fintech services employ a variety of technologies, including Artificial Intelligence (AI), blockchain, and big data, to enhance the efficiency and productivity of traditional services. Cryptocurrency, a component of Fintech, is projected to be a trillion-dollar industry, with over 320 million consumers globally investing in various forms of cryptocurrencies. However, these potentially transformative services can also lead to adverse outcomes. For instance, recent Fintech innovations have been increasingly linked to misconduct and disservice, resulting in serious implications for consumer well-being. This could be attributed to the ease of access to Fintech, which enables adults to trade cryptocurrencies, shares, and stocks via mobile applications. However, there is little known about the darker aspects of technological advancements, such as Fintech. Hence, this study aims to generate scholarly insights into the design of robust and resilient Fintech services that can add value to businesses and enhance consumer well-being. Using a mixed-method approach, the study will investigate the personal and contextual factors influencing consumers’ adoption and usage of technology innovations and their impacts on consumer well-being. First, semi-structured interviews will be conducted with a sample of Fintech users until theoretical saturation is achieved. Subsequently, based on the findings of the first study, a quantitative study will be conducted to develop and empirically test the impacts of these factors on consumers’ well-being using an online survey with a sample of 300 participants experienced in using Fintech services. This study will contribute to the growing Transformative Service Research (TSR) literature by addressing the latest priorities in service research and shedding light on the impact of fintech services on consumer well-being.

Keywords: consumer well-being, financial literacy, Fintech, service innovation

Procedia PDF Downloads 72
25836 A Survey on Lossless Compression of Bayer Color Filter Array Images

Authors: Alina Trifan, António J. R. Neves

Abstract:

Although most digital cameras acquire images in a raw format, based on a Color Filter Array that arranges RGB color filters on a square grid of photosensors, most image compression techniques do not use the raw data; instead, they use the rgb result of an interpolation algorithm of the raw data. This approach is inefficient and by performing a lossless compression of the raw data, followed by pixel interpolation, digital cameras could be more power efficient and provide images with increased resolution given that the interpolation step could be shifted to an external processing unit. In this paper, we conduct a survey on the use of lossless compression algorithms with raw Bayer images. Moreover, in order to reduce the effect of the transition between colors that increase the entropy of the raw Bayer image, we split the image into three new images corresponding to each channel (red, green and blue) and we study the same compression algorithms applied to each one individually. This simple pre-processing stage allows an improvement of more than 15% in predictive based methods.

Keywords: bayer image, CFA, lossless compression, image coding standards

Procedia PDF Downloads 326
25835 A Graph Theoretic Algorithm for Bandwidth Improvement in Computer Networks

Authors: Mehmet Karaata

Abstract:

Given two distinct vertices (nodes) source s and target t of a graph G = (V, E), the two node-disjoint paths problem is to identify two node-disjoint paths between s ∈ V and t ∈ V . Two paths are node-disjoint if they have no common intermediate vertices. In this paper, we present an algorithm with O(m)-time complexity for finding two node-disjoint paths between s and t in arbitrary graphs where m is the number of edges. The proposed algorithm has a wide range of applications in ensuring reliability and security of sensor, mobile and fixed communication networks.

Keywords: disjoint paths, distributed systems, fault-tolerance, network routing, security

Procedia PDF Downloads 450
25834 Application of Flory Paterson’s Theory on the Volumetric Properties of Liquid Mixtures: 1,2-Dichloroethane with Aliphatic and Cyclic Ethers

Authors: Linda Boussaid, Farid Brahim Belaribi

Abstract:

The physico-chemical properties of liquid materials in the industrial field, in general, and in that of the chemical industries, in particular, constitutes a prerequisite for the design of equipment, for the resolution of specific problems (related to the techniques of purification and separation, at risk in the transport of certain materials, etc.) and, therefore, at the production stage. Chloroalkanes, ethers constitute three chemical families having an industrial, theoretical and environmental interest. For example, these compounds are used in various applications in the chemical and pharmaceutical industries. In addition, they contribute to the particular thermodynamic behavior (deviation from ideality, association, etc.) of certain mixtures which constitute a severe test for predictive theoretical models. Finally, due to the degradation of the environment in the world, a renewed interest is observed for ethers, because some of their physicochemical properties could contribute to lower pollution (ethers would be used as additives in aqueous fuels.). This work is a thermodynamic, experimental and theoretical study of the volumetric properties of liquid binary systems formed from compounds belonging to the chemical families of chloroalkanes, ethers, having an industrial, theoretical and environmental interest. Experimental determination of the densities and excess volumes of the systems studied, at different temperatures in the interval [278.15-333.15] K and at atmospheric pressure, using an AntonPaar vibrating tube densitometer of the DMA5000 type. This contribution of experimental data, on the volumetric properties of the binary liquid mixtures of 1,2-dichloroethane with an ether, supplemented by an application of the theoretical model of Prigogine-Flory-Patterson PFP, will probably contribute to the enrichment of the thermodynamic database and the further development of the theory of Flory in its Prigogine-Flory-Patterson (PFP) version, for a better understanding of the thermodynamic behavior of these liquid binary mixtures

Keywords: prigogine-flory-patterson (pfp), propriétés volumétrique , volume d’excés, ethers

Procedia PDF Downloads 95
25833 Simplified INS\GPS Integration Algorithm in Land Vehicle Navigation

Authors: Othman Maklouf, Abdunnaser Tresh

Abstract:

Land vehicle navigation is subject of great interest today. Global Positioning System (GPS) is the main navigation system for positioning in such systems. GPS alone is incapable of providing continuous and reliable positioning, because of its inherent dependency on external electromagnetic signals. Inertial Navigation (INS) is the implementation of inertial sensors to determine the position and orientation of a vehicle. The availability of low-cost Micro-Electro-Mechanical-System (MEMS) inertial sensors is now making it feasible to develop INS using an inertial measurement unit (IMU). INS has unbounded error growth since the error accumulates at each step. Usually, GPS and INS are integrated with a loosely coupled scheme. With the development of low-cost, MEMS inertial sensors and GPS technology, integrated INS/GPS systems are beginning to meet the growing demands of lower cost, smaller size, and seamless navigation solutions for land vehicles. Although MEMS inertial sensors are very inexpensive compared to conventional sensors, their cost (especially MEMS gyros) is still not acceptable for many low-end civilian applications (for example, commercial car navigation or personal location systems). An efficient way to reduce the expense of these systems is to reduce the number of gyros and accelerometers, therefore, to use a partial IMU (ParIMU) configuration. For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a field experiment for a low-cost strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach, we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of our low-cost IMU (Inertial Measurement Unit) and because of the relatively small area of the trajectory.

Keywords: GPS, IMU, Kalman filter, materials engineering

Procedia PDF Downloads 425
25832 Cloud Computing Impact on e-Government Adoption

Authors: Ali Elshabrawy

Abstract:

Cloud computing is expected to be important for e Government in near future. Governments need it for solving some of its e Government, financial, infrastructure, legacy systems and integration problems. It reduces information technology (IT) infrastructure needs and support costs, and offers on-demand infrastructure and computational power, improved collaboration capabilities, which are important for e Government projects start up and sustainability. Budget pressures will continue to drive more and more government IT to hybrid and even public clouds, and more cooperation between cloud service providers and governmental agencies are expected, Or developing governmental private, community clouds. Motivation to convince governments to use cloud computing services, will create a pressure on cloud service providers to cope with government's requirements for interoperability, security standards, open data and integration between their cloud systems There will be significant legal action arising out of governmental uses of cloud computing, and legislation addressing both IT and business needs and consumer fears and protections. Cloud computing is a considered a revolution for IT and E business in general and e commerce, e Government in particular. As governments faces increasing challenges regarding IT infrastructure required for e Government projects implementation. As a result of Lack of required financial resources allocated for e Government projects in developed and developing countries. Cloud computing can play a major role to solve some of e Government projects challenges such as, lack of financial resources, IT infrastructure, Human resources trained to manage e Government applications, interoperability, cost efficiency challenges. If we could solve some security issues related to cloud computing usage which considered critical for e Government projects. Pretty sure it’s Just a matter of time before cloud service providers will find out solutions to attract governments as major customers for their business.

Keywords: cloud computing, e-government, adoption, supply side barriers, e-government requirements, challenges

Procedia PDF Downloads 351
25831 Hybrid Renewable Energy System Development Towards Autonomous Operation: The Deployment Potential in Greece

Authors: Afroditi Zamanidou, Dionysios Giannakopoulos, Konstantinos Manolitsis

Abstract:

A notable amount of electrical energy demand in many countries worldwide is used to cover public energy demand for road, square and other public spaces’ lighting. Renewable energy can contribute in a significant way to the electrical energy demand coverage for public lighting. This paper focuses on the sizing and design of a hybrid energy system (HES) exploiting the solar-wind energy potential to meet the electrical energy needs of lighting roads, squares and other public spaces. Moreover, the proposed HES provides coverage of the electrical energy demand for a Wi-Fi hotspot and a charging hotspot for the end-users. Alongside the sizing of the energy production system of the proposed HES, in order to ensure a reliable supply without interruptions, a storage system is added and sized. Multiple scenarios of energy consumption are assumed and applied in order to optimize the sizing of the energy production system and the energy storage system. A database with meteorological prediction data for 51 areas in Greece is developed in order to assess the possible deployment of the proposed HES. Since there are detailed meteorological prediction data for all 51 areas under investigation, the use of these data is evaluated, comparing them to real meteorological data. The meteorological prediction data are exploited to form three hourly production profiles for each area for every month of the year; minimum, average and maximum energy production. The energy production profiles are combined with the energy consumption scenarios and the sizing results of the energy production system and the energy storage system are extracted and presented for every area. Finally, the economic performance of the proposed HES in terms of Levelized cost of energy is estimated by calculating and assessing construction, operation and maintenance costs.

Keywords: energy production system sizing, Greece’s deployment potential, meteorological prediction data, wind-solar hybrid energy system, levelized cost of energy

Procedia PDF Downloads 161
25830 Contribution of Culture on Divorce Prevention in Indonesia on "New Normal" Era: Study at Batak, Malay and Minangkabau Tribes

Authors: Ikhwanuddin Harahap

Abstract:

This paper investigates the contribution of culture to divorce prevention in Indonesia in the "new normal" era, especially in Batak, Malay and Minangkabau tribes. This research is qualitative with an anthropological approach. Data were collected by interview and observation techniques. Checking the validity of the data is done by triangulation technique, and the data is analyzed by content analysis. The results of the research showed that culture has a strategic role in preventing divorce. In Batak, Malay and Minangkabau-as, major ethnic groups in Indonesian cultures, have a set of norms and dogmas conveyed at the wedding party, namely “marriage must be eternal and if divorced by death.” In addition, cultural figures actively become arbiters in resolving family conflicts, such as Harajaon in Batak, Datuk in Malay and Mamak in Minangkabau. Cultural dogmas and cultural figures play a very important role in preventing divorce.

Keywords: culture, divorce, prevention, contribution, new normal, era

Procedia PDF Downloads 170
25829 Thermoluminescence Study of Cu Doped Lithium Tetra Borate Samples Synthesized by Water/Solution Assisted Method

Authors: Swarnapriya Thiyagarajan, Modesto Antonio Sosa Aquino, Miguel Vallejo Hernandez, Senthilkumar Kalaiselvan Dhivyaraj, Jayaramakrishnan Velusamy

Abstract:

In this paper the lithium tetra borate (Li2B4O7) was prepared by used water/solution assisted synthesis method. Once finished the synthesization, Copper (Cu) were used to doping material with Li2B4O7 in order to enhance its thermo luminescent properties. The heating temperature parameters were 750°C for 2 hr and 150°C for 2hr. The samples produced by water assisted method were doped at different doping percentage (0.02%, 0.04%, 0.06%, 0.08%, 0.12%, 0.5%, 0.1%, and 1%) of Cu.The characteristics and identification of Li2B4O7 (undoped and doped) were determined in four tests. They are X-ray diffraction (XRD), Scanning electron microscope (SEM), Photoluminescence (PL), Ultra violet visible spectroscopy (UV Vis). As it is evidence from the XRD and SEM results the obtained Li2B4O7 and Li2B4O7 doping with Cu was confirmed and also confirmed the chemical compositition and their morphologies. The obtained lithium tetraborate XRD pattern result was verified with the reference data of lithium tetraborate with tetragonal structure from JCPDS. The glow curves of Li2B4O7 and Li2B4O7 : Cu were obtained by thermo luminescence (TLD) reader (Harshaw 3500). The pellets were irradiated with different kind of dose (58mGy, 100mGy, 500mGy, and 945mGy) by using an X-ray source. Finally this energy response was also compared with TLD100. The order of kinetics (b), frequency factor (S) and activation energy (E) or the trapping parameters were calculated using peak shape method. Especially Li2B4O7: Cu (0.1%) presents good glow curve in all kind of doses. The experimental results showed that this Li2B4O7: Cu could have good potential applications in radiation dosimetry. The main purpose of this paper is to determine the effect of synthesis on the TL properties of doped lithium tetra borate Li2B4O7.

Keywords: dosimetry, irradiation, lithium tetraborate, thermoluminescence

Procedia PDF Downloads 279
25828 A Vehicle Monitoring System Based on the LoRa Technique

Authors: Chao-Linag Hsieh, Zheng-Wei Ye, Chen-Kang Huang, Yeun-Chung Lee, Chih-Hong Sun, Tzai-Hung Wen, Jehn-Yih Juang, Joe-Air Jiang

Abstract:

Air pollution and climate warming become more and more intensified in many areas, especially in urban areas. Environmental parameters are critical information to air pollution and weather monitoring. Thus, it is necessary to develop a suitable air pollution and weather monitoring system for urban areas. In this study, a vehicle monitoring system (VMS) based on the IoT technique is developed. Cars are selected as the research tool because it can reach a greater number of streets to collect data. The VMS can monitor different environmental parameters, including ambient temperature and humidity, and air quality parameters, including PM2.5, NO2, CO, and O3. The VMS can provide other information, including GPS signals and the vibration information through driving a car on the street. Different sensor modules are used to measure the parameters and collect the measured data and transmit them to a cloud server through the LoRa protocol. A user interface is used to show the sensing data storing at the cloud server. To examine the performance of the system, a researcher drove a Nissan x-trail 1998 to the area close to the Da’an District office in Taipei to collect monitoring data. The collected data are instantly shown on the user interface. The four kinds of information are provided by the interface: GPS positions, weather parameters, vehicle information, and air quality information. With the VMS, users can obtain the information regarding air quality and weather conditions when they drive their car to an urban area. Also, government agencies can make decisions on traffic planning based on the information provided by the proposed VMS.

Keywords: LoRa, monitoring system, smart city, vehicle

Procedia PDF Downloads 421
25827 Supply Chain Optimisation through Geographical Network Modeling

Authors: Cyrillus Prabandana

Abstract:

Supply chain optimisation requires multiple factors as consideration or constraints. These factors are including but not limited to demand forecasting, raw material fulfilment, production capacity, inventory level, facilities locations, transportation means, and manpower availability. By knowing all manageable factors involved and assuming the uncertainty with pre-defined percentage factors, an integrated supply chain model could be developed to manage various business scenarios. This paper analyse the utilisation of geographical point of view to develop an integrated supply chain network model to optimise the distribution of finished product appropriately according to forecasted demand and available supply. The supply chain optimisation model shows that small change in one supply chain constraint is possible to largely impact other constraints, and the new information from the model should be able to support the decision making process. The model was focused on three areas, i.e. raw material fulfilment, production capacity and finished products transportation. To validate the model suitability, it was implemented in a project aimed to optimise the concrete supply chain in a mining location. The high level of operations complexity and involvement of multiple stakeholders in the concrete supply chain is believed to be sufficient to give the illustration of the larger scope. The implementation of this geographical supply chain network modeling resulted an optimised concrete supply chain from raw material fulfilment until finished products distribution to each customer, which indicated by lower percentage of missed concrete order fulfilment to customer.

Keywords: decision making, geographical supply chain modeling, supply chain optimisation, supply chain

Procedia PDF Downloads 351
25826 Redefining Solar Generation Estimation: A Comprehensive Analysis of Real Utility Advanced Metering Infrastructure (AMI) Data from Various Projects in New York

Authors: Haowei Lu, Anaya Aaron

Abstract:

Understanding historical solar generation and forecasting future solar generation from interconnected Distributed Energy Resources (DER) is crucial for utility planning and interconnection studies. The existing methodology, which relies on solar radiation, weather data, and common inverter models, is becoming less accurate. Rapid advancements in DER technologies have resulted in more diverse project sites, deviating from common patterns due to various factors such as DC/AC ratio, solar panel performance, tilt angle, and the presence of DC-coupled battery energy storage systems. In this paper, the authors review 10,000 DER projects within the system and analyze the Advanced Metering Infrastructure (AMI) data for various types to demonstrate the impact of different parameters. An updated methodology is proposed for redefining historical and future solar generation in distribution feeders.

Keywords: photovoltaic system, solar energy, fluctuations, energy storage, uncertainty

Procedia PDF Downloads 41
25825 Analysis of Digital Transformation in Banking: The Hungarian Case

Authors: Éva Pintér, Péter Bagó, Nikolett Deutsch, Miklós Hetényi

Abstract:

The process of digital transformation has a profound influence on all sectors of the worldwide economy and the business environment. The influence of blockchain technology can be observed in the digital economy and e-government, rendering it an essential element of a nation's growth strategy. The banking industry is experiencing significant expansion and development of financial technology firms. Utilizing developing technologies such as artificial intelligence (AI), machine learning (ML), and big data (BD), these entrants are offering more streamlined financial solutions, promptly addressing client demands, and presenting a challenge to incumbent institutions. The advantages of digital transformation are evident in the corporate realm, and firms that resist its adoption put their survival at risk. The advent of digital technologies has revolutionized the business environment, streamlining processes and creating opportunities for enhanced communication and collaboration. Thanks to the aid of digital technologies, businesses can now swiftly and effortlessly retrieve vast quantities of information, all the while accelerating the process of creating new and improved products and services. Big data analytics is generally recognized as a transformative force in business, considered the fourth paradigm of science, and seen as the next frontier for innovation, competition, and productivity. Big data, an emerging technology that is shaping the future of the banking sector, offers numerous advantages to banks. It enables them to effectively track consumer behavior and make informed decisions, thereby enhancing their operational efficiency. Banks may embrace big data technologies to promptly and efficiently identify fraud, as well as gain insights into client preferences, which can then be leveraged to create better-tailored products and services. Moreover, the utilization of big data technology empowers banks to develop more intelligent and streamlined models for accurately recognizing and focusing on the suitable clientele with pertinent offers. There is a scarcity of research on big data analytics in the banking industry, with the majority of existing studies only examining the advantages and prospects associated with big data. Although big data technologies are crucial, there is a dearth of empirical evidence about the role of big data analytics (BDA) capabilities in bank performance. This research addresses a gap in the existing literature by introducing a model that combines the resource-based view (RBV), the technical organization environment framework (TOE), and dynamic capability theory (DC). This study investigates the influence of Big Data Analytics (BDA) utilization on the performance of market and risk management. This is supported by a comparative examination of Hungarian mobile banking services.

Keywords: big data, digital transformation, dynamic capabilities, mobile banking

Procedia PDF Downloads 71
25824 Regeneration Study on the Athens City Center: Transformation of the Historical Triangle to “Low Pollution and Restricted Vehicle Traffic Zone”

Authors: Chondrogianni Dimitra, Yorgos J. Stephanedes

Abstract:

The impact of the economic crisis, coupled with the aging of the city's old core, is reflected in central Athens. Public and private users, residents, employees, visitors desire the quality upgrading of abandoned buildings and public spaces through environmental upgrading and sustainable mobility, and promotion of the international metropolitan character of the city. In the study, a strategy for reshaping the character and function of the historic Athenian triangle is proposed, aiming at its economic, environmental, and social sustainable development through feasible, meaningful, and non-landscaping solutions of low cost and high positive impact. Sustainable mobility is the main principle in re-planning the study area and transforming it into a “Low Pollution and Limited Vehicle Traffic Zone” is the main strategy. Τhe proposed measures include the development of pedestrian mobility networks by expanding the pedestrian roads and limited-traffic routes, of bicycle networks based on the approved Metropolitan Bicycle Route of Athens, of public transportation networks with new lines of electric mini-buses, and of new regulations for vehicle mobility in the historic triangle. In addition, complementary actions are proposed regarding the provision of Wi-Fi on fixed track media, development of applications that facilitate combined travel and provide real-time data, integration of micromobility (roller skates, Segway, Hoverboard), and its enhancement as a flexible means of personal mobility, and development of car-sharing, ride-sharing and dynamic carpooling initiatives.

Keywords: regeneration plans, sustainable mobility, environmental upgrading, athens historical triangle

Procedia PDF Downloads 170