Search results for: student-centered teaching and learning
3466 A Deep Dive into the Multi-Pronged Nature of Student Engagement
Authors: Rosaline Govender, Shubnam Rambharos
Abstract:
Universities are, to a certain extent, the source of under-preparedness ideologically, structurally, and pedagogically, particularly since organizational cultures often alienate students by failing to enable epistemological access. This is evident in the unsustainably low graduation rates that characterize South African higher education, which indicate that under 30% graduate in minimum time, under two-thirds graduate within 6 years, and one-third have not graduated after 10 years. Although the statistics for the Faculty of Accounting and Informatics at the Durban University of Technology (DUT) in South Africa have improved significantly from 2019 to 2021, the graduation (32%), throughput (50%), and dropout rates (16%) are still a matter for concern as the graduation rates, in particular, are quite similar to the national statistics. For our students to succeed, higher education should take a multi-pronged approach to ensure student success, and student engagement is one of the ways to support our students. Student engagement depends not only on students’ teaching and learning experiences but, more importantly, on their social and academic integration, their sense of belonging, and their emotional connections in the institution. Such experiences need to challenge students academically and engage their intellect, grow their communication skills, build self-discipline, and promote confidence. The aim of this mixed methods study is to explore the multi-pronged nature of student success within the Faculty of Accounting and Informatics at DUT and focuses on the enabling and constraining factors of student success. The sources of data were the Mid-year student experience survey (N=60), the Hambisa Student Survey (N=85), and semi structured focus group interviews with first, second, and third year students of the Faculty of Accounting and Informatics Hambisa program. The Hambisa (“Moving forward”) focus area is part of the Siyaphumelela 2.0 project at DUT and seeks to understand the multiple challenges that are impacting student success which create a large “middle” cohort of students that are stuck in transition within academic programs. Using the lens of the sociocultural influences on student engagement framework, we conducted a thematic analysis of the two surveys and focus group interviews. Preliminary findings indicate that living conditions, choice of program, access to resources, motivation, institutional support, infrastructure, and pedagogical practices impact student engagement and, thus, student success. It is envisaged that the findings from this project will assist the university in being better prepared to enable student success.Keywords: social and academic integration, socio-cultural influences, student engagement, student success
Procedia PDF Downloads 803465 How Unicode Glyphs Revolutionized the Way We Communicate
Authors: Levi Corallo
Abstract:
Typed language made by humans on computers and cell phones has made a significant distinction from previous modes of written language exchanges. While acronyms remain one of the most predominant markings of typed language, another and perhaps more recent revolution in the way humans communicate has been with the use of symbols or glyphs, primarily Emojis—globally introduced on the iPhone keyboard by Apple in 2008. This paper seeks to analyze the use of symbols in typed communication from both a linguistic and machine learning perspective. The Unicode system will be explored and methods of encoding will be juxtaposed with the current machine and human perception. Topics in how typed symbol usage exists in conversation will be explored as well as topics across current research methods dealing with Emojis like sentiment analysis, predictive text models, and so on. This study proposes that sequential analysis is a significant feature for analyzing unicode characters in a corpus with machine learning. Current models that are trying to learn or translate the meaning of Emojis should be starting to learn using bi- and tri-grams of Emoji, as well as observing the relationship between combinations of different Emoji in tandem. The sociolinguistics of an entire new vernacular of language referred to here as ‘typed language’ will also be delineated across my analysis with unicode glyphs from both a semantic and technical perspective.Keywords: unicode, text symbols, emojis, glyphs, communication
Procedia PDF Downloads 1983464 Mediating Role of Psychological Capital in Relations Between Social Support and Subjective Wellbeing among Students with Learning Disabilities and Attention Deficit Hyperactivity Disorder
Authors: Ofra Walter Btel Liran Hazan
Abstract:
This study’s goal was to clarify whether psychological capital (PsyCap) mediated the relations between social support and subjective well-being among post-secondary students during the Covid-19 pandemic and to assess whether students diagnosed with a learning disability (LD) and/or attention deficit hyperactivity disorder (ADHD) differed from others in their reliance on social support and their level of PsyCap and subjective wellbeing. Participants were257 students, 152 diagnosed with LD/ADHD and the rest neurotypical. The study used four questionnaires: demographic and academic information; Psychological Capital Questionnaire (PCQ); Subjective Well-Being Index; social support questionnaire. The results indicated PsyCapmediated relations between social support and subjective wellbeing. Students diagnosed with LD/ADHD differed from neurotypicals in their PsyCap and subjective wellbeing levels but not in their social support. In addition, the relations between PsyCap and social support were stronger among students diagnosed with LD/ADHD. PsyCap was an important resource for all participants and was related to social support and subjective wellbeing, making it especially valuable for LD/ADHD students facing new and threatening situations, such as the Covid-19 pandemic.Keywords: LD/ADHD post-secondary students, subjective wellbeing, social support, PsyCap, covid-19
Procedia PDF Downloads 993463 Exploration and Reform of Fundamentals of Program Design Based on Application Ability
Authors: Jiaqi Yin, Baofeng Liang
Abstract:
The rapid development in the fields of computer science and information technology presents new challenges and opportunities for foundational programming education. Traditional programming courses often focus heavily on theoretical knowledge while neglecting students’ practical programming and problem-solving abilities. This paper delves into the significance of programming education based on application abilities and provides a detailed explanation of a reform approach that incorporates project-driven teaching to nurture students with more comprehensive computer science skills.Keywords: fundamentals of programming, application abilities, pedagogical reform, program design
Procedia PDF Downloads 843462 Technology Enriched Classroom for Intercultural Competence Building through Films
Authors: Tamara Matevosyan
Abstract:
In this globalized world, intercultural communication is becoming essential for understanding communication among people, for developing understanding of cultures, to appreciate the opportunities and challenges that each culture presents to people. Moreover, it plays an important role in developing an ideal personification to understand different behaviors in different cultures. Native speakers assimilate sociolinguistic knowledge in natural conditions, while it is a great problem for language learners, and in this context feature films reveal cultural peculiarities and involve students in real communication. As we know nowadays the key role of language learning is the development of intercultural competence as communicating with someone from a different cultural background can be exciting and scary, frustrating and enlightening. Intercultural competence is important in FL learning classroom and here feature films can perform as essential tools to develop this competence and overcome the intercultural gap that foreign students face. Current proposal attempts to reveal the correlation of the given culture and language through feature films. To ensure qualified, well-organized and practical classes on Intercultural Communication for language learners a number of methods connected with movie watching have been implemented. All the pre-watching, while watching and post-watching methods and techniques are aimed at developing students’ communicative competence. The application of such activities as Climax, Role-play, Interactive Language, Daily Life helps to reveal and overcome mistakes of cultural and pragmatic character. All the above-mentioned activities are directed at the assimilation of the language vocabulary with special reference to the given culture. The study dwells into the essence of culture as one of the core concepts of intercultural communication. Sometimes culture is not a priority in the process of language learning which leads to further misunderstandings in real life communication. The application of various methods and techniques with feature films aims at developing students’ cultural competence, their understanding of norms and values of individual cultures. Thus, feature film activities will enable learners to enlarge their knowledge of the particular culture and develop a fundamental insight into intercultural communication.Keywords: climax, intercultural competence, interactive language, role-play
Procedia PDF Downloads 3493461 Conscious Intention-based Processes Impact the Neural Activities Prior to Voluntary Action on Reinforcement Learning Schedules
Authors: Xiaosheng Chen, Jingjing Chen, Phil Reed, Dan Zhang
Abstract:
Conscious intention can be a promising point cut to grasp consciousness and orient voluntary action. The current study adopted a random ratio (RR), yoked random interval (RI) reinforcement learning schedule instead of the previous highly repeatable and single decision point paradigms, aimed to induce voluntary action with the conscious intention that evolves from the interaction between short-range-intention and long-range-intention. Readiness potential (RP) -like-EEG amplitude and inter-trial-EEG variability decreased significantly prior to voluntary action compared to cued action for inter-trial-EEG variability, mainly featured during the earlier stage of neural activities. Notably, (RP) -like-EEG amplitudes decreased significantly prior to higher RI-reward rates responses in which participants formed a higher plane of conscious intention. The present study suggests the possible contribution of conscious intention-based processes to the neural activities from the earlier stage prior to voluntary action on reinforcement leanring schedule.Keywords: Reinforcement leaning schedule, voluntary action, EEG, conscious intention, readiness potential
Procedia PDF Downloads 833460 Single Pole-To-Earth Fault Detection and Location on the Tehran Railway System Using ICA and PSO Trained Neural Network
Authors: Masoud Safarishaal
Abstract:
Detecting the location of pole-to-earth faults is essential for the safe operation of the electrical system of the railroad. This paper aims to use a combination of evolutionary algorithms and neural networks to increase the accuracy of single pole-to-earth fault detection and location on the Tehran railroad power supply system. As a result, the Imperialist Competitive Algorithm (ICA) and Particle Swarm Optimization (PSO) are used to train the neural network to improve the accuracy and convergence of the learning process. Due to the system's nonlinearity, fault detection is an ideal application for the proposed method, where the 600 Hz harmonic ripple method is used in this paper for fault detection. The substations were simulated by considering various situations in feeding the circuit, the transformer, and typical Tehran metro parameters that have developed the silicon rectifier. Required data for the network learning process has been gathered from simulation results. The 600Hz component value will change with the change of the location of a single pole to the earth's fault. Therefore, 600Hz components are used as inputs of the neural network when fault location is the output of the network system. The simulation results show that the proposed methods can accurately predict the fault location.Keywords: single pole-to-pole fault, Tehran railway, ICA, PSO, artificial neural network
Procedia PDF Downloads 1333459 Attributes That Influence Respondents When Choosing a Mate in Internet Dating Sites: An Innovative Matching Algorithm
Authors: Moti Zwilling, Srečko Natek
Abstract:
This paper aims to present an innovative predictive analytics analysis in order to find the best combination between two consumers who strive to find their partner or in internet sites. The methodology shown in this paper is based on analysis of consumer preferences and involves data mining and machine learning search techniques. The study is composed of two parts: The first part examines by means of descriptive statistics the correlations between a set of parameters that are taken between man and women where they intent to meet each other through the social media, usually the internet. In this part several hypotheses were examined and statistical analysis were taken place. Results show that there is a strong correlation between the affiliated attributes of man and woman as long as concerned to how they present themselves in a social media such as "Facebook". One interesting issue is the strong desire to develop a serious relationship between most of the respondents. In the second part, the authors used common data mining algorithms to search and classify the most important and effective attributes that affect the response rate of the other side. Results exhibit that personal presentation and education background are found as most affective to achieve a positive attitude to one's profile from the other mate.Keywords: dating sites, social networks, machine learning, decision trees, data mining
Procedia PDF Downloads 2993458 Students’ Level of Knowledge Construction and Pattern of Social Interaction in an Online Forum
Authors: K. Durairaj, I. N. Umar
Abstract:
The asynchronous discussion forum is one of the most widely used activities in learning management system environment. Online forum allows participants to interact, construct knowledge, and can be used to complement face to face sessions in blended learning courses. However, to what extent do the students perceive the benefits or advantages of forum remain to be seen. Through content and social network analyses, instructors will be able to gauge the students’ engagement and knowledge construction level. Thus, this study aims to analyze the students’ level of knowledge construction and their participation level that occur through online discussion. It also attempts to investigate the relationship between the level of knowledge construction and their social interaction patterns. The sample involves 23 students undertaking a master course in one public university in Malaysia. The asynchronous discussion forum was conducted for three weeks as part of the course requirement. The finding indicates that the level of knowledge construction is quite low. Also, the density value of 0.11 indicating that the overall communication among the participants in the forum is low. This study reveals that strong and significant correlations between SNA measures (in-degree centrality, out-degree centrality) and level of knowledge construction. Thus, allocating these active students in a different groups aids the interactive discussion takes place. Finally, based upon the findings, some recommendations to increase students’ level of knowledge construction and also for further research are proposed.Keywords: asynchronous discussion forums, content analysis, knowledge construction, social network analysis
Procedia PDF Downloads 3783457 Smart Textiles Integration for Monitoring Real-time Air Pollution
Authors: Akshay Dirisala
Abstract:
Humans had developed a highly organized and efficient civilization to live in by improving the basic needs of humans like housing, transportation, and utilities. These developments have made a huge impact on major environmental factors. Air pollution is one prominent environmental factor that needs to be addressed to maintain a sustainable and healthier lifestyle. Textiles have always been at the forefront of helping humans shield from environmental conditions. With the growth in the field of electronic textiles, we now have the capability of monitoring the atmosphere in real time to understand and analyze the environment that a particular person is mostly spending their time at. Integrating textiles with the particulate matter sensors that measure air quality and pollutants that have a direct impact on human health will help to understand what type of air we are breathing. This research idea aims to develop a textile product and a process of collecting the pollutants through particulate matter sensors, which are equipped inside a smart textile product and store the data to develop a machine learning model to analyze the health conditions of the person wearing the garment and periodically notifying them not only will help to be cautious of airborne diseases but will help to regulate the diseases and could also help to take care of skin conditions.Keywords: air pollution, e-textiles, particulate matter sensors, environment, machine learning models
Procedia PDF Downloads 1193456 MhAGCN: Multi-Head Attention Graph Convolutional Network for Web Services Classification
Authors: Bing Li, Zhi Li, Yilong Yang
Abstract:
Web classification can promote the quality of service discovery and management in the service repository. It is widely used to locate developers desired services. Although traditional classification methods based on supervised learning models can achieve classification tasks, developers need to manually mark web services, and the quality of these tags may not be enough to establish an accurate classifier for service classification. With the doubling of the number of web services, the manual tagging method has become unrealistic. In recent years, the attention mechanism has made remarkable progress in the field of deep learning, and its huge potential has been fully demonstrated in various fields. This paper designs a multi-head attention graph convolutional network (MHAGCN) service classification method, which can assign different weights to the neighborhood nodes without complicated matrix operations or relying on understanding the entire graph structure. The framework combines the advantages of the attention mechanism and graph convolutional neural network. It can classify web services through automatic feature extraction. The comprehensive experimental results on a real dataset not only show the superior performance of the proposed model over the existing models but also demonstrate its potentially good interpretability for graph analysis.Keywords: attention mechanism, graph convolutional network, interpretability, service classification, service discovery
Procedia PDF Downloads 1393455 Information Disclosure And Financial Sentiment Index Using a Machine Learning Approach
Authors: Alev Atak
Abstract:
In this paper, we aim to create a financial sentiment index by investigating the company’s voluntary information disclosures. We retrieve structured content from BIST 100 companies’ financial reports for the period 1998-2018 and extract relevant financial information for sentiment analysis through Natural Language Processing. We measure strategy-related disclosures and their cross-sectional variation and classify report content into generic sections using synonym lists divided into four main categories according to their liquidity risk profile, risk positions, intra-annual information, and exposure to risk. We use Word Error Rate and Cosin Similarity for comparing and measuring text similarity and derivation in sets of texts. In addition to performing text extraction, we will provide a range of text analysis options, such as the readability metrics, word counts using pre-determined lists (e.g., forward-looking, uncertainty, tone, etc.), and comparison with reference corpus (word, parts of speech and semantic level). Therefore, we create an adequate analytical tool and a financial dictionary to depict the importance of granular financial disclosure for investors to identify correctly the risk-taking behavior and hence make the aggregated effects traceable.Keywords: financial sentiment, machine learning, information disclosure, risk
Procedia PDF Downloads 963454 Applying of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Estimation of Flood Hydrographs
Authors: Amir Ahmad Dehghani, Morteza Nabizadeh
Abstract:
This paper presents the application of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to flood hydrograph modeling of Shahid Rajaee reservoir dam located in Iran. This was carried out using 11 flood hydrographs recorded in Tajan river gauging station. From this dataset, 9 flood hydrographs were chosen to train the model and 2 flood hydrographs to test the model. The different architectures of neuro-fuzzy model according to the membership function and learning algorithm were designed and trained with different epochs. The results were evaluated in comparison with the observed hydrographs and the best structure of model was chosen according the least RMSE in each performance. To evaluate the efficiency of neuro-fuzzy model, various statistical indices such as Nash-Sutcliff and flood peak discharge error criteria were calculated. In this simulation, the coordinates of a flood hydrograph including peak discharge were estimated using the discharge values occurred in the earlier time steps as input values to the neuro-fuzzy model. These results indicate the satisfactory efficiency of neuro-fuzzy model for flood simulating. This performance of the model demonstrates the suitability of the implemented approach to flood management projects.Keywords: adaptive neuro-fuzzy inference system, flood hydrograph, hybrid learning algorithm, Shahid Rajaee reservoir dam
Procedia PDF Downloads 4833453 Positive Psychology Intervention for Dyslexia: A Qualitative Study
Authors: Chathurika Sewwandi Kannangara, Jerome Carson
Abstract:
The objective of this research is to identify strengths among the individuals with dyslexia and design a positive psychology intervention to support such individuals. Dyslexia is a combination of abilities and difficulties that affect the learning process in areas as such reading, spelling and writing. It is a persistent condition. The research aims to adapt positive psychology techniques to support individuals with dyslexia. Population of the research will be undergraduate and college level students with dyslexia. First phase of the study will be conducted on a sample of undergraduate and college level students with dyslexia in Bolton, UK. The concept of treatment in positive psychology is not only to fix the component just what is wrong, instead it is also to develop and construct on what is right in the individual. The first phase of the research aims to identify the signature strengths among the individuals with dyslexia using Interviews, Descriptions on personal experiences on ‘My life with Dyslexia’, and Values in Action (VIA) strength survey. In order to conduct the survey for individuals with dyslexia, the VIA survey has been hosted in a website which is solely developed in the form of dyslexia friendly context. Dyslexia friendly website for surveys had designed and developed following the British Dyslexia Association guidelines. The findings of the first phase would be utilized for the second phase of the research to develop the positive psychology intervention.Keywords: dyslexia, signature strengths, positive psychology, qualitative study, learning difficulties
Procedia PDF Downloads 4493452 Exploring Ways Early Childhood Teachers Integrate Information and Communication Technologies into Children's Play: Two Case Studies from the Australian Context
Authors: Caroline Labib
Abstract:
This paper reports on a qualitative study exploring the approaches teachers used to integrate computers or smart tablets into their program planning. Their aim was to integrate ICT into children’s play, thereby supporting children’s learning and development. Data was collected in preschool settings in Melbourne in 2016. Interviews with teachers, observations of teacher interactions with children and copies of teachers’ planning and observation documents informed the study. The paper looks closely at findings from two early childhood settings and focuses on exploring the differing approaches two EC teachers have adopted when integrating iPad or computers into their settings. Data analysis revealed three key approaches which have been labelled: free digital play, guided digital play and teacher-led digital use. Importantly, teacher decisions were influenced by the interplay between the opportunities that the ICT tools offered, the teachers’ prior knowledge and experience about ICT and children’s learning needs and contexts. This paper is a snapshot of two early childhood settings, and further research will encompass data from six more early childhood settings in Victoria with the aim of exploring a wide range of motivating factors for early childhood teachers trying to integrate ICT into their programs.Keywords: early childhood education (ECE), digital play, information and communication technologies (ICT), play, and teachers' interaction approaches
Procedia PDF Downloads 2173451 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning
Authors: Umamaheswari Shanmugam, Silvia Ronchi
Abstract:
Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that can use the large amount and variety of data generated during healthcare services every day; one of the significant advantages of these new technologies is the ability to get experience and knowledge from real-world use and to improve their performance continuously. Healthcare systems and institutions can significantly benefit because the use of advanced technologies improves the efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and protect patients' safety. The evolution and the continuous improvement of software used in healthcare must consider the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device's approval. Still, they are necessary to ensure performance, quality, and safety. At the same time, they can be a business opportunity if the manufacturer can define the appropriate regulatory strategy in advance. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems
Procedia PDF Downloads 933450 Assessing Children’s Probabilistic and Creative Thinking in a Non-formal Learning Context
Authors: Ana Breda, Catarina Cruz
Abstract:
Daily, we face unpredictable events, often attributed to chance, as there is no justification for such an occurrence. Chance, understood as a source of uncertainty, is present in several aspects of human life, such as weather forecasts, dice rolling, and lottery. Surprisingly, humans and some animals can quickly adjust their behavior to handle efficiently doubly stochastic processes (random events with two layers of randomness, like unpredictable weather affecting dice rolling). This adjustment ability suggests that the human brain has built-in mechanisms for perceiving, understanding, and responding to simple probabilities. It also explains why current trends in mathematics education include probability concepts in official curriculum programs, starting from the third year of primary education onwards. In the first years of schooling, children learn to use a certain type of (specific) vocabulary, such as never, always, rarely, perhaps, likely, and unlikely, to help them to perceive and understand the probability of some events. These are keywords of crucial importance for their perception and understanding of probabilities. The development of the probabilistic concepts comes from facts and cause-effect sequences resulting from the subject's actions, as well as the notion of chance and intuitive estimates based on everyday experiences. As part of a junior summer school program, which took place at a Portuguese university, a non-formal learning experiment was carried out with 18 children in the 5th and 6th grades. This experience was designed to be implemented in a dynamic of a serious ice-breaking game, to assess their levels of probabilistic, critical, and creative thinking in understanding impossible, certain, equally probable, likely, and unlikely events, and also to gain insight into how the non-formal learning context influenced their achievements. The criteria used to evaluate probabilistic thinking included the creative ability to conceive events classified in the specified categories, the ability to properly justify the categorization, the ability to critically assess the events classified by other children, and the ability to make predictions based on a given probability. The data analysis employs a qualitative, descriptive, and interpretative-methods approach based on students' written productions, audio recordings, and researchers' field notes. This methodology allowed us to conclude that such an approach is an appropriate and helpful formative assessment tool. The promising results of this initial exploratory study require a future research study with children from these levels of education, from different regions, attending public or private schools, to validate and expand our findings.Keywords: critical and creative thinking, non-formal mathematics learning, probabilistic thinking, serious game
Procedia PDF Downloads 333449 Adaptive Process Monitoring for Time-Varying Situations Using Statistical Learning Algorithms
Authors: Seulki Lee, Seoung Bum Kim
Abstract:
Statistical process control (SPC) is a practical and effective method for quality control. The most important and widely used technique in SPC is a control chart. The main goal of a control chart is to detect any assignable changes that affect the quality output. Most conventional control charts, such as Hotelling’s T2 charts, are commonly based on the assumption that the quality characteristics follow a multivariate normal distribution. However, in modern complicated manufacturing systems, appropriate control chart techniques that can efficiently handle the nonnormal processes are required. To overcome the shortcomings of conventional control charts for nonnormal processes, several methods have been proposed to combine statistical learning algorithms and multivariate control charts. Statistical learning-based control charts, such as support vector data description (SVDD)-based charts, k-nearest neighbors-based charts, have proven their improved performance in nonnormal situations compared to that of the T2 chart. Beside the nonnormal property, time-varying operations are also quite common in real manufacturing fields because of various factors such as product and set-point changes, seasonal variations, catalyst degradation, and sensor drifting. However, traditional control charts cannot accommodate future condition changes of the process because they are formulated based on the data information recorded in the early stage of the process. In the present paper, we propose a SVDD algorithm-based control chart, which is capable of adaptively monitoring time-varying and nonnormal processes. We reformulated the SVDD algorithm into a time-adaptive SVDD algorithm by adding a weighting factor that reflects time-varying situations. Moreover, we defined the updating region for the efficient model-updating structure of the control chart. The proposed control chart simultaneously allows efficient model updates and timely detection of out-of-control signals. The effectiveness and applicability of the proposed chart were demonstrated through experiments with the simulated data and the real data from the metal frame process in mobile device manufacturing.Keywords: multivariate control chart, nonparametric method, support vector data description, time-varying process
Procedia PDF Downloads 3033448 Predictors of Clinical Failure After Endoscopic Lumbar Spine Surgery During the Initial Learning Curve
Authors: Daniel Scherman, Daniel Madani, Shanu Gambhir, Marcus Ling Zhixing, Yingda Li
Abstract:
Objective: This study aims to identify clinical factors that may predict failed endoscopic lumbar spine surgery to guide surgeons with patient selection during the initial learning curve. Methods: This is an Australasian prospective analysis of the first 105 patients to undergo lumbar endoscopic spine decompression by 3 surgeons. Modified MacNab outcomes, Oswestry Disability Index (ODI) and Visual Analogue Score (VAS) scores were utilized to evaluate clinical outcomes at 6 months postoperatively. Descriptive statistics and Anova t-tests were performed to measure statistically significant (p<0.05) associations between variables using GraphPad Prism v10. Results: Patients undergoing endoscopic lumbar surgery via an interlaminar or transforaminal approach have overall good/excellent modified MacNab outcomes and a significant reduction in post-operative VAS and ODI scores. Regardless of the anatomical location of disc herniations, good/excellent modified MacNab outcomes and significant reductions in VAS and ODI were reported post-operatively; however, not in patients with calcified disc herniations. Patients with central and foraminal stenosis overall reported poor/fair modified MacNab outcomes. However, there were significant reductions in VAS and ODI scores post-operatively. Patients with subarticular stenosis or an associated spondylolisthesis reported good/excellent modified MacNab outcomes and significant reductions in VAS and ODI scores post-operatively. Patients with disc herniation and concurrent degenerative stenosis had generally poor/fair modified MacNab outcomes. Conclusion: The outcomes of endoscopic spine surgery are encouraging, with a low complication and reoperation rate. However, patients with calcified disc herniations, central canal stenosis or a disc herniation with concurrent degenerative stenosis present challenges during the initial learning curve and may benefit from traditional open or other minimally invasive techniques.Keywords: complications, lumbar disc herniation, lumbar endoscopic spine surgery, predictors of failed endoscopic spine surgery
Procedia PDF Downloads 1593447 Listening Children Through Storytelling
Authors: Catarina Cruz, Ana Breda
Abstract:
In the early years, until the children’s entrance at the elementary school, they are stimulated by their educators, through rich and attractive contexts, to explore and develop skills in different domains, from the socio-emotional to the cognitive. Many of these contexts trigger real or imaginary situations, familiar or not, through resources or pedagogical practices that incite children's curiosity, questioning, expression of ideas or emotions, social interaction, among others. Later, when children enter at the elementary school, their activity at school becomes more focused on developing skills in the cognitive domain, namely acquiring learning from different subject areas, such as Mathematics, Natural Sciences, History, among others. That is, to ensure that children develop the standardized learning recommended in the guiding curriculum documents, they spend part of their time applying formulas, memorizing information, following instructions, and so on, and in this way not much time is left to listen children, to learn about their interests and likes, as well as their perspective and questions about the surround world. In Elementary School, especially in the 1st Cycle, children are naturally curious, however, sometimes this skill is subtly conditioned by adults. Curious children learn more, since they have an intrinsic desire to know more, especially about what is unknown. When children think on subjects or themes that they are interested in or curious about, they attribute more meaning to this learning and retain it for longer. Therefore, it is important to approach subjects in the classroom that seduce or captivate children's attention, trigger them curiosity, and allow to hear their ideas. There are several resources, strategies and pedagogical practices to awaken children's curiosity, to explore their knowledge, to understand their perspectives and their way of thinking, to know a little more about their personality and to provide space for dialogue. The storytelling, its narrative’s exploration and interpretation is one of those pedagogical practices. Children’s literature, about real or imaginary subjects, stimulate children’s insights supported into their experiences, emotions, learnings and personality, and promote opportunities for children express freely their feelings and thoughts. This work focuses on a session developed with children in the 3rd year of schooling, from a Portuguese 1st Cycle Basic School, in which the story "From the Outside In and From the Inside Out" was presented. The story’s presentation was mainly centred on children’s activity, who read excerpts and interpreted/explored them through a dialogue led by one of the authors. The study presented here intends to show an example of how an exploration of a children's story can trigger ideas, thoughts, emotions or attitudes in children in the 3rd year of elementary school. To answer the research question, this work aimed to: identify ideas, thoughts, emotions or attitudes that emerged from the exploration of story; analyse aspects of the story and the orchestration/conduction of dialogue with/between children that facilitated or inhibited the emergence of ideas, thoughts, emotions or attitudes by children,Keywords: storytelling, children’s perspectives, soft skills, non-formal learning contexts, orchestration
Procedia PDF Downloads 293446 From Context to Text and Back Again: Teaching Toni Morrison Overseas
Authors: Helena Maragou
Abstract:
Introducing Toni Morrison’s fiction to a classroom overseas entails a significant pedagogical investment, from monitoring students’ uncertain journey through Morrison’s shifty semantics to filling in the gaps of cultural knowledge and understanding for the students to be able to relate text to context. A rewarding process, as Morrison’s works present a tremendous opportunity for transnational dialogue, an opportunity that hinges upon Toni Morrison’s bringing to the fore the untold and unspeakable lives of racial ‘Others’, but also, crucially, upon her broader critique of Western ideological hegemony. This critique is a fundamental aspect of Toni Morrison’s politics and one that appeals to young readers of Toni Morrison in Greece at a time when the questioning of institutions and ideological traditions is precipitated by regional and global change. It is more or less self-evident that to help a class of international students get aboard a Morrison novel, an instructor should begin by providing them with cultural context. These days, students’ exposure to Hollywood representations of the African American past and present, as well as the use of documentaries, photography, music videos, etc., as supplementary class material, provide a starting point, a workable historical and cultural framework for textual comprehension. The true challenge, however, lies ahead: it is one thing for students to intellectually grasp the historical hardships and traumas of Morrison’s characters and to even engage in aesthetic appreciation of Morrison’s writing; quite another to relate to her works as articulations of experiences akin to their own. The great challenge, then, is in facilitating students’ discovery of the universal Morrison, the author who speaks across cultures while voicing the untold tales of her own people; this process of discovery entails, on a pedagogical level, that students be guided through the works’ historical context, to plunge into the intricacies of Morrison’s discourse, itself an elaborate linguistic booby trap, so as to be finally brought to reconsider their own historical experiences using the lens of Morrison’s fiction. The paper will be based on experience of teaching a Toni Morrison seminar to a class of Greek students at the American College of Greece and will draw from students’ exposure and responses to Toni Morrison’s “Nobel Prize Lecture,” as well as her novels Song of Solomon and Home.Keywords: toni morrison, international classroom, pedagogy, African American literature
Procedia PDF Downloads 853445 Exploring Data Leakage in EEG Based Brain-Computer Interfaces: Overfitting Challenges
Authors: Khalida Douibi, Rodrigo Balp, Solène Le Bars
Abstract:
In the medical field, applications related to human experiments are frequently linked to reduced samples size, which makes the training of machine learning models quite sensitive and therefore not very robust nor generalizable. This is notably the case in Brain-Computer Interface (BCI) studies, where the sample size rarely exceeds 20 subjects or a few number of trials. To address this problem, several resampling approaches are often used during the data preparation phase, which is an overly critical step in a data science analysis process. One of the naive approaches that is usually applied by data scientists consists in the transformation of the entire database before the resampling phase. However, this can cause model’ s performance to be incorrectly estimated when making predictions on unseen data. In this paper, we explored the effect of data leakage observed during our BCI experiments for device control through the real-time classification of SSVEPs (Steady State Visually Evoked Potentials). We also studied potential ways to ensure optimal validation of the classifiers during the calibration phase to avoid overfitting. The results show that the scaling step is crucial for some algorithms, and it should be applied after the resampling phase to avoid data leackage and improve results.Keywords: data leackage, data science, machine learning, SSVEP, BCI, overfitting
Procedia PDF Downloads 1573444 Problem-Based Learning for Hospitality Students. The Case of Madrid Luxury Hotels and the Recovery after the Covid Pandemic
Authors: Caridad Maylin-Aguilar, Beatriz Duarte-Monedero
Abstract:
Problem-based learning (PBL) is a useful tool for adult and practice oriented audiences, as University students. As a consequence of the huge disruption caused by the COVID pandemic in the hospitality industry, hotels of all categories closed down in Spain from March 2020. Since that moment, the luxury segment was blooming with optimistic prospects for new openings. Hence, Hospitality students were expecting a positive situation in terms of employment and career development. By the beginning of the 2020-21 academic year, these expectations were seriously harmed. By October 2020, only 9 of the 32 hotels in the luxury segment were opened with an occupation rate of 9%. Shortly after, the evidence of a second wave affecting especially Spain and the homelands of incoming visitors bitterly smashed all forecasts. In accordance with the situation, a team of four professors and practitioners, from four different subject areas, developed a real case, inspired in one of these hotels, the 5-stars Emperatriz by Barceló. Students in their 2nd course were provided with real information as marketing plans, profit and losses and operational accounts, employees profiles and employment costs. The challenge for them was to act as consultants, identifying potential courses of action, related to best, base and worst case. In order to do that, they were organized in teams and supported by 4th course students. Each professor deployed the problem in their subject; thus, research on the customers behavior and feelings were necessary to review, as part of the marketing plan, if the current offering of the hotel was clear enough to guarantee and to communicate a safe environment, as well as the ranking of other basic, supporting and facilitating services. Also, continuous monitoring of competitors’ activity was necessary to understand what was the behavior of the open outlets. The actions designed after the diagnose were ranked in accordance with their impact and feasibility in terms of time and resources. Also they must be actionable by the current staff of the hotel and their managers and a vision of internal marketing was appreciated. After a process of refinement, seven teams presented their conclusions to Emperatriz general manager and the rest of professors. Four main ideas were chosen, and all the teams, irrespectively of authorship, were asked to develop them to the state of a minimum viable product, with estimations of impacts and costs. As the process continues, students are nowadays accompanying the hotel and their staff in the prudent reopening of facilities, almost one year after the closure. From a professor’s point of view, key learnings were 1.- When facing a real problem, a holistic view is needed. Therefore, the vision of subjects as silos collapses, 2- When educating new professionals, providing them with the resilience and resistance necessaries to deal with a problem is always mandatory, but now seems more relevant and 3.- collaborative work and contact with real practitioners in such an uncertain and changing environment is a challenge, but it is worth when considering the learning result and its potential.Keywords: problem-based learning, hospitality recovery, collaborative learning, resilience
Procedia PDF Downloads 1873443 Blockchain-Resilient Framework for Cloud-Based Network Devices within the Architecture of Self-Driving Cars
Authors: Mirza Mujtaba Baig
Abstract:
Artificial Intelligence (AI) is evolving rapidly, and one of the areas in which this field has influenced is automation. The automobile, healthcare, education, and robotic industries deploy AI technologies constantly, and the automation of tasks is beneficial to allow time for knowledge-based tasks and also introduce convenience to everyday human endeavors. The paper reviews the challenges faced with the current implementations of autonomous self-driving cars by exploring the machine learning, robotics, and artificial intelligence techniques employed for the development of this innovation. The controversy surrounding the development and deployment of autonomous machines, e.g., vehicles, begs the need for the exploration of the configuration of the programming modules. This paper seeks to add to the body of knowledge of research assisting researchers in decreasing the inconsistencies in current programming modules. Blockchain is a technology of which applications are mostly found within the domains of financial, pharmaceutical, manufacturing, and artificial intelligence. The registering of events in a secured manner as well as applying external algorithms required for the data analytics are especially helpful for integrating, adapting, maintaining, and extending to new domains, especially predictive analytics applications.Keywords: artificial intelligence, automation, big data, self-driving cars, machine learning, neural networking algorithm, blockchain, business intelligence
Procedia PDF Downloads 1233442 Peer-Assisted Learning of Ebm in, a UK Medical School: Evaluation of the NICE Evidence Search Student Champion Scheme
Authors: Emily Jin, Harry Sharples, Anne Weist
Abstract:
Introduction: NICE Evidence Search Student Champion Scheme is a peer-assisted learning scheme that aims to improve the routine use of evidence-based information by future health and social care staff. The focus is on the NICE evidence search portal that provides selected information from more than 800 reliable health, social care, and medicines sources, including up-to-date guidelines and information for the public. This paper aims to evaluate the effectiveness of the scheme when implemented in Liverpool School of Medicine and to understand the experiences of those attending. Methods: Twelve student champions were recruited and trained in February 2020 as peer tutors during a workshop facilitated by NICE. Cascade sessions were then organised and delivered on an optional basis for students, in small groups of < 10 to approximately 70 attendees. Surveys were acquired immediately before and 8-12 weeks after cascade sessions (n=47 and 45 respectively). Data from these surveys facilitated the analysis of the scheme. Results: Surveys demonstrated 74% of all attendees frequently searched for health and social care information online as a part of their studies. However, only 15% of attendees reported having prior formal training on searching for health information, despite receiving such training earlier on in the curriculum. After attending cascade sessions, students reported a 58% increase in confidence when searching for information using evidence search, from a pre-session a baseline of 36%. Conclusion: NICE Evidence Search Student Champion Scheme provided clear benefits for attending students, increasing confidence in searching for peer-reviewed, mainly secondary sources of health information. The lack of reported training represents the unmet need that the champion scheme satisfies, and this likely benefits student champions as well as attendees. Increasing confidence in searching for healthcare information online may support future evidence-based decision-making.Keywords: evidence-based medicine, NICE, medical education, medical school, peer-assisted learning
Procedia PDF Downloads 1363441 Newly-Rediscovered Manuscripts Talking about Seventeenth-Century French Harpsichord Pedagogy
Authors: David Chung
Abstract:
The development of seventeenth-century French harpsichord music is enigmatic in several respects. Although little is known about the formation of this style before 1650 (we have names of composers, but no surviving music), the style has attained a high degree of refinement and sophistication in the music of the earliest known masters (e.g. Chambonnières, Louis Couperin and D’Anglebert). In fact, how the seventeenth-century musicians acquired the skills of their art remains largely steeped in mystery, as the earliest major treatise on French keyboard pedagogy was not published until 1702 by Saint Lambert. This study fills this lacuna by surveying some twenty recently-rediscovered manuscripts, which offer ample materials for revisiting key issues pertaining to seventeenth-century harpsichord pedagogy. By analyzing the musical contents, the verbal information and explicit notation (such as written-out ornaments and rhythmic effects), this study provides a rich picture of the process of learning at the time, with engaging details of performance nuances often lacking in tutors and treatises. Of even greater significance, that creative skills (such as continuo and ornamentation) were taught alongside fundamental knowledge (solfèges, note values, etc.) at the earliest stage of learning offers fresh challenge for modern pedagogues to rethink how harpsichord pedagogy can be revamped to cater for our own pedagogical and aesthetic needs.Keywords: French, harpsichord, pedagogy, seventeenth century
Procedia PDF Downloads 2613440 Feedback in the Language Class: An Action Research Process
Authors: Arash Golzari Koloor
Abstract:
Feedback seems to be an inseparable part of teaching a second/foreign language. One type of feedback is corrective feedback which is one type of error treatment in second language classrooms. This study is a report on the types of corrective feedback employed in an IELTS preparation course. The types of feedback, their frequencies, and their effectiveness are enlisted, enumerated, and interpreted. The results showed that explicit correction and recast were the most frequent types of feedback while repetition and elicitation were the least. The results also revealed that metalinguistic feedback, elicitation, and explicit correction were the most effective types of feedback and affected learners performance greatly.Keywords: classroom interaction, corrective feedback, error treatment, oral performance
Procedia PDF Downloads 3363439 The Effects of Consistently Reading Whole Novels on the Reading Comprehension of Adolescents with Developmental Disabilities
Authors: Pierre Brocas, Konstantinos Rizos
Abstract:
This study was conducted to test the effects of introducing a consistent pace and volume of reading whole narratives on adolescents' reading comprehension with a diagnosis of autism spectrum disorder (ASD). The study was inspired by previous studies conducted on poorer adolescent readers in English schools. The setting was a Free Special Education Needs school in England. Nine male and one female student, between 11-13 years old, across two classrooms participated in the study. All students had a diagnosis of ASD, and all were classified as advanced learners. The classroom teachers introduced reading a whole challenging novel in 12 weeks with consistency as the independent variable. The study used a before-and-after design of testing the participants’ reading comprehension using standardised tests. The participants made a remarkable 1.8 years’ mean progress on the standardised tests of reading comprehension, with three participants making 4+ years progress. The researchers hypothesise that reading novels aloud and at a fast pace in each lesson, that are challenging but appropriate to the participants’ learning level, may have a beneficial effect on the reading comprehension of adolescents with learning difficulties, giving them a more engaged uninterrupted reading experience over a sustained period. However, more studies need to be conducted to test the independent variable across a bigger and more diverse population with a stronger design.Keywords: autism, reading comprehension, developmental disabilities, narratives
Procedia PDF Downloads 2033438 Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry
Authors: Dhanuj M. Gandikota
Abstract:
Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry.Keywords: deep learning, machine learning, satellite, photogrammetry, aerial laser scanning, terrestrial laser scanning, point cloud, fractal symmetry
Procedia PDF Downloads 1063437 Inclusion and Equity in Higher Education: Case of a Higher Education Institution in Portugal
Authors: Mariana Fernandes
Abstract:
Instituto Politécnico de Viana do Castelo (IPVC) has adopted a policy of inclusion and equity and the promotion of health and academic well-being, reinforcing measures already implemented in previous years, but also with the inclusion of new inclusion and equity policies that allow access, throughout all students, to Higher Education (ES). The Inclusive School project, the Plan for Equality, the IPVC's own Regulations for students with Special Educational Needs (SEN), and the support guaranteed by the Health and Wellbeing Office, Academic Services, and teaching staff are some of the examples of the varied strategies that IPVC undertakes to guarantee effective conditions so that students with disabilities can enter ES and experience a positive academic experience. This study's main objective is to reflect and disseminate the inclusion practices that IPVC practices with regard to Students with SEN. To this, a consultation and documentary analysis of internal documentation was carried out, consultation of the IPVC Quality Management System (QMS) process and, also, using the report referring to the ENEE questionnaire implemented in the year 2023, this report which presents the opinion of IPVC students with SEN, whether with support throughout the ENEE application submission process, with response deadlines, with the Individual Support Plan, as well as with physical and technological accessibility and communication. The results obtained show IPVC's effective commitment to this topic, in addition to the entire circuit created to guarantee equitable access for these students from the moment they join IPVC, a circuit that involves various human resources and( s) its sensitivity to this topic, it also promoted, through the Health and Wellbeing Office, the restructuring of the IPVC ENEE Regulation itself based on the needs and challenges felt in monitoring these students, the innovation of the services themselves of health and consequent awareness of all surrounding resources and services (from the Management, to the teaching staff and academic services). Currently, there is already an Individual Pedagogical Support Plan (PIAP), frequent meetings with the Reception Group, Psychology consultations – both clinically and educationally – and a growing concern in listening to the student community to improve the process. Based on these results, it is concluded that IPVC is an institution sensitive to promoting a positive, equitable, and, above all, inclusive higher education path.Keywords: special educational needs, inclusion, equity, equality
Procedia PDF Downloads 45