Search results for: optimum weight vector
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6406

Search results for: optimum weight vector

1426 Optimizing Nature Protection and Tourism in Urban Parks

Authors: Milena Lakicevic

Abstract:

The paper deals with the problem of optimizing management options for urban parks within different scenarios of nature protection and tourism importance. The procedure is demonstrated on a case study example of urban parks in Novi Sad (Serbia). Six management strategies for the selected area have been processed by the decision support method PROMETHEE. Two criteria used for the evaluation were nature protection and tourism and each of them has been divided into a set of indicators: for nature protection those were biodiversity and preservation of original landscape, while for tourism those were recreation potential, aesthetic values, accessibility and culture features. It was pre-assumed that each indicator in a set is equally important to a corresponding criterion. This way, the research was focused on a sensitivity analysis of criteria weights. In other words, weights of indicators were fixed and weights of criteria altered along the entire scale (from the value of 0 to the value of 1), and the assessment has been performed in two-dimensional surrounding. As a result, one could conclude which management strategy would be the most appropriate along with changing of criteria importance. The final ranking of management alternatives was followed up by investigating the mean PROMETHEE Φ values for all options considered and when altering the importance of nature protection/tourism. This type of analysis enabled detecting an alternative with a solid performance along the entire scale, i.e., regardlessly of criteria importance. That management strategy can be seen as a compromise solution when the weight of criteria is not defined. As a conclusion, it can be said that, in some cases, instead of having criteria importance fixed it is important to test the outputs depending on the different schemes of criteria weighting. The research demonstrates the state of the final decision when the decision maker can estimate criteria importance, but also in cases when the importance of criteria is not established or known.

Keywords: criteria weights, PROMETHEE, sensitivity analysis, urban parks

Procedia PDF Downloads 168
1425 Anti-Inflammatory, Analgesic and Antipyretic Activity of Terminalia arjuna Roxb. Extract in Animal Models

Authors: Linda Chularojmontri, Seewaboon Sireeratawong, Suvara Wattanapitayakul

Abstract:

Terminalia arjuna Roxb. (family Combretaceae) is commonly known as ‘Sa maw thet’ in Thai. The fruit is used in traditional medicine as natural mild laxatives, carminative and expectorant. Aim of the study: This research aims to study the anti-inflammatory, analgesic and antipyretic activities of Terminalia arjuna extract by using animal models in comparison to the reference drugs. Materials and Methods: The anti-inflammatory study was conducted by two experimental animal models namely ethyl phenylpropionate (EPP)-induced ear edema and carrageenan-induced paw edema. The study of analgesic activity used two methods of pain induction including acetic acid and heat-induced pain. In addition, the antipyretic activity study was performed by induced hyperthermia with yeast. Results: The results showed that the oral administration of Terminalia arjuna extract possessed acute anti-inflammatory effect in carrageenan-induced paw edema. Terminalia arjuna extract showed the analgesic activity in acetic acid-induced writhing response and heat-induced pain. This indicates its peripheral effect by inhibiting the biosynthesis and/or release of some pain mediators and some mechanism through Central nervous system. Moreover, Terminalia arjuna extract at the dose of 1000 and 1500 mg/kg body weight showed the antipyretic activity, which might be because of the inhibition of prostaglandins. Conclusion: The findings of this study indicated that the Terminalia arjuna extract possesses the anti-inflammatory, analgesic and antipyretic activities in animals.

Keywords: analgesic activity, anti-inflammatory activity, antipyretic activity, Terminalia arjuna extract

Procedia PDF Downloads 245
1424 The Research of the Relationship between Triathlon Competition Results with Physical Fitness Performance

Authors: Chen Chan Wei

Abstract:

The purpose of this study was to investigate the impact of swim 1500m, 10000m run, VO2 max, and body fat on Olympic distance triathlon competition performance. The subjects were thirteen college triathletes with endurance training, with an average age, height and weight of 20.61±1.04 years (mean ± SD), 171.76±8.54 cm and 65.32±8.14 kg respectively. All subjects were required to take the tests of swim 1500m, run 10000m, VO2 max, body fat, and participate in the Olympic distance triathlon competition. First, the swim 1500m test was taken in the standardized 50m pool, with a depth of 2m, and the 10000m run test on the standardized 400m track. After three days, VO2 max was tested with the MetaMax 3B and body fat was measured with the DEXA machine. After two weeks, all 13 subjects joined the Olympic distance triathlon competition at the 2016 New Taipei City Asian Cup. The relationships between swim 1500m, 10000m run, VO2 max, body fat test, and Olympic distance triathlon competition performance were evaluated using Pearson's product-moment correlation. The results show that 10000m run and body fat had a significant positive correlation with Olympic distance triathlon performance (r=.830, .768), but VO2 max has a significant negative correlation with Olympic distance triathlon performance (r=-.735). In conclusion, for improved non-draft Olympic distance triathlon performance, triathletes should focus on running than swimming training and can be measure VO2 max to prediction triathlon performance. Also, managing body fat can improve Olympic distance triathlon performance. In addition, swimming performance was not significantly correlated to Olympic distance triathlon performance, possibly because the 2016 New Taipei City Asian Cup age group was not a drafting competition. The swimming race is the shortest component of Olympic distance triathlons. Therefore, in a non-draft competition, swimming ability is not significantly correlated with overall performance.

Keywords: triathletes, olympic, non-drafting, correlation

Procedia PDF Downloads 234
1423 Micro-Nutrient Bio-Fortification in Sprouts Grown on Fortified Fiber Mats

Authors: J. Nyenhuis, J. Drelich

Abstract:

This research study was designed to determine if food crops could be bio-fortified with micro-nutrients by growing sprouts on mineral fortified fiber mats. Diets high in processed foods have been found to lack essential micro-nutrients for optimum human development and overall health. Some micro-nutrients such as copper (Cu) have been found to enhance the inflammatory response through its oxidative functions, thereby having a role in cardiovascular disease (CVD), metabolic syndrome (MetS), diabetes and related complications. Recycled cellulose fibers and clay saturated with micro-nutrient ions can be converted to a novel mineral-metal hybrid material in which the fiber mat becomes a carrier of essential micro-nutrients. The reduction of ionic to metallic copper was accomplished using hydrogen at temperatures ranging from 400o to 600oC. Copper particles with diameters ranging from ~1 to 400-500 nm reside on the recycled fibers that make up the mats. Seeds purchased from a commercial, organic supplier were germinated on the specially engineered cellulose fiber mats that incorporated w10 wt% clay fillers saturated with either copper particles or ionic copper. After the appearance of the first leaves, the sprouts were dehydrated and analyzed for Cu content. Nutrient analysis showed 1.5 to 1.6 increase in Cu of the sprouts grown on the fiber mats with copper particles, and 2.3 to 2.5 increase on mats with ionic copper as compared to the control samples. The antibacterial properties of materials saturated with copper ions at room temperature and at temperatures up to 400°C have been verified with halo method tests against Escherichia Coli in previous studies. E. coli is a known pathogenic risk in sprout production. Copper exhibits excellent antibacterial properties when tested on S. aureus, a pathogenic gram-positive bacterium. This has also been confirmed for the fiber-copper hybrid material in this study. This study illustrates the potential for the use of engineered mats as a viable way to increase the micro-nutrient composition of locally-grown food crops and the need for additional research to determine the uptake, nutritional implications and risks of micro-nutrient bio-fortification.

Keywords: bio-fortification, copper nutrient analysis, micro-nutrient uptake, sprouts and mineral-fortified mats

Procedia PDF Downloads 331
1422 Using Environmental Life Cycle Assessment to Design Sustainable Packaging

Authors: Timothy Francis Grant

Abstract:

There are conflicting purposes at play with the design of sustainable packaging which include material reduction, recycling compatibility, use of secondary content and performance of the package in protecting and delivering the product. Life Cycle Assessment (LCA) is able to evaluate these different strategies against environmental metrics such as climate change, land and water use and marine litter pollution. However, LCA has traditionally been too time consuming and expensive to be used effectively in packaging design process. To make LCA practical for packaging technologist and designers a simplified tool is needed to make LCA possible for non-environmental specialists. The Packaging Quick Evaluation Tool (PIQET) is a web-based solution for undertaking LCA of new and existing packaging designs considering the global supply chain and impacts from cradle to grave. PIQET is based on a pre-calculated LCA database covering the materials and processes involved in the packaging lifecycle from cradle to grave. This includes both virgin materials and recycled content, conversion of materials into packaging, and the transportation of packaging to the product filling. In addition, PIQET assesses the impacts once the package is filled looking at storage, transport and product loss through the supply chain. When applied to consumer packaging light weight packages which are note recyclable have lower impacts than more recyclable packages which have a higher mass. Its also apparent that for many products the impacts of product failure and product loss are more important environmentally compared to packaging material efficiency.

Keywords: Climate change, Life Cycle Assessment, Marine litter, Packaging sustainability

Procedia PDF Downloads 107
1421 Molecular Engineering of High-Performance Nanofiltration Membranes from Intrinsically Microporous Poly (Ether-Ether-Ketone)

Authors: Mahmoud A. Abdulhamid

Abstract:

Poly(ether-ether-ketone) (PEEK) has received increased attention due to its outstanding performance in different membrane applications including gas and liquid separation. However, it suffers from a semi-crystalline morphology, bad solubility and low porosity. To fabricate membranes from PEEK, the usage of harsh acid such as sulfuric acid is essential, regardless its hazardous properties. In this work, we report the molecular design of poly(ether-ether-ketones) (iPEEKs) with intrinsic porosity character, by incorporating kinked units into PEEK backbone such as spirobisindane, Tröger's base, and triptycene. The porous polymers were used to fabricate stable membranes for organic solvent nanofiltration application. To better understand the mechanism, we conducted molecular dynamics simulations to evaluate the possible interactions between the polymers and the solvents. Notable enhancement in separation performance was observed confirming the importance of molecular engineering of high-performance polymers. The iPEEKs demonstrated good solubility in polar aprotic solvents, a high surface area of 205–250 m² g⁻¹, and excellent thermal stability. Mechanically flexible nanofiltration membranes were prepared from N-methyl-2-pyrrolidone dope solution at iPEEK concentrations of 19–35 wt%. The molecular weight cutoff of the membranes was fine-tuned in the range of 450–845 g mol⁻¹ displaying 2–6 fold higher permeance (3.57–11.09 L m⁻² h⁻¹ bar⁻¹) than previous reports. The long-term stabilities were demonstrated by a 7 day continuous cross-flow filtration.

Keywords: molecular engineering, polymer synthesis, membrane fabrication, liquid separation

Procedia PDF Downloads 79
1420 The Effect of a 12 Week Rhythmic Movement Intervention on Selected Biomotor Abilities on Academy Rugby Players

Authors: Jocelyn Solomons, Kraak

Abstract:

Rhythmic movement, also referred to as “dance”, involves the execution of different motor skills as well as the integration and sequencing of actions between limbs, timing and spatial precision. The aim of this study was therefore to investigate and compare the effect of a 16-week rhythmic movement intervention on flexibility, dynamic balance, agility, power and local muscular endurance of academy rugby players in the Western Cape, according to positional groups. Players (N ¼ 54) (age 18.66 0.81 years; height 1.76 0.69 cm; weight 76.77 10.69 kg), were randomly divided into a treatment-control [TCA] (n ¼ 28) and a control-treatment [CTB] (n ¼ 26) group. In this crossover experimental design, the interaction effect of the treatment order and the treatment time between the TCA and CTB group, was determined. Results indicated a statistically significant improvement (p < 0.05) in agility2 (p ¼ 0.06), power2 (p ¼ 0.05), local muscular endurance1 (p ¼ 0.01) & 3 (p ¼ 0.01) and dynamic balance (p < 0.01). Likewise, forwards and backs also showed statistically significant improvements (p < 0.05) per positional groups. Therefore, a rhythmic movement intervention has the potential to improve rugby-specific bio-motor skills and furthermore, improve positional specific skills should it be designed with positional groups in mind. Future studies should investigate, not only the effect of rhythmic movement on improving specific rugby bio-motor skills, but the potential of its application as an alternative training method during off- season (or detraining phases) or as a recovery method.

Keywords: agility, dance, dynamic balance, flexibility, local muscular endurance, power, training

Procedia PDF Downloads 43
1419 Compaction of Municipal Solid Waste

Authors: Jovana Jankovic Pantic, Dragoslav Rakic, Tina Djuric, Irena Basaric Ikodinovic, Snezana Bogdanovic

Abstract:

Regardless of the numerous activities undertaken to reduce municipal solid waste, its annual volumes continue to grow. In Serbia, the most common and the only one form of waste disposal is at municipal landfills with daily compaction and soil covering. Municipal waste compacting is one of the basic components of the disposal process. Well compacted waste takes up less volume and allows much safer storage. In order to better predict the behavior of municipal waste at landfills, it is necessary to define compaction parameters: the maximum dry unit weight and optimal moisture content. In current geotechnical practice, the most common method of determination compaction parameters is by the standard method (Proctor compaction test) used in soil mechanics, with an eventual reduction of compaction energy. Although this methodology is accepted in newer geotechnical scientific discipline "waste mechanics", different treatments of municipal waste at the landfill itself (including pretreatment), indicate the need to change this classical approach. The main reason for that is the simulation of the operation of compactors (hedgehogs) at the landfill. Therefore, during the research, various innovative solutions are introduced, such as changing the classic flat Proctor hammer, by adding spikes, whose function is, in addition to compaction, destruction and shredding of municipal waste. The paper presents the behavior of municipal waste for four synthetic waste samples with different waste compositions (Plandište landfill). The samples were tested in standard Proctor apparatus at the same compaction energy, but with two different hammers: standard flat hammer and hammer with spikes.

Keywords: compaction, hammer with spikes, landfill, municipal solid waste, proctor compaction test

Procedia PDF Downloads 203
1418 Effect of Plant Growth Regulator on Vegetative Growth and Yield Components of Winter Wheat under Different Levels of Irrigation

Authors: Mohammed Ahmed Alghamdi

Abstract:

Field experiment were carried out to investigate the effect of the plant growth regulator on vegetative growth and yield components of reduced height isogenic lines of the wheat (Triticum aestivum L.) cultivar Mercia. The Field experiment compared the growth regulator response of seven isogenic lines of Mercia. Growth regulators reduced plant height significantly in all lines. Growth regulator decreased total dry matter and grain yield with greatest reduction generally for the control and Rht8 lines. Rht1 was the least affected. There were few significant effects of growth regulator on gas exchange and chlorophyll fluorescence but the trend was for greater values with growth regulator. In this field experiment, a rate of 2.0 l ha-1 applied just before the third node detectable stage under non water stressed and water stressed conditions gave slight increases in yield of up to 14% except for line Rht10 which increased significantly in non-stressed conditions. In the second glasshouse experiment, a rate of 2.5 l ha-1 applied at the start of stem elongation under 30% FC and 100% FC gave reductions in yield up to 16% for the growth regulator and 55% under water stress. In the field experiment, rates of 2.5 and 3.0 l ha-1 applied at the start of stem elongation gave reductions in yield up to 20% mainly through individual seed weight. In the final glasshouse experiment, rates of 2.5 and 3.0 l ha-1 applied at 6 leaves unfolded and 1st node detectable both reduced grain yield.

Keywords: growth regulator, irrigation, isogenic lines, yield, winter wheat

Procedia PDF Downloads 437
1417 Diversification of Indonesian Terasi Shrimp (Acetes indicus) Powder as Alternative and Sustainable Food for the Double Burden of Malnutrition

Authors: Galuh Asri Bestari, Hajar Shofiyya

Abstract:

Double burden of malnutrition (DBM) has been a global problem in these last decades occurs in both developed and developing countries. Overweight in adults and stunting among preschool children have dramatically increased and become the main problems of malnutrition that should be solved immediately since they are directly related with the health status and productivity. Reformulation of food product by using the local sea resources called terasi shrimp (Acetes indicus) has a potential possibility in facing the DBM. A study was carried out in Indonesia to determine the acceptability of terasi shrimp powder through sensory evaluation. Terasi shrimps were processed into powder form through sun drying and pounding methods. The powder form was directly added in food as alternative seasonings and tested among stunted and normal preschool children. Meanwhile, a further processing method is given to the shrimp powder tested in overweight and normal-weighed adults. The shrimp powder was mixed with sago flour and formed into balls, then steamed for 15-20 minutes, and finally served as alternative snacks. Based on the sensory evaluation, the shrimp powder has a good acceptance in taste (54%), shape (60%), and color properties (63%), while the shrimp balls has a good acceptance in size (65%), shape (50%), color (48%), taste (40%), and texture (36%). Terasi shrimp powder can be stored for a month in room temperature. In addition, carried out chemical analysis revealed that terasi shrimp (Acetes indicus) has higher percentage of protein, calcium, and iron than other animal sources, but conversely contains zero sodium and very low percentage of fat. Terasi shrimp’s shell also contains a substance called chitosan which acts by forming gels in the intestinal tract to entrap lipids, thus interfering with their absorption. After going through some processing methods, the shrimp powder and balls did not show any significant changes in their nutrient contents. So that, terasi shrimp powder is good to be consumed not only by overweight adults, but also by children to support their optimum growth. Intervention of terasi shrimp powder should be implemented step by step from national up to global governance program to face the DBM.

Keywords: Acetes indicus, alternative food, double burden of malnutrition, sensory evaluation

Procedia PDF Downloads 283
1416 Iron Catalyst for Decomposition of Methane: Influence of Al/Si Ratio Support

Authors: A. S. Al-Fatesh, A. A. Ibrahim, A. M. AlSharekh, F. S. Alqahtani, S. O. Kasim, A. H. Fakeeha

Abstract:

Hydrogen is the expected future fuel since it produces energy without any pollution. It can be used as a fuel directly or through the fuel cell. It is also used in chemical and petrochemical industry as reducing agent or in hydrogenation processes. It is produced by different methods such as reforming of hydrocarbon, electrolytic method and methane decomposition. The objective of the present paper is to study the decomposition of methane reaction at 700°C and 800°C. The catalysts were prepared via impregnation method using 20%Fe and different proportions of combined alumina and silica support using the following ratios [100%, 90%, 80%, and 0% Al₂O₃/SiO₂]. The prepared catalysts were calcined and activated at 600 OC and 500 OC respectively. The reaction was carried out in fixed bed reactor at atmospheric pressure using 0.3g of catalyst and feed gas ratio of 1.5/1 CH₄/N₂ with a total flow rate 25 mL/min. Catalyst characterizations (TPR, TGA, BET, XRD, etc.) have been employed to study the behavior of catalysts before and after the reaction. Moreover, a brief description of the weight loss and the CH₄ conversions versus time on stream relating the different support ratios over 20%Fe/Al₂O₃/SiO₂ catalysts has been added as well. The results of TGA analysis provided higher weights losses for catalysts operated at 700°C than 800°C. For the 90% Al₂O₃/SiO₂, the activity decreases with the time on stream using 800°C reaction temperature from 73.9% initial CH₄ conversion to 46.3% for a period of 300min, whereas the activity for the same catalyst increases from 47.1% to 64.8% when 700°C reaction temperature is employed. Likewise, for 80% Al₂O₃/SiO₂ the trend of activity is similar to that of 90% Al₂O₃/SiO₂ but with a different rate of activity variation. It can be inferred from the activity results that the ratio of Al₂O₃ to SiO₂ is crucial and it is directly proportional with the activity. Whenever the Al/Si ratio decreases the activity declines. Indeed, the CH₄ conversion of 100% SiO₂ support was less than 5%.

Keywords: Al₂O₃, SiO₂, CH₄ decomposition, hydrogen, iron

Procedia PDF Downloads 161
1415 Coupled Effect of Pulsed Current and Stress State on Fracture Behavior of Ultrathin Superalloy Sheet

Authors: Shuangxin Wu

Abstract:

Superalloy ultra-thin-walled components occupy a considerable proportion of aero engines and play an increasingly important role in structural weight reduction and performance improvement. To solve problems such as high deformation resistance and poor formability at room temperature, the introduction of pulse current in the processing process can improve the plasticity of metal materials, but the influence mechanism of pulse current on the forming limit of superalloy ultra-thin sheet is not clear, which is of great significance for determining the material processing window and improving the micro-forming process. The effect of pulse current on the microstructure evolution of superalloy thin plates was observed by optical microscopy (OM) and X-ray diffraction topography (XRT) by applying pulse current to GH3039 with a thickness of 0.2mm under plane strain and uniaxial tensile states. Compared with the specimen without pulse current applied at the same temperature, the internal void volume fraction is significantly reduced, reflecting the non-thermal effect of pulse current on the growth of micro-pores. ED (electrically deforming) specimens have larger and deeper dimples, but the elongation is not significantly improved because the pulse current promotes the void coalescence process, resulting in material fracture. The electro-plastic phenomenon is more obvious in the plane strain state, which is closely related to the effect of stress triaxial degree on the void evolution under pulsed current.

Keywords: pulse current, superalloy, ductile fracture, void damage

Procedia PDF Downloads 44
1414 Effect of Zirconium (Zr) Amount on Mechanical and Metallurgical Behavior of ZE41A Magnesium Alloy

Authors: Emrah Yaliniz, Ali Kalkanli

Abstract:

ZE41A magnesium alloy has been extensively used in aerospace industry, especially for use in rotorcraft transmission casings. Due to the improved mechanical properties, the latest generation of magnesium casting alloy EV31A-T6 (Elektron 21® specified in AMS 4429) is seen as a potential replacement for ZE41A in terms of strength. Therefore, the necessity of enhancement has been arisen for ZE41A in order to avoid fully replacement. The main element affecting the strength of ZE41A is Zirconium (Zr), which acts as a grain refiner. The specified range of Zr element for ZE41A alloy is between 0.4 wt % and 1.0 wt % (unless otherwise stated by weight percentage after this point) as stated in AMS 4439. This paper investigates the effects of Zr amount on tensile and metallurgical properties of ZE41A magnesium alloy. The Zr alloying amount for the research has been chosen as 0.5 % and 1 %, which are standard amounts in a commercial alloy (average of 0.4-0.6%) and maximum percent in the standard, separately. 1 % Zr amount has been achieved via Zirmax (66.7 Mg-33.3 Zr) master alloy addition. The ultimate tensile strength of ZE41A with 1% Zr has been increased up to about 220-225 MPa in comparison to 200 MPa given in AMS 4439. The reason for the increase in strength with the addition of Zirmax is based on the decrease in grain size, which was measured about 30 µm. Optical microscope, scanning electron microscopy (SEM) and X-ray Diffraction (XRD) were used to detect the change in the microstructural futures via alloying. The zirconium rich coring at the center of the grains was observed in addition to the grain boundary intermetallic phases and bulk Mg-rich matrix. The solidification characteristics were also identified by using the cooling curve obtained from the sand casting mold during cooling of the alloys.

Keywords: aerospace, grain refinement, magnesium, sand casting, ZE41A

Procedia PDF Downloads 295
1413 Knowledge of Quality Assurance and Quality Control in Mammography; A Study among Radiographers of Mammography Settings in Sri Lanka

Authors: H. S. Niroshani, W. M. Ediri Arachchi, R. Tudugala, U. J. M. A. L. Jayasinghe, U. M. U. J. Jayasekara, P. B. Hewavithana

Abstract:

Mammography is used as a screening tool for early diagnosis of breast cancer. It is also useful in refining the diagnosis of breast cancer either by assessment or work up after a suspicious area in the breast has been detected. In order to detect breast cancer accurately and at the earliest possible stage, the image must have an optimum contrast to reveal mass densities and spiculated fibrous structures radiating from them. In addition, the spatial resolution must be adequate to reveal the suffusion of micro calcifications and their shape. The above factors can be optimized by implementing an effective QA programme to enhance the accurate diagnosis of mammographic imaging. Therefore, the radiographer’s knowledge on QA is greatly instrumental in routine mammographic practice. The aim of this study was to assess the radiographer’s knowledge on Quality Assurance and Quality Control programmes in relation to mammographic procedures. A cross-sectional study was carried out among all radiographers working in each mammography setting in Sri Lanka. Pre-tested, anonymous self-administered questionnaires were circulated among the study population and duly filled questionnaires returned within a period of three months were taken into the account. The data on demographical information, knowledge on QA programme and associated QC tests, overall knowledge on QA and QC programmes were obtained. Data analysis was performed using IBM SPSS statistical software (version 20.0). The total response rate was 59.6% and the average knowledge score was 54.15±11.29 SD out of 100. Knowledge was compared on the basis of education level, special training of mammography, and the years of working experience in a mammographic setting of the individuals. Out of 31 subjects, 64.5% (n=20) were graduate radiographers and 35.5% (n=11) were diploma holders while 83.9% (n=26) of radiographers have been specially trained for mammography and 16.1% (n=5) have not been attended for any special training for mammography. It is also noted that 58.1% (n=18) of individuals possessed their experience of less than one year and rest 41.9% (n=13) of them were greater than that. Further, the results found that there is a significant difference (P < 0.05) in the knowledge of QA and overall knowledge on QA and QC programme in the categories of education level and working experience. Also, results imply that there was a significant difference (P < 0.05) in the knowledge of QC test among the groups of trained and non-trained radiographers. This study reveals that education level, working experience and the training obtained particularly in the field of mammography have a significant impact on their knowledge on QA and QC in mammography.

Keywords: knowledge, mammography, quality assurance, quality control

Procedia PDF Downloads 318
1412 Experimental Study of Al₂O₃ and SiC Nano Particles on Tensile Strength of Al 1100 Sheet Produced by Accumulative Press Bonding Process

Authors: M. Zadshakoyan, H. Marassem Bonab, P. M. Keshtiban

Abstract:

The SPD process widely used to optimize microstructure, strength and mechanical properties of the metals. Processes such as ARB and APB could have a considerable impact on improving the properties of metals. The aluminum material after steel, known as the most used metal, Because of its low strength, there are restrictions on the use of this metal, it is required to spread further studies to increase strength and improve the mechanical properties of this light weight metal. In this study, Annealed aluminum material, with yield strength of 85 MPa and tensile strength of 124 MPa, sliced into 2 sheets with dimensions of 30 and 25 mm and the thickness of 1.5 mm. then the sheets press bonded under 6 cycles, which increased the ultimate strength to 281 MPa. In addition, by adding 0.1%Wt of SiC particles to interface of the sheets, the sheets press bonded by 6 cycles to achieve a homogeneous composite. The same operation using Al2O3 particles and a mixture of SiC+Al2O3 particles was repeated and the amount of strength and elongation of produced composites compared with each other and with pure 6 cycle press bonded Aluminum. The results indicated that the ultimate strength of Al/SiC composite was 2.6 times greater than Annealed aluminum. And Al/Al2O3 and Al/Al2O3+SiC samples were low strength than Al/SiC sample. The pure 6 time press bonded Aluminum had lowest strength by 2.2 times greater than annealed aluminum. Strength of aluminum was increased by making the metal matrix composite. Also, it was found that the hardness of pure Aluminum increased 1.7 times after 6 cycles of APB process, hardness of the composite samples improved further, so that, the hardness of Al/SiC increased up to 2.51 times greater than annealed aluminum.

Keywords: APB, nano composite, nano particles, severe plastic deformation

Procedia PDF Downloads 276
1411 Physical Fitness Evaluation of Physical Education Teachers in Maktab Rendah Sains MARA (MRSM)

Authors: Mohamad Nizam Asmuni, Ahmad Naszeri Salleh, Yunus Adam, Azhar Yaacob, Mohd Hafiz Rosli, Muhamad Nazrul Hakim Abdullah

Abstract:

Physical Education teacher at the school should have good physical fitness to educate and guide students in the school. Currently, there are no standards for the level of physical fitness for teachers who teaches physical education at the school. Therefore, this research is to determine the level of physical fitness of teacher of Physical Education at Maktab Rendah Sains MARA (MRSM). A total of 28 samples (18 men and 10 women, age 33 ± 4.91), teachers of physical education at MRSM, were randomly selected to participate in this study. Height, weight, body fat percentage, body mass index (BMI) and other physical testing are measured and recorded. The results showed that the average of body mass index (BMI) for teachers of Physical Education is 25.9 ± 4:57. Body mass index (BMI) of teachers can be categorized as pre-obese based on World Health Organization (WHO) guidelines. Body fat percentage for male (age; 34.3 ± 5.13) and female (age; 30.9 ± 3.81) teachers is 24.7% ± 6.54 and 30.6% ± 6.28, respectively. Male teachers were categorized as overfat, however, female teachers were categorized as healthy based on body fat ranges for standard adults at NY Obesity Research Center. Bleep test results show that the average Bleep test is level 4 and shuttle 2; average VO2max was 27.5 ± 5.94 L/min. Physical fitness and performance of physical education teachers at MRSM is much lower compared to the rugby junior athlete in University Putra Malaysia (UPM). Therefore, physical fitness of teachers must be improved to ensure the physical education classes at MRSM could be done better.

Keywords: physical fitness, BMI, bleep test, obesity

Procedia PDF Downloads 349
1410 Evaluation of Fracture Resistance and Moisture Damage of Hot Mix Asphalt Using Plastic Coated Aggregates

Authors: Malleshappa Japagal, Srinivas Chitragar

Abstract:

The use of waste plastic in pavement is becoming important alternative worldwide for disposal of plastic as well as to improve the stability of pavement and to meet out environmental issues. However, there are still concerns on fatigue and fracture resistance of Hot Mix Asphalt with the addition of plastic waste, (HMA-Plastic mixes) and moisture damage potential. The present study was undertaken to evaluate fracture resistance of HMA-Plastic mixes using semi-circular bending (SCB) test and moisture damage potential by Indirect Tensile strength (ITS) test using retained tensile strength (TSR). In this study, a dense graded asphalt mix with 19 mm nominal maximum aggregate size was designed in the laboratory using Marshall Mix design method. Aggregates were coated with different percentages of waste plastic (0%, 2%, 3% and 4%) by weight of aggregate and performance evaluation of fracture resistance and Moisture damage was carried out. The following parameters were estimated for the mixes: J-Integral or Jc, strain energy at failure, peak load at failure, and deformation at failure. It was found that the strain energy and peak load of all the mixes decrease with an increase in notch depth, indicating that increased percentage of plastic waste gave better fracture resistance. The moisture damage potential was evaluated by Tensile strength ratio (TSR). The experimental results shown increased TRS value up to 3% addition of waste plastic in HMA mix which gives better performance hence the use of waste plastic in road construction is favorable.

Keywords: hot mix asphalt, semi circular bending, marshall mix design, tensile strength ratio

Procedia PDF Downloads 283
1409 Effects of the Different Recovery Durations on Some Physiological Parameters during 3 X 3 Small-Sided Games in Soccer

Authors: Samet Aktaş, Nurtekin Erkmen, Faruk Guven, Halil Taskin

Abstract:

This study aimed to determine the effects of 3 versus 3 small-sided games (SSG) with different recovery times on soma physiological parameters in soccer players. Twelve soccer players from Regional Amateur League volunteered for this study (mean±SD age, 20.50±2.43 years; height, 177.73±4.13 cm; weight, 70.83±8.38 kg). Subjects were performing soccer training for five days per week. The protocol of the study was approved by the local ethic committee in School of Physical Education and Sport, Selcuk University. The subjects were divided into teams with 3 players according to Yo-Yo Intermittent Recovery Test. The field dimension was 26 m wide and 34 m in length. Subjects performed two times in a random order a series of 3 bouts of 3-a-side SSGs with 3 min and 5 min recovery durations. In SSGs, each set were performed with 6 min duration. The percent of maximal heart rate (% HRmax), blood lactate concentration (LA) and Rated Perceived Exertion (RPE) scale points were collected before the SSGs and at the end of each set. Data were analyzed by analysis of variance (ANOVA) with repeated measures. Significant differences were found between %HRmax in before SSG and 1st set, 2nd set, and 3rd set in both SSG with 3 min recovery duration and SSG with 5 min recovery duration (p<0.05). Means of %HRmax in SSG with 3 min recovery duration at both 1st and 2nd sets were significantly higher than SSG with 5 min recovery duration (p<0.05). No significant difference was found between sets of either SSGs in terms of LA (p>0.05). LA in SSG with 3 min recovery duration was higher than SSG with 5 min recovery duration at 2nd sets (p<0.05). RPE in soccer players was not different between SSGs (p>0.05).In conclusion, this study demonstrates that exercise intensity in SSG with 3 min recovery durations is higher than SSG with 5 min recovery durations.

Keywords: small-sided games, soccer, heart rate, lactate

Procedia PDF Downloads 439
1408 Extracting Terrain Points from Airborne Laser Scanning Data in Densely Forested Areas

Authors: Ziad Abdeldayem, Jakub Markiewicz, Kunal Kansara, Laura Edwards

Abstract:

Airborne Laser Scanning (ALS) is one of the main technologies for generating high-resolution digital terrain models (DTMs). DTMs are crucial to several applications, such as topographic mapping, flood zone delineation, geographic information systems (GIS), hydrological modelling, spatial analysis, etc. Laser scanning system generates irregularly spaced three-dimensional cloud of points. Raw ALS data are mainly ground points (that represent the bare earth) and non-ground points (that represent buildings, trees, cars, etc.). Removing all the non-ground points from the raw data is referred to as filtering. Filtering heavily forested areas is considered a difficult and challenging task as the canopy stops laser pulses from reaching the terrain surface. This research presents an approach for removing non-ground points from raw ALS data in densely forested areas. Smoothing splines are exploited to interpolate and fit the noisy ALS data. The presented filter utilizes a weight function to allocate weights for each point of the data. Furthermore, unlike most of the methods, the presented filtering algorithm is designed to be automatic. Three different forested areas in the United Kingdom are used to assess the performance of the algorithm. The results show that the generated DTMs from the filtered data are accurate (when compared against reference terrain data) and the performance of the method is stable for all the heavily forested data samples. The average root mean square error (RMSE) value is 0.35 m.

Keywords: airborne laser scanning, digital terrain models, filtering, forested areas

Procedia PDF Downloads 125
1407 Improve of Biomass Properties through Torrefaction Process

Authors: Malgorzata Walkowiak, Magdalena Witczak, Wojciech Cichy

Abstract:

Biomass is an important renewable energy source in Poland. As a biofuel, it has many advantages like renewable in noticeable time and relatively high energy potential. But disadvantages of biomass like high moisture content and hygroscopic nature causes that gaining, transport, storage and preparation for combustion become troublesome and uneconomic. Thermal modification of biomass can improve hydrophobic properties, increase its calorific value and natural resistance. This form of thermal processing is known as torrefaction. The aim of the study was to investigate the effect of the pre-heat treatment of wood and plant lignocellulosic raw materials on the properties of solid biofuels. The preliminary studies included pine, beech and willow wood and other lignocellulosic raw materials: mustard, hemp, grass stems, tobacco stalks, sunflower husks, Miscanthus straw, rape straw, cereal straw, Virginia Mallow straw, rapeseed meal. Torrefaction was carried out using variable temperatures and time of the process, depending on the material used. It was specified the weight loss and the ash content and calorific value was determined. It was found that the thermal treatment of the tested lignocellulosic raw materials is able to provide solid biofuel with improved properties. In the woody materials, the increase of the lower heating value was in the range of 0,3 MJ/kg (pine and beech) to 1,1 MJ/kg (willow), in non-woody materials – from 0,5 MJ/kg (tobacco stalks, Miscanthus) to 3,5 MJ/kg (rapeseed meal). The obtained results indicate for further research needs, particularly in terms of conditions of the torrefaction process.

Keywords: biomass, lignocellulosic materials, solid biofuels, torrefaction

Procedia PDF Downloads 217
1406 Green Concrete for Sustainable Indonesia Structures: Lightweight Concrete Using Oil Palm Shell as Coarse Aggregate with Superplasticizer and Fly Ash

Authors: Feny Acelia Silaban

Abstract:

The development of Indonesia’s infrastructure in many islands is significantly increased through the years. Based on this condition, concrete materials which are extracted from natural resources are over exploited and slowly becoming rare, thus the demand for alternative materials becomes so urgently crucial. Oil Palm is one of the biggest commodities in Indonesia with the total amount of 31 million tons in the last 2014. The production of palm oil also generates lots of solid wastes in the form of Oil Palm Shell (OPS). Constructing more environmentally sustainable structures can be achieved by producing lightweight concrete using the Oil Palm Shell (OPS). This paper investigated the effects of OPS and combination of Superplasticizer and fly ash proportion of lightweight concrete mix design to the compressive strength, flexure strength, modulus of elasticity, shrinkage behavior, and water absorption. The Oil Palm Shell had undergone special treatment by washing it with hot water and soap to reduce the oil content. This experiment used four different proportions of Superplasticizer with fly ash and 30 % OPS proportion from the weight of total compositions mixture by the result of trial mix. The experiment result showed that using OPS coarse aggregates and Superplasticizer with fly ash, the average of 28-day compressive strength reached 30-35 MPa. The highest 28-day compressive strength comes from 1.2 % Superplasticizer with 5 % fly ash proportion samples with the strength by 33 MPa. The sample with proportion of 1 % Superplasticizer and 7.5 % fly ash has the highest shrinkage value compared to other proportions. The characteristic of OPS as coarse aggregates is in a standard range of natural coarse aggregates. In general, this lightweight concrete using OPS coarse aggregate and Superplasticizer has high potential to be green-structural lightweight concrete alternative in Indonesia.

Keywords: lightweight concrete, oil palm shell, waste materials, superplasticizer

Procedia PDF Downloads 234
1405 Growth and Yield Assessment of Two Types of Sorghum-Sudangrass Hybrids as Affected by Deficit Irrigation

Authors: A. Abbas Khalaf, L. Issazadeh, Z. Arif Abdullah, J. Hassanpour

Abstract:

In order to evaluate the growth and yield properties of two Sorghum-Sudangrass hybrids under different irrigation levels, an investigation was done in the experiment site of Collage of Agriculture, University of Duhok, Kurdistan region of Iraq (36°5´38 N, 42°52´02 E) in the years 2015-16. The experiment was conducted under Randomized Complete Block Design (RCBD) with three replications, which main factor was irrigation treatments (I100, I75 and I50) according to evaporation pan class A and type of Sorghum-Sudangrass hybrids (KH12SU9001, G1) and (KH12SU9002, G2) were factors of subplots. The parameters studied were: plant height (cm), number of green leaves per plant; leaf area (m2/m2), stem thickness (mm), percent of protein, fresh and dry biomass (ton.ha-1) and also crop water productivity. The results of variance analysis showed that KH12SU9001 variety had more amount of leaf area, percent of protein, fresh and dry biomass yield in comparison to KH12SU9002 variety. By comparing effects of irrigation levels on vegetative growth and yield properties, results showed that amount of plant height, fresh and dry biomass weight was decreased by decreasing irrigation level from full irrigation regime to 5 o% of irrigation level. Also, results of crop water productivity (CWP) indicated that improvement in quantity of irrigation would impact fresh and dry biomass yield significantly. Full irrigation regime was recorded the highest level of CWP (1.28-1.29 kg.m-3).

Keywords: deficit irrigation, growth, sorghum-sudangrass hybrid, yield

Procedia PDF Downloads 116
1404 Railway Transport as a Potential Source of Polychlorinated Biphenyls in Soil

Authors: Nataša Stojić, Mira Pucarević, Nebojša Ralević, Vojislava Bursić, Gordan Stojić

Abstract:

Surface soil (0 – 10 cm) samples from 52 sampling sites along the length of railway tracks on the territory of Srem (the western part of the Autonomous Province of Vojvodina, itself part of Serbia) were collected and analyzed for 7 polychlorinated biphenyls (PCBs) in order to see how the distance from the railroad on the one hand and dump on the other hand, affect the concentration of PCBs (CPCBs) in the soil. Samples were taken at a distance of 0.03 to 4.19 km from the railway and 0.43 to 3.35 km from the landfills. For the soil extraction the Soxhlet extraction (USEPA 3540S) was used. The extracts were purified on a silica-gel column (USEPA 3630C). The analysis of the extracts was performed by gas chromatography with tandem mass spectrometry. PCBs were not detected only at two locations. Mean total concentration of PCBs for all other sampling locations was 0,0043 ppm dry weight (dw) with a range of 0,0005 to 0,0227 ppm dw. On the part of the data that were interesting for this research with statistical methods (PCA) were isolated factors that affect the concentration of PCBs. Data were also analyzed using the Pearson's chi-squared test which showed that the hypothesis of independence of CPCBs and distance from the railway can be rejected. Hypothesis of independence between CPCB and the percentage of humus in the soil can also be rejected, in contrast to dependence of CPCB and the distance from the landfill where the hypothesis of independence cannot be rejected. Based on these results can be said that railway transport is a potential source of PCBs. The next step in this research is to establish the position of transformers which are located near sampling sites as another important factor that affects the concentration of PCBs in the soil.

Keywords: GC/MS, landfill, PCB, railway, soil

Procedia PDF Downloads 309
1403 Enhancing Large Language Models' Data Analysis Capability with Planning-and-Execution and Code Generation Agents: A Use Case for Southeast Asia Real Estate Market Analytics

Authors: Kien Vu, Jien Min Soh, Mohamed Jahangir Abubacker, Piyawut Pattamanon, Soojin Lee, Suvro Banerjee

Abstract:

Recent advances in Generative Artificial Intelligence (GenAI), in particular Large Language Models (LLMs) have shown promise to disrupt multiple industries at scale. However, LLMs also present unique challenges, notably, these so-called "hallucination" which is the generation of outputs that are not grounded in the input data that hinders its adoption into production. Common practice to mitigate hallucination problem is utilizing Retrieval Agmented Generation (RAG) system to ground LLMs'response to ground truth. RAG converts the grounding documents into embeddings, retrieve the relevant parts with vector similarity between user's query and documents, then generates a response that is not only based on its pre-trained knowledge but also on the specific information from the retrieved documents. However, the RAG system is not suitable for tabular data and subsequent data analysis tasks due to multiple reasons such as information loss, data format, and retrieval mechanism. In this study, we have explored a novel methodology that combines planning-and-execution and code generation agents to enhance LLMs' data analysis capabilities. The approach enables LLMs to autonomously dissect a complex analytical task into simpler sub-tasks and requirements, then convert them into executable segments of code. In the final step, it generates the complete response from output of the executed code. When deployed beta version on DataSense, the property insight tool of PropertyGuru, the approach yielded promising results, as it was able to provide market insights and data visualization needs with high accuracy and extensive coverage by abstracting the complexities for real-estate agents and developers from non-programming background. In essence, the methodology not only refines the analytical process but also serves as a strategic tool for real estate professionals, aiding in market understanding and enhancement without the need for programming skills. The implication extends beyond immediate analytics, paving the way for a new era in the real estate industry characterized by efficiency and advanced data utilization.

Keywords: large language model, reasoning, planning and execution, code generation, natural language processing, prompt engineering, data analysis, real estate, data sense, PropertyGuru

Procedia PDF Downloads 52
1402 Life Cycle Assessment Comparison between Methanol and Ethanol Feedstock for the Biodiesel from Soybean Oil

Authors: Pawit Tangviroon, Apichit Svang-Ariyaskul

Abstract:

As the limited availability of petroleum-based fuel has been a major concern, biodiesel is one of the most attractive alternative fuels because it is renewable and it also has advantages over the conventional petroleum-base diesel. At Present, productions of biodiesel generally perform by transesterification of vegetable oils with low molecular weight alcohol, mainly methanol, using chemical catalysts. Methanol is petrochemical product that makes biodiesel producing from methanol to be not pure renewable energy source. Therefore, ethanol as a product produced by fermentation processes. It appears as a potential feed stock that makes biodiesel to be pure renewable alternative fuel. The research is conducted based on two biodiesel production processes by reacting soybean oils with methanol and ethanol. Life cycle assessment was carried out in order to evaluate the environmental impacts and to identify the process alternative. Nine mid-point impact categories are investigated. The results indicate that better performance on Abiotic Depletion Potential (ADP) and Acidification Potential (AP) are observed in biodiesel production from methanol when compared with biodiesel production from ethanol due to less energy consumption during the production processes. Except for ADP and AP, using methanol as feed stock does not show any advantages over biodiesel from ethanol. The single score method is also included in this study in order to identify the best option between two processes of biodiesel production. The global normalization and weighting factor based on eco-taxes are used and it shows that producing biodiesel form ethanol has less environmental load compare to biodiesel from methanol.

Keywords: biodiesel, ethanol, life cycle assessment, methanol, soybean oil

Procedia PDF Downloads 194
1401 Molecular Dynamics Studies of Main Factors Affecting Mass Transport Phenomena on Cathode of Polymer Electrolyte Membrane Fuel Cell

Authors: Jingjing Huang, Nengwei Li, Guanghua Wei, Jiabin You, Chao Wang, Junliang Zhang

Abstract:

In this work, molecular dynamics (MD) simulation is applied to analyze the mass transport process in the cathode of proton exchange membrane fuel cell (PEMFC), of which all types of molecules situated in the cathode is considered. a reasonable and effective MD simulation process is provided, and models were built and compared using both Materials Studio and LAMMPS. The mass transport is one of the key issues in the study of proton exchange membrane fuel cells (PEMFCs). In this report, molecular dynamics (MD) simulation is applied to analyze the influence of Nafion ionomer distribution and Pt nano-particle size on mass transport process in the cathode. It is indicated by the diffusion coefficients calculation that a larger quantity of Nafion, as well as a higher equivalent weight (EW) value, will hinder the transport of oxygen. In addition, medium-sized Pt nano-particles (1.5~2nm) are more advantageous in terms of proton transport compared with other particle sizes (0.94~2.55nm) when the center-to-center distance between two Pt nano-particles is around 5 nm. Then mass transport channels are found to be formed between the hydrophobic backbone and the hydrophilic side chains of Nafion ionomer according to the radial distribution function (RDF) curves. And the morphology of these channels affected by the Pt size is believed to influence the transport of hydronium ions and, consequently the performance of PEMFC.

Keywords: cathode catalytic layer, mass transport, molecular dynamics, proton exchange membrane fuel cell

Procedia PDF Downloads 196
1400 Eight-Week Exercise for Women: Impact on Anomalies in Width Depth and Environmental Dimension

Authors: Yalcin Kaya, Fatma Arslan, Ahmet Selim Kaya

Abstract:

This study aimed to determine the undesirable hypertrophic anomalies in the body of females and to investigate how they can be affected by the exercise program according to the applied 8 week individual conditions. The research was carried out on 35 women who did not have any regular previous sports practice and had an approximate age of 30 ± 5.0 at the gymnasium because of their asymmetric structure and weight gain of the body. Measurements of width, depth, and periphery were taken from the participants' body, and the exercise protocol was applied for 8 weeks according to the individual measurements in accordance with the obtained measurements. After 8 weeks, the same measurements were applied again. Measurements were made by using ruler and paper tape. The findings were evaluated and differences were analyzed by paired sample t test. According to the findings obtained, ulnae distal proiecturas width averages were 44.77 ± 3.65 and 43.52 ± 3.47 pre- and post-exercise respectively. Bithorachanteric width averages were 29.3 ± 3.12 before exercise and 26.67 ± 3.27 after exercise. Average abdominal widths were observed as 18.64 ± 4.14 (before exercise) and 18.01 ± 6.27 (after exercise). The distances between the malleolus were measured as 16.98 ± 1.62 (before exercise) and 16.70 ± 1.64 (after exercise). The results were statistically significant (p < 0.05). The mean of pre-exercise Externus abdominis circumference was 93.97 ± 8.91, and the mean of post-exercise mean was 90.82 ± 8.24. The results are statistically significant (p < 0.05). In conclusion, findings of the study show that inactivity, daily uncontrolled activities or erroneous postural postures, malnutrition cause some anomalies in the human body. However, with consciously standardized and regular exercises, these abnormalities are reduced by an eight-week exercise protocol in parallel with the expulsion of excess kilos and can be removed when working much longer and fitter, it is proposed to be healthier and more beautiful in appearance.

Keywords: women, body, circumference-width and depth measurements, hypertrophy, exercise

Procedia PDF Downloads 361
1399 The Effect of Zeolite on Sandy-Silt Soil Mechanical Properties

Authors: Shahryar Aftabi, Saeed Fathi, Mohammad H. Aminfar

Abstract:

It is well known that cemented sand is one of the best approaches for soil stabilization. In some cases, a blend of sand, cement and other pozzolan materials such as zeolite, nano-particles and fiber can be widely (commercially) available and be effectively used in soil stabilization, especially in road construction. In this research, we investigate the effects of CaO which is based on the geotechnical characteristics of zeolite composition with sandy silt soil. Zeolites have low amount of CaO in their structures, that is, varying from 3% to 10%, and by removing the cement paste, we want to investigate the effect of zeolite pozzolan without any activator on soil samples strength. In this research, experiments are concentrated on various weight percentages of zeolite in the soil to examine the effect of the zeolite on drainage shear strength and California Bearing Ratio (CBR) both with and without curing. The study also investigates their liquid limit and plastic limit behavior and makes a comparative result by using Feng's and Wroth-Wood's methods in fall cone (cone penetrometer) device; in the final the SEM images have been presented. The results show that by increasing the percentage of zeolite in without-curing samples, the fine zeolite particles increase some soil's strength, but in the curing-state we can see a relatively higher strength toward without-curing state, since the zeolites have no plastic behavior, the pozzolanic property of zeolites plays a much higher role than cementing properties. Indeed, it is better to combine zeolite particle with activator material such as cement or lime to gain better results.

Keywords: California bearing ratio, CBR, direct shear, fall-cone, sandy silt, SEM, zeolite

Procedia PDF Downloads 114
1398 Life Cycle Assessment of an Onshore Wind Turbine in Kuwait

Authors: Badriya Almutairi, Ashraf El-Hamalawi

Abstract:

Wind energy technologies are considered to be among the most promising types of renewable energy sources due to the growing concerns over climate change and energy security. Kuwait is amongst the countries that began realising the consequences of climate change and the long-term economic and energy security situation, considering options when oil runs out. Added to this are the fluctuating oil prices, rapid increase in population, high electricity consumption and protection of the environment It began to make efforts in the direction of greener solutions for energy needs by looking for alternative forms of energy and assessing potential renewable energy resources, including wind and solar. The aim of this paper is to examine wind energy as an alternative renewable energy source in Kuwait, due to its availability and low cost, reducing the dependency on fossil fuels compared to other forms of renewable energy. This paper will present a life cycle assessment of onshore wind turbine systems in Kuwait, comprising 4 stages; goal and scope of the analysis, inventory analysis, impact assessment and interpretation of the results. It will also provide an assessment of potential renewable energy resources and technologies applied for power generation and the environmental benefits for Kuwait. An optimum location for a site (Shagaya) will be recommended for reasons such as high wind speeds, land availability and distance to the next grid connection, and be the focus of this study. The potential environmental impacts and resources used throughout the wind turbine system’s life-cycle are then analysed using a Life Cycle Assessment (LCA). The results show the total carbon dioxide (CO₂) emission for a turbine with steel pile foundations is greater than emissions from a turbine with concrete foundations by 18 %. The analysis also shows the average CO₂ emissions from electricity generated using crude oil is 645gCO₂/kWh and the carbon footprint per functional unit for a wind turbine ranges between 6.6 g/kWh to 10 g/kWh, an increase of 98%, thus providing cost and environmental benefits by creating a wind farm in Kuwait. Using a cost-benefit analysis, it was also found that the electricity produced from wind energy in Kuwait would cost 17.6fils/kWh (0.05834 $/kWh), which is less than the cost of electricity currently being produced using conventional methods at 22 fils/kW (0.07$/kWh), i.e., a reduction of 20%.

Keywords: CO₂ emissions, Kuwait, life cycle assessment, renewable energy, wind energy

Procedia PDF Downloads 283
1397 Design and Synthesis of Copper Doped Zeolite Composite for Antimicrobial Activity and Heavy Metal Removal from Waste Water

Authors: Feleke Terefe Fanta

Abstract:

The existence of heavy metals and microbial contaminants in aquatic system of Akaki river basin, a sub city of Addis Ababa, has become a public concern as human population increases and land development continues. This is because effluents from chemical and pharmaceutical industries are directly discharged onto surrounding land, irrigation fields and surface water bodies. In the present study, we synthesised zeolites and copper- zeolite composite based adsorbent through cost effective and simple approach to mitigate the problem. The study presents determination of heavy metal content and microbial contamination level of waste water sample collected from Akaki river using zeolites and copper- doped zeolites as adsorbents. The synthesis of copper- zeolite X composite was carried out by ion exchange method of copper ions into zeolites frameworks. The optimum amount of copper ions loaded into the zeolites frameworks were studied using the pore size determination concept via iodine test. The copper- loaded zeolites were characterized by X-ray diffraction (XRD). The XRD analysis showed clear difference in phase purity of zeolite before and after copper ion exchange. The concentration of Cd, Cr, and Pb were determined in waste water sample using atomic absorption spectrophotometry. The mean concentrations of Cd, Cr, and Pb in untreated sample were 0.795, 0.654 and 0.7025 mg/L respectively. The concentration of Cd, Cr, and Pb decreased to 0.005, 0.052 and BDL mg/L for sample treated with bare zeolite X while a further decrease in concentration of Cd, Cr, and Pb (0.005, BDL and BDL) mg/L respectively was observed for the sample treated with copper- zeolite composite. The antimicrobial activity was investigated by exposing the total coliform to the Zeolite X and Copper-modified Zeolite X. Zeolite X and Copper-modified Zeolite X showed complete elimination of microbilas after 90 and 50 minutes contact time respectively. This demonstrates effectiveness of copper- zeolite composite as efficient disinfectant. To understand the mode of heavy metals removal and antimicrobial activity of the copper-loaded zeolites; the adsorbent dose, contact time, temperature was studied. Overall, the results obtained in this study showed high antimicrobial disinfection and heavy metal removal efficiencies of the synthesized adsorbent.

Keywords: waste water, copper doped zeolite x, adsorption heavy metal, disinfection

Procedia PDF Downloads 54