Search results for: improving overall efficiency
4876 Performance Analysis of Heterogeneous Cellular Networks with Multiple Connectivity
Authors: Sungkyung Kim, Jee-Hyeon Na, Dong-Seung Kwon
Abstract:
Future mobile networks following 5th generation will be characterized by one thousand times higher gains in capacity; connections for at least one hundred billion devices; user experience capable of extremely low latency and response times. To be close to the capacity requirements and higher reliability, advanced technologies have been studied, such as multiple connectivity, small cell enhancement, heterogeneous networking, and advanced interference and mobility management. This paper is focused on the multiple connectivity in heterogeneous cellular networks. We investigate the performance of coverage and user throughput in several deployment scenarios. Using the stochastic geometry approach, the SINR distributions and the coverage probabilities are derived in case of dual connection. Also, to compare the user throughput enhancement among the deployment scenarios, we calculate the spectral efficiency and discuss our results.Keywords: heterogeneous networks, multiple connectivity, small cell enhancement, stochastic geometry
Procedia PDF Downloads 3314875 A Hybrid Watermarking Model Based on Frequency of Occurrence
Authors: Hamza A. A. Al-Sewadi, Adnan H. M. Al-Helali, Samaa A. K. Khamis
Abstract:
Ownership proofs of multimedia such as text, image, audio or video files can be achieved by the burial of watermark is them. It is achieved by introducing modifications into these files that are imperceptible to the human senses but easily recoverable by a computer program. These modifications would be in the time domain or frequency domain or both. This paper presents a procedure for watermarking by mixing amplitude modulation with frequency transformation histogram; namely a specific value is used to modulate the intensity component Y of the YIQ components of the carrier image. This scheme is referred to as histogram embedding technique (HET). Results comparison with those of other techniques such as discrete wavelet transform (DWT), discrete cosine transform (DCT) and singular value decomposition (SVD) have shown an enhance efficiency in terms of ease and performance. It has manifested a good degree of robustness against various environment effects such as resizing, rotation and different kinds of noise. This method would prove very useful technique for copyright protection and ownership judgment.Keywords: authentication, copyright protection, information hiding, ownership, watermarking
Procedia PDF Downloads 5654874 Heat and Flow Analysis of Solar Air Heaters with Artificial Roughness on the Absorber
Authors: Amel Boulemtafes-Boukadoum, Ahmed Benzaoui
Abstract:
Solar air heaters (SAH) are widely used in heating and drying applications using solar energy. Their efficiency needs to be improved to be competitive towards solar water heater. In this work, our goal is to study heat transfer enhancement in SAHs by the use of artificial roughness on the absorber. For this purpose, computational fluid dynamics (CFD) simulations were carried out to analyze the flow and heat transfer in the air duct of a solar air heater provided with transverse ribs. The air flows in forced convection and the absorber is heated with uniform flux. The effect of major parameters (Reynolds number, solar radiation, air inlet temperature, geometry of roughness) is examined and discussed. To highlight the effect of artificial roughness, we plotted the distribution of the important parameters: Nusselt number, friction factor, global thermohydraulic performance parameter etc. The results obtained are concordant to those found in the literature and shows clearly the heat transfer enhancement due to artifical roughness.Keywords: solar air heater, artificial roughness, heat transfer enhancement, CFD
Procedia PDF Downloads 5704873 Thermal Regeneration of CO2 Spent Palm Shell-Polyetheretherketone Activated Carbon Sorbents
Authors: Usman D. Hamza, Noor S. Nasri, Mohammed Jibril, Husna M. Zain
Abstract:
Activated carbons (M4P0, M4P2, and M5P2) used in this research were produced from palm shell and polyetherether ketone (PEEK) via carbonization, impregnation, and microwave activation. The adsorption/desorption process was carried out using static volumetric adsorption. Regeneration is important in the overall economy of the process and waste minimization. This work focuses on the thermal regeneration of the CO2 exhausted microwave activated carbons. The regeneration strategy adopted was thermal with nitrogen purge desorption with N2 feed flow rate of 20 ml/min for 1 h at atmospheric pressure followed by drying at 1500C. Seven successive adsorption/regeneration processes were carried out on the material. It was found that after seven adsorption regeneration cycles; the regeneration efficiency (RE) for CO2 activated carbon from palm shell only (M4P0) was more than 90% while that of hybrid palm shell-PEEK (M4P2, M5P2) was above 95%. The cyclic adsorption and regeneration shows the stability of the adsorbent materials.Keywords: activated carbon, palm shell-PEEK, regeneration, thermal
Procedia PDF Downloads 4884872 An Energy Efficient Clustering Approach for Underwater Wireless Sensor Networks
Authors: Mohammad Reza Taherkhani
Abstract:
Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make a connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.Keywords: underwater sensor networks, clustering, learning automata, energy consumption
Procedia PDF Downloads 3614871 Erectile Dysfunction among Bangladeshi Men with Diabetes
Authors: Shahjada Selim
Abstract:
Background: Erectile dysfunction (ED) is an important impediment to quality of life of men. ED is approximate, three times more common in diabetic than non-diabetic men, and diabetic men develop ED earlier than age-matched non-diabetic subjects. Glycemic control and other factors may contribute in developing and or deteriorating ED. Aim: The aim of the study was to determine the prevalence of ED and its risk factors in type 2 diabetic (T2DM) men in Bangladesh. Methods: During 2013-2014, 3980 diabetic men aged 30-69 years were interviewed at the out-patient departments of seven diabetic centers in Dhaka by using the validated Bengali version of the questionnaire of the International index of erectile function (IIEF) for evaluation of baseline erectile function (EF). The indexes indicate a very high correlation between the items and the questionnaire is consistently reliable. Data were analyzed with Chi-squared (χ²) test using SPSS software. P ≤ 0.05 was considered significant. Results: Out of 3790, ED was found in 2046 (53.98%) of T2DM men. The prevalence of ED was increased with age from 10.5% in men aged 30-39 years to 33.6% in those aged over 60 years (P < 0.001). In comparison with patients with reported diabetes lasting ≤ 5 years (26.4%), the prevalence of ED was less than in those with diabetes of 6-11 years (35.3%) and of 12-30 years (42.5%, P <0.001). ED increased significantly in those who had poor glycemic control. The prevalence of ED in patients with good, fair and poor glycemic control was 22.8%, 42.5% and 47.9% respectively (P = 0.004). Treatment modalities (medical nutrition therapy, oral agents, insulin, and insulin plus oral agents) had significant association with ED and its severity (P < 0.001). Conclusion: Prevalence of ED is very high among T2DM men in Bangladesh and can be reduced the burden by improving glycemic status. Glycemic control, duration of diabetes, treatment modalities, increasing age are associated with ED.Keywords: erectile dysfunction, diabetes, men, Bangladesh
Procedia PDF Downloads 2654870 Functionalized Single Walled Carbon Nanotubes: Targeting, Cellular Uptake, and Applications in Photodynamic Therapy
Authors: Prabhavathi Sundaram, Heidi Abrahamse
Abstract:
In recent years, nanotechnology coupled with photodynamic therapy (PDT) has received considerable attention in terms of improving the effectiveness of drug delivery in cancer therapeutics. The development of functionalized single-walled carbon nanotubes (SWCNTs) has become revolutionary in targeted photosensitizers delivery since it improves the therapeutic index of drugs. The objective of this study was to prepare, characterize and evaluate the potential of functionalized SWCNTs using hyaluronic acid and loading it with photosensitizer and to effectively target colon cancer cells. The single-walled carbon nanotubes were covalently functionalized with hyaluronic acid and the loaded photosensitizer by non-covalent interaction. The photodynamic effect of SWCNTs is detected under laser irradiation in vitro. The hyaluronic acid-functionalized nanocomposites had a good affinity with CD44 receptors, and it avidly binds on to the surface of CACO-2 cells. The cellular uptake of nanocomposites was studied using fluorescence microscopy using lyso tracker. The anticancer activity of nanocomposites was analyzed in CACO-2 cells using different studies such as cell morphology, cell apoptosis, and nuclear morphology. The combined effect of nanocomposites and PDT improved the therapeutic effect of cancer treatment. The study suggested that the nanocomposites and PDT have great potential in the treatment of colon cancer.Keywords: colon cancer, hyaluronic acid, single walled carbon nanotubes, photosensitizers, photodynamic therapy
Procedia PDF Downloads 1164869 Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study
Authors: Salima Smiti, Ines Gasmi, Makram Soui
Abstract:
Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk.Keywords: credit risk assessment, classification algorithms, data mining, rule extraction
Procedia PDF Downloads 1814868 Barriers to Yoga and Yoga-Based Therapy for Black and Brown Individuals in the United States: Implications for Social Work Practice
Authors: Jessica Gladden
Abstract:
Yoga has been accepted in the majority of communities in the United States as a method of assisting individuals with improving their physical health. Both community yoga classes and yoga-based therapy have been shown to be highly useful for individual’s mental health. Yoga-based therapy has been supported by research to be an evidence-based practice for individuals experiencing anxiety, depression, and disordered eating and for those experiencing post traumatic stress disorder in the wake of trauma. Many individuals who have experienced trauma, as well as other mental health diagnoses, are either very disconnected from their physical bodies or feel unsafe in their bodies. Yoga can be a method of creating safety and control in the body. This is recommended by some of the leading researchers in trauma therapy as a beginning step towards finding safety in the body in order to begin to work on the additional mental health challenges before addressing other long-term challenges. Unfortunately, yoga for physical and mental health is underutilized in black and brown communities despite the research regarding the benefits. Very few studies have examined the barriers to access to yoga for black, brown, and indigenous individuals. This study interviewed 15 yoga practitioners who identified as black or brown and explored the barriers they see in their communities related to accessing yoga and yoga-based services. Several of the themes reported include not feeling welcome, cost of services, time, and cultural/ religious components. Methods for reducing barriers will also be discussed.Keywords: yoga, sport, barrier, black
Procedia PDF Downloads 934867 Insufficiency of Cardioprotection at Adaptation to Chronic Hypoxia and at Remote Postconditioning in Young and Aged Rats with Metabolic Syndrome, the Role of Metabolic Disorders or Opioid Signaling
Authors: Natalia V. Naryzhnaya, Alexandr V. Mukhomedzyanov, Ivan A. Derkachev, Boris K. Kurbatov, Leonid N. Maslov
Abstract:
Background: Techniques of adaptation to hypoxia and remote postconditioning (RPost) have great prospects for use in the clinic. However, recent studies have shown low efficacy of remote postconditioning in patients with AMI. We hypothesize that the reasons for this inefficiency may be metabolic disorders, which are very common, especially in patients with cardiovascular disease, and age of patients. The purpose of the study was to reveal the effectiveness of adaptation to chronic hypoxia and RPost. To determine the possible relationship between the decrease in the effectiveness of projective impacts and disorders of carbohydrate and lipid metabolism. Design: The study was carried out on Wistar rats 60 day old. MetS was induced by high-carbohydrate, high-fat diet (HСHFD). Modeling MS led to the formation of obesity, hypertension, impaired lipid and carbohydrate metabolism, hyperleptinemia, and moderate stress. Groups with adaptation to chronic hypoxia were subjected to hypoxia for 21 days at 12% O2 and 0.3% CO2 after complete of HСHFD. All animals were subjected to 45 min coronary occlusion and 120 min reperfusion. Groups with RPost, immediately after the end of ischemia, tourniquets were applied to the hind limbs in the area of the hip joint (3 times in the mode of 5 min ischemia, 5 min reperfusion). Results: RPost led to a twofold reduction of infarct size in rats with intact metabolism (р < 0.0001), while in rats with MetS, a decrease in infarct size during RPost was 25 % (p = 0.00003). A direct correlation was found between of infarct size during RPost and the serum leptin level of rats with MetC (r = 0.85). The presented data suggested that a decrease in the efficiency of remote postconditioning in rats with diet-induced metabolic syndrome depends on serum leptin. Chronic hypoxia resulted in a 38% reduced in infarct size in metabolically intact rats. The decrease of cardioprotection was observed in rats with chronic hypoxia and MetS. Infarct size showed a direct correlation with impaired glucose tolerance (AUC, glucose tolerance test, r = 0.034) and serum triglyceride levels (r = 0.39). Our study showed the dependence of cardioprotection in rats with metabolic syndrome during chronic hypoxia and DPost on opioids in the blood serum and myocardium, protein kinase C and NO synthase activity. Conclusion: The results obtained showed that the infarct-limiting efficiency of adaptation to hypoxia and remote postconditioning is reduced or completely absent in animals with metabolic syndrome. The increase in the infarction, in this case, directly depends on the disturbances in carbohydrate. lipid metabolism and opioids signaling. Funding: Investigation of effectiveness of chronic hypoxia at the metabolic syndrome was carried out within the support of Russian Science Foundation Grant 22-15-00048. Studies of the mechanisms of arterial hypertension in induced metabolic syndrome were carried out within the framework of the state assignment (122020300042-4). The work was performed using the Center for Collective Use "Medical Genomics".Keywords: chronic hypoxia, opioids, remote postconditioning, metabolic syndrome
Procedia PDF Downloads 794866 A New Concept for Deriving the Expected Value of Fuzzy Random Variables
Authors: Liang-Hsuan Chen, Chia-Jung Chang
Abstract:
Fuzzy random variables have been introduced as an imprecise concept of numeric values for characterizing the imprecise knowledge. The descriptive parameters can be used to describe the primary features of a set of fuzzy random observations. In fuzzy environments, the expected values are usually represented as fuzzy-valued, interval-valued or numeric-valued descriptive parameters using various metrics. Instead of the concept of area metric that is usually adopted in the relevant studies, the numeric expected value is proposed by the concept of distance metric in this study based on two characters (fuzziness and randomness) of FRVs. Comparing with the existing measures, although the results show that the proposed numeric expected value is same with those using the different metric, if only triangular membership functions are used. However, the proposed approach has the advantages of intuitiveness and computational efficiency, when the membership functions are not triangular types. An example with three datasets is provided for verifying the proposed approach.Keywords: fuzzy random variables, distance measure, expected value, descriptive parameters
Procedia PDF Downloads 3434865 Evaluation of the Architect-Friendliness of LCA-Based Environmental Impact Assessment Tools
Authors: Elke Meex, Elke Knapen, Griet Verbeeck
Abstract:
The focus of sustainable building is gradually shifting from energy efficiency towards the more global environmental impact of building design during all life-cycle stages. In this context, many tools have been developed that use a LCA-approach to assess the environmental impact on a whole building level. Since the building design strongly influences the final environmental performance and the architect plays a key role in the design process, it is important that these tools are adapted to his work method and support the decision making from the early design phase on. Therefore, a comparative evaluation of the degree of architect-friendliness of some LCA tools on building level is made, based on an evaluation framework specifically developed for the architect’s viewpoint. In order to allow comparison of the results, a reference building has been designed, documented for different design phases and entered in all software tools. The evaluation according to the framework shows that the existing tools are not very architect-friendly. Suggestions for improvement are formulated.Keywords: architect-friendliness, design supportive value, evaluation framework, tool comparison
Procedia PDF Downloads 5404864 Clothes Identification Using Inception ResNet V2 and MobileNet V2
Authors: Subodh Chandra Shakya, Badal Shrestha, Suni Thapa, Ashutosh Chauhan, Saugat Adhikari
Abstract:
To tackle our problem of clothes identification, we used different architectures of Convolutional Neural Networks. Among different architectures, the outcome from Inception ResNet V2 and MobileNet V2 seemed promising. On comparison of the metrices, we observed that the Inception ResNet V2 slightly outperforms MobileNet V2 for this purpose. So this paper of ours proposes the cloth identifier using Inception ResNet V2 and also contains the comparison between the outcome of ResNet V2 and MobileNet V2. The document here contains the results and findings of the research that we performed on the DeepFashion Dataset. To improve the dataset, we used different image preprocessing techniques like image shearing, image rotation, and denoising. The whole experiment was conducted with the intention of testing the efficiency of convolutional neural networks on cloth identification so that we could develop a reliable system that is good enough in identifying the clothes worn by the users. The whole system can be integrated with some kind of recommendation system.Keywords: inception ResNet, convolutional neural net, deep learning, confusion matrix, data augmentation, data preprocessing
Procedia PDF Downloads 1874863 Simulation Analysis of a Full-Scale Five-Story Building with Vibration Control Dampers
Authors: Naohiro Nakamura
Abstract:
Analysis methods to accurately estimate the behavior of buildings when earthquakes occur is very important for improving the seismic safety of such buildings. Recently, the use of damping devices has increased significantly and there is a particular need to appropriately evaluate the behavior of buildings with such devices during earthquakes in the design stage. At present, however, the accuracy of the analysis evaluations is not sufficient. One reason is that the accuracy of current analysis methods has not been appropriately verified because there is very limited data on the behavior of actual buildings during earthquakes. Many types of shaking table test of large structures are performed at the '3-Dimensional Full-Scale Earthquake Testing Facility' (nicknamed 'E-Defense') operated by the National Research Institute of Earth Science and Disaster Prevention (NIED). In this study, simulations using 3- dimensional analysis models were conducted on shaking table test of a 5-story steel-frame structure with dampers. The results of the analysis correspond favorably to the test results announced afterward by the committee. However, the suitability of the parameters and models used in the analysis and the influence they had on the responses remain unclear. Hence, we conducted additional analysis and studies on these models and parameters. In this paper, outlines of the test are shown and the utilized analysis model is explained. Next, the analysis results are compared with the test results. Then, the additional analyses, concerning with the hysteresis curve of the dampers and the beam-end stiffness of the frame, are investigated.Keywords: three-dimensional analysis, E-defense, full-scale experimen, vibration control damper
Procedia PDF Downloads 1914862 Intrusion Detection In MANET Using Game Theory
Authors: S. B. Kumbalavati, J. D. Mallapur, K. Y. Bendigeri
Abstract:
A mobile Ad-hoc network (MANET) is a multihop wireless network where nodes communicate each other without any pre-deployed infrastructure. There is no central administrating unit. Hence, MANET is generally prone to many of the attacks. These attacks may alter, release or deny data. These attacks are nothing but intrusions. Intrusion is a set of actions that attempts to compromise integrity, confidentiality and availability of resources. A major issue in the design and operation of ad-hoc network is sharing the common spectrum or common channel bandwidth among all the nodes. We are performing intrusion detection using game theory approach. Game theory is a mathematical tool for analysing problems of competition and negotiation among the players in any field like marketing, e-commerce and networking. In this paper mathematical model is developed using game theory approach and intruders are detected and removed. Bandwidth utilization is estimated and comparison is made between bandwidth utilization with intrusion detection technique and without intrusion detection technique. Percentage of intruders and efficiency of the network is analysed.Keywords: ad-hoc network, IDS, game theory, sensor networks
Procedia PDF Downloads 3874861 Design of a 28-nm CMOS 2.9-64.9-GHz Broadband Distributed Amplifier with Floating Ground CPW
Authors: Tian-Wei Huang, Wei-Ting Bai, Yu-Tung Cheng, Jeng-Han Tsai
Abstract:
In this paper, a 1-stage 6-section conventional distributed amplifier (CDA) structure distributed power amplifier (DPA) fabricated in a 28-nm HPC+ 1P9M CMOS process is proposed. The transistor size selection is introduced to achieve broadband power matching and thus remains a high flatness output power and power added efficiency (PAE) within the bandwidth. With the inductive peaking technique, the high-frequency pole appears and the high-frequency gain is increased; the gain flatness becomes better as well. The inductive elements used to form an artificial transmission line are built up with a floating ground coplanar waveguide plane (CPWFG) rather than a microstrip line, coplanar waveguide (CPW), or spiral inductor to get better performance. The DPA achieves 12.6 dB peak gain at 52.5 GHz with 2.9 to 64.9 GHz 3-dB bandwidth. The Psat is 11.4 dBm with PAEMAX of 10.6 % at 25 GHz. The output 1-dB compression point power is 9.8 dBm.Keywords: distributed power amplifier (DPA), gain bandwidth (GBW), floating ground CPW, inductive peaking, 28-nm, CMOS, 5G.
Procedia PDF Downloads 814860 Cellulose Supported Heterogeneous Pd(II) Catalyst for Synthesis of Biaryls
Authors: Talat Baran
Abstract:
The Suzuki C(sp2)-C(sp2) coupling reaction is considered to be one of the best ways for the synthesis of biaryl compounds. There are many studies reporting the catalytic performance of palladium catalyst in Suzuki coupling reactions. Natural biopolymer (such as zeolite, carbon, silica, and chitosan) supporting catalysts have been lately attracted interest because of their low-cost, nontoxicity, and eco-friendliness. One of the most important natural biopolymer is cellulose, which is widely considered as an eco-friendly biopolymer due to its biodegradable, non-toxic and renewable nature. In this study, (1) cellulose supported Pd(II) catalyst was synthesized (2) its chemical structure was characterized by FT-IR, SEM/EDAX, XRD, TG-DTG, ICP-OES techniques (3) to investigate the performance of the catalyst in Suzuki coupling reactions by using microwave irradiation technique (4) reusability of the catalyst was done under optimum conditions. This cellulose supported Pd(II) catalyst exhibited high selectivity and efficiency in Suzuki coupling reactions under mild conditions (50°C). High TON and TOF values were recorded for the catalyst. Also, the reusability tests showed the catalysts could be used for several times in consequence of reusability tests.Keywords: palladium, cellulose, Schiff base, reusability
Procedia PDF Downloads 2524859 A Multimodal Approach to Improve the Performance of Biometric System
Authors: Chander Kant, Arun Kumar
Abstract:
Biometric systems automatically recognize an individual based on his/her physiological and behavioral characteristics. There are also some traits like weight, age, height etc. that may not provide reliable user recognition because of there common and temporary nature. These traits are called soft bio metric traits. Although soft bio metric traits are lack of permanence to uniquely and reliably identify an individual, yet they provide some beneficial evidence about the user identity and may improve the system performance. Here in this paper, we have proposed an approach for integrating the soft bio metrics with fingerprint and face to improve the performance of personal authentication system. In our approach we have proposed a combined architecture of three different sensors to elevate the system performance. The approach includes, soft bio metrics, fingerprint and face traits. We have also proven the efficiency of proposed system regarding FAR (False Acceptance Ratio) and total response time, with the help of MUBI (Multimodal Bio metrics Integration) software.Keywords: FAR, minutiae point, multimodal bio metrics, primary bio metric, soft bio metric
Procedia PDF Downloads 3464858 Using Building Information Modelling to Mitigate Risks Associated with Health and Safety in the Construction and Maintenance of Infrastructure Assets
Authors: Mohammed Muzafar, Darshan Ruikar
Abstract:
BIM, an acronym for Building Information Modelling relates to the practice of creating a computer generated model which is capable of displaying the planning, design, construction and operation of a structure. The resulting simulation is a data-rich, object-oriented, intelligent and parametric digital representation of the facility, from which views and data, appropriate to various users needs can be extracted and analysed to generate information that can be used to make decisions and to improve the process of delivering the facility. BIM also refers to a shift in culture that will influence the way the built environment and infrastructure operates and how it is delivered. One of the main issues of concern in the construction industry at present in the UK is its record on Health & Safety (H&S). It is, therefore, important that new technologies such as BIM are developed to help improve the quality of health and safety. Historically the H&S record of the construction industry in the UK is relatively poor as compared to the manufacturing industries. BIM and the digital environment it operates within now allow us to use design and construction data in a more intelligent way. It allows data generated by the design process to be re-purposed and contribute to improving efficiencies in other areas of a project. This evolutionary step in design is not only creating exciting opportunities for the designers themselves but it is also creating opportunity for every stakeholder in any given project. From designers, engineers, contractors through to H&S managers, BIM is accelerating a cultural change. The paper introduces the concept behind a research project that mitigates the H&S risks associated with the construction, operation and maintenance of assets through the adoption of BIM.Keywords: building information modeling, BIM levels, health, safety, integration
Procedia PDF Downloads 2544857 Site Selection and Construction Mechanism of the Island Settlements in China Based on CFD-GIS Technology
Authors: Weng Jiantao, Wu Yiqun
Abstract:
The efficiency of natural ventilation, wind pressure distribution on building surface, wind comfort for pedestrians and buildings’ wind tolerance in traditional settlements are closely related to the pattern of terrain. On the basis of field research on the typical island terrain in China, the physical and mathematical models are established by using CFD software, and then the simulation results of the wind field are exported. We discuss the relationship between wind direction and wind field results. Furthermore simulation results are imported into ArcGIS platform. The evaluation model of island site selection is established with considering slope factor. We realize the visual model of site selection on complex island terrain. The multi-plans of certain residential are discussed based on wind simulation; at last the optimal project is selected. Results can provide the theory guidance for settlement planning and construction in China's traditional island.Keywords: CFD, island terrain, site selection, construction mechanism
Procedia PDF Downloads 5094856 Energy and Economic Analysis of Heat Recovery from Boiler Exhaust Flue Gas
Authors: Kemal Comakli, Meryem Terhan
Abstract:
In this study, the potential of heat recovery from waste flue gas was examined in 60 MW district heating system of a university, and fuel saving was aimed by using the recovered heat in the system as a source again. Various scenarios are intended to make use of waste heat. For this purpose, actual operation data of the system were taken. Besides, the heat recovery units that consist of heat exchangers such as flue gas condensers, economizers or air pre-heaters were designed theoretically for each scenario. Energy analysis of natural gas-fired boiler’s exhaust flue gas in the system, and economic analysis of heat recovery units to predict payback periods were done. According to calculation results, the waste heat loss ratio from boiler flue gas in the system was obtained as average 16%. Thanks to the heat recovery units, thermal efficiency of the system can be increased, and fuel saving can be provided. At the same time, a huge amount of green gas emission can be decreased by installing the heat recovery units.Keywords: heat recovery from flue gas, energy analysis of flue gas, economical analysis, payback period
Procedia PDF Downloads 2884855 Analysis of DC\DC Converter of Photovoltaic System with MPPT Algorithms Comparison
Authors: Badr M. Alshammari, Mohamed A. Khlifi
Abstract:
This paper presents the analysis of DC/DC converter including a comparative study of control methods to extract the maximum power and to track the maximum power point (MPP) from photovoltaic (PV) systems under changeable environmental conditions. This paper proposes two methods of maximum power point tracking algorithm for photovoltaic systems, based on the first hand on P&O control and the other hand on the first order IC. The MPPT system ensures that solar cells can deliver the maximum power possible to the load. Different algorithms are used to design it. Here we compare them and simulate the photovoltaic system with two algorithms. The algorithms are used to control the duty cycle of a DC-DC converter in order to boost the output voltage of the PV generator and guarantee the operation of the solar panels in the Maximum Power Point (MPP). Simulation and experimental results show that the proposed algorithms can effectively improve the efficiency of a photovoltaic array output.Keywords: solar cell, DC/DC boost converter, MPPT, photovoltaic system
Procedia PDF Downloads 2024854 Relations of Progression in Cognitive Decline with Initial EEG Resting-State Functional Network in Mild Cognitive Impairment
Authors: Chia-Feng Lu, Yuh-Jen Wang, Yu-Te Wu, Sui-Hing Yan
Abstract:
This study aimed at investigating whether the functional brain networks constructed using the initial EEG (obtained when patients first visited hospital) can be correlated with the progression of cognitive decline calculated as the changes of mini-mental state examination (MMSE) scores between the latest and initial examinations. We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions, and the network analysis based on graph theory to investigate the organization of functional networks in aMCI. Our finding suggested that higher integrated functional network with sufficient connection strengths, dense connection between local regions, and high network efficiency in processing information at the initial stage may result in a better prognosis of the subsequent cognitive functions for aMCI. In conclusion, the functional connectivity can be a useful biomarker to assist in prediction of cognitive declines in aMCI.Keywords: cognitive decline, functional connectivity, MCI, MMSE
Procedia PDF Downloads 3834853 Explaining the Acceptance and Adoption of Digital Technologies: Digital Government in Saudi Arabia
Authors: Mohammed Alhamed
Abstract:
This research examines the factors influencing the acceptance and adoption of digital technologies in Saudi Arabia’s government sector by focusing on government employees' attitudes toward digital transformation initiatives. As digital technologies increasingly integrate into public sectors worldwide, there is a requirement to enhance citizen empowerment and government-public interactions as well as understand their impact in unique socio-political contexts like Saudi Arabia. The study aims to explore user attitudes, identify the main challenges, and investigate factors that affect the intention to use digital applications in governmental settings. The study employs a mixed-methods approach by combining quantitative and qualitative data collection to provide a comprehensive view of digital government application adoption. Data was collected through two online surveys administered to 870 government employees and face-to-face semi-structured interviews with 24 participants. This dual approach allows for both statistical analysis and thematic exploration, which provides a deeper understanding of user behaviour, perceived benefits, challenges and attitudes toward these digital applications. Quantitative data were analyzed to identify significant variables influencing adoption, while qualitative responses were coded thematically to uncover recurring themes related to user trust, security, usability and socio-political influences. The results indicate that digital government applications are largely valued for their ability to increase efficiency and accessibility and streamline processes like online documentation and inter-departmental coordination. However, the study highlights that security, privacy, and confidentiality concerns constitute substantial barriers to adoption, with participants calling for stronger cybersecurity measures and data protection policies. Moreover, usability emerged as a key theme that intuitively interfaces in encouraging adoption as respondents emphasized the importance of user-friendly. Additionally, the study found that Saudi Arabia’s unique cultural and organizational dynamics impact acceptance levels with factors like hierarchical structures and varying levels of digital literacy shaping user attitudes. A significant limitation of the study is its exclusive focus on government employees, which may limit the generalizability of the findings to other stakeholder groups, such as the general public. Despite this, the study offers valuable views for policymakers. This, in turn, suggests best practices and guidelines that could enhance the design and implementation of digital government projects. By addressing the identified barriers and leveraging the factors that drive adoption, the study underscores the potential for digital government initiatives to improve efficiency, transparency and responsiveness in Saudi Arabia's public sector. Furthermore, these findings may provide a roadmap for similar countries aiming to adopt digital government solutions within comparable socio-political and economic contexts.Keywords: acceptance, adoption, digital technologies, digital government, Saudi Arabia
Procedia PDF Downloads 114852 A Machine Learning Approach for Performance Prediction Based on User Behavioral Factors in E-Learning Environments
Authors: Naduni Ranasinghe
Abstract:
E-learning environments are getting more popular than any other due to the impact of COVID19. Even though e-learning is one of the best solutions for the teaching-learning process in the academic process, it’s not without major challenges. Nowadays, machine learning approaches are utilized in the analysis of how behavioral factors lead to better adoption and how they related to better performance of the students in eLearning environments. During the pandemic, we realized the academic process in the eLearning approach had a major issue, especially for the performance of the students. Therefore, an approach that investigates student behaviors in eLearning environments using a data-intensive machine learning approach is appreciated. A hybrid approach was used to understand how each previously told variables are related to the other. A more quantitative approach was used referred to literature to understand the weights of each factor for adoption and in terms of performance. The data set was collected from previously done research to help the training and testing process in ML. Special attention was made to incorporating different dimensionality of the data to understand the dependency levels of each. Five independent variables out of twelve variables were chosen based on their impact on the dependent variable, and by considering the descriptive statistics, out of three models developed (Random Forest classifier, SVM, and Decision tree classifier), random forest Classifier (Accuracy – 0.8542) gave the highest value for accuracy. Overall, this work met its goals of improving student performance by identifying students who are at-risk and dropout, emphasizing the necessity of using both static and dynamic data.Keywords: academic performance prediction, e learning, learning analytics, machine learning, predictive model
Procedia PDF Downloads 1574851 Bulking Rate of Cassava Genotypes and Their Root Yield Relationship at Guinea Savannah and Forest Transition Agroecological Zone of Nigeria
Authors: Olusegun D. Badewa, E. K. Tsado, A. S. Gana, K. D. Tolorunse, R. U. Okechukwu, P. Iluebbey, S. Ibrahim
Abstract:
Farmers are faced with varying production challenges ranging from unstable weather due to climate change, low yield, malnutrition, cattle invasion, and bush fires that have always affected their livelihood. Research effort must therefore be centered on improving farmers’ livelihood, nutrition, and health by providing early bulking biofortified cassava varieties that could be harvested earlier with reasonable root yield and thereby preventing long stay of the crop on their farmland. This study evaluated cassava genotypes at different harvesting months of 3, 6, 9, and 12 months after planting in order to evaluate their bulking rate at different agroecology of Mokwa and Ubiaja. Data were collected on fresh storage root yield, Harvest index, and Dry matter content. It was shown from the study that traits FSRY, HI, and DM were significant for genotype and months after planting and variable among the genotype while location had no effect on the yield traits. Early bulking genotypes were not high yielding and showed discontinuity at some point across the months. The retrogression in yield performance across months had no effect on the highest yielding. Also, for all the genotypes and across evaluated months, FSRY reduces at 9 MAP due to a reduction in dry matter content during the same month, and the best performing genotype was the genotype IBA90581, followed by IBA120036, IBA130896, and IBA980581 while the least performing was genotype IBA130818.Keywords: early bulking, dry mater, harvest index, high yielding, root yield
Procedia PDF Downloads 2294850 Design and Sensitivity Analysis of Photovoltaic/Thermal Solar Collector
Authors: H. M. Farghally, N. M. Ahmed, H. T. El-Madany, D. M. Atia, F. H. Fahmy
Abstract:
Energy is required in almost every aspect of human activities and development of any nation in this world. Increasing fossil fuel price, energy security and climate change have important bearings on sustainable development of any nation. The renewable energy technology is considered one of the drastic approaches taken over the world to reduce the energy problem. The preservation of vegetables by freezing is one of the most important methods of retaining quality in agricultural products over long-term storage periods. Freezing factories show high demand of energy for both heat and electricity; the hybrid Photovoltaic/Thermal (PV/T) systems could be used in order to meet this requirement. This paper presents PV/T system design for freezing factory. Also, the complete mathematical modeling and Matlab Simulink of PV/T collector is introduced. The sensitivity analysis for the manufacturing parameters of PV/T collector is carried out to study their effect on the thermal and electrical efficiency.Keywords: renewable energy, hybrid PV/T system, sensitivity analysis, ecological sciences
Procedia PDF Downloads 2924849 Carbon-Foam Supported Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells
Authors: Albert Mufundirwa, Satoru Yoshioka, K. Ogi, Takeharu Sugiyama, George F. Harrington, Bretislav Smid, Benjamin Cunning, Kazunari Sasaki, Akari Hayashi, Stephen M. Lyth
Abstract:
Polymer electrolyte membrane fuel cells (PEMFCs) are electrochemical energy conversion devices used for portable, residential and vehicular applications due to their low emissions, high efficiency, and quick start-up characteristics. However, PEMFCs generally use expensive, Pt-based electrocatalysts as electrode catalysts. Due to the high cost and limited availability of platinum, research and development to either drastically reduce platinum loading, or replace platinum with alternative catalysts is of paramount importance. A combination of high surface area supports and nano-structured active sites is essential for effective operation of catalysts. We synthesize carbon foam supports by thermal decomposition of sodium ethoxide, using a template-free, gram scale, cheap, and scalable pyrolysis method. This carbon foam has a high surface area, highly porous, three-dimensional framework which is ideal for electrochemical applications. These carbon foams can have surface area larger than 2500 m²/g, and electron microscopy reveals that they have micron-scale cells, separated by few-layer graphene-like carbon walls. We applied this carbon foam as a platinum catalyst support, resulting in the improved electrochemical surface area and mass activity for the oxygen reduction reaction (ORR), compared to carbon black. Similarly, silver-decorated carbon foams showed higher activity and efficiency for electrochemical carbon dioxide conversion than silver-decorated carbon black. A promising alternative to Pt-catalysts for the ORR is iron-impregnated nitrogen-doped carbon catalysts (Fe-N-C). Doping carbon with nitrogen alters the chemical structure and modulates the electronic properties, allowing a degree of control over the catalytic properties. We have adapted our synthesis method to produce nitrogen-doped carbon foams with large surface area, using triethanolamine as a nitrogen feedstock, in a novel bottom-up protocol. These foams are then infiltrated with iron acetate (FeAc) and pyrolysed to form Fe-N-C foams. The resulting Fe-N-C foam catalysts have high initial activity (half-wave potential of 0.68 VRHE), comparable to that of commercially available Pt-free catalysts (e.g., NPC-2000, Pajarito Powder) in acid solution. In alkaline solution, the Fe-N-C carbon foam catalysts have a half-wave potential of 0.89 VRHE, which is higher than that of NPC-2000 by almost 10 mVRHE, and far out-performing platinum. However, the durability is still a problem at present. The lessons learned from X-ray absorption spectroscopy (XAS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements will be used to carefully design Fe-N-C catalysts for higher performance PEMFCs.Keywords: carbon-foam, polymer electrolyte membrane fuel cells, platinum, Pt-free, Fe-N-C, ORR
Procedia PDF Downloads 1804848 Multi-Criteria Decision Making Approaches for Facility Planning Problem Evaluation: A Survey
Authors: Ahmed M. El-Araby, Ibrahim Sabry, Ahmed El-Assal
Abstract:
The relationships between the industrial facilities, the capacity available for these facilities, and the costs involved are the main factors in deciding the correct selection of a facility layout. In general, an issue of facility layout is considered to be an unstructured problem of decision-making. The objective of this work is to provide a survey that describes the techniques by which a facility planning problem can be solved and also the effect of these techniques on the efficiency of the layout. The multi-criteria decision making (MCDM) techniques can be classified according to the previous researches into three categories which are the use of single MCDM, combining two or more MCDM, and the integration of MCDM with another technique such as genetic algorithms (GA). This paper presents a review of different multi-criteria decision making (MCDM) techniques that have been proposed in the literature to pick the most suitable layout design. These methods are particularly suitable to deal with complex situations, including various criteria and conflicting goals which need to be optimized simultaneously.Keywords: facility layout, MCDM, GA, literature review
Procedia PDF Downloads 2054847 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram
Authors: Mehwish Asghar
Abstract:
Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence
Procedia PDF Downloads 225