Search results for: model-free damage detection
776 The Role of High-Intensity Focused Ultrasound (HIFU) in the Treatment of Fibroadenomas: A Systematic Review
Authors: Ahmed Gonnah, Omar Masoud, Mohamed Abdel-Wahab, Ahmed ElMosalamy, Abdulrahman Al-Naseem
Abstract:
Introduction: Fibroadenomas are solid, mobile, and non-tender benign breast lumps, with the highest prevalence amongst young women aged between 15 and 35. Symptoms can include discomfort, and they can become problematic, particularly when they enlarge, resulting in many referrals for biopsies, with fibroadenomas accounting for 30-75% of the cases. Diagnosis is based on triple assessment that involves a clinical examination, ultrasound imaging and mammography, as well as core needle biopsies. Current management includes observation for 6-12 months, with the indication of definitive surgery, in cases that are older than 35 years or with fibroadenoma persistence. Serious adverse effects of surgery might include nipple-areolar distortion, scarring and damage to the breast tissue, as well as the risks associated with surgery and anesthesia, making it a non-feasible option. Methods: A literature search was performed on the databases EMBASE. MEDLINE/PubMed, Google scholar and Ovid, for English language papers published between 1st of January 2000 and 17th of March 2021. A structured protocol was employed to devise a comprehensive search strategy with keywords and Boolean operators defined by the research question. The keywords used for the search were ‘HIFU’, ‘High-Intensity Focused Ultrasound’, ‘Fibroadenoma’, ‘Breast’, ‘Lesion’. This review was carried out in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results: Recently, a thermal ablative technique, High Intensity Focused Ultrasound (HIFU), was found to be a safe, non-invasive, and technically successful alternative, having displayed promising outcomes in reducing the volume of fibroadenomas, pain experienced by patients, and the length of hospitalization. Quality of life improvement was also evidenced, exhibited by the disappearance of symptoms, and enhanced physical activity post-intervention, in addition to patients’ satisfaction with the cosmetic results and future recommendation of the procedure to other patients. Conclusion: Overall, HIFU is a well-tolerated treatment associated with a low risk of complications that can potentially include erythema, skin discoloration and bruising, with the majority of this self-resolving shortly after the procedure.Keywords: ultrasound, HIFU, breast, efficacy, side effects, fibroadenoma
Procedia PDF Downloads 225775 Investigation of Rehabilitation Effects on Fire Damaged High Strength Concrete Beams
Authors: Eun Mi Ryu, Ah Young An, Ji Yeon Kang, Yeong Soo Shin, Hee Sun Kim
Abstract:
As the number of fire incidents has been increased, fire incidents significantly damage economy and human lives. Especially when high strength reinforced concrete is exposed to high temperature due to a fire, deterioration occurs such as loss in strength and elastic modulus, cracking, and spalling of the concrete. Therefore, it is important to understand risk of structural safety in building structures by studying structural behaviors and rehabilitation of fire damaged high strength concrete structures. This paper aims at investigating rehabilitation effect on fire damaged high strength concrete beams using experimental and analytical methods. In the experiments, flexural specimens with high strength concrete are exposed to high temperatures according to ISO 834 standard time temperature curve. After heated, the fire damaged reinforced concrete (RC) beams having different cover thicknesses and fire exposure time periods are rehabilitated by removing damaged part of cover thickness and filling polymeric mortar into the removed part. From four-point loading test, results show that maximum loads of the rehabilitated RC beams are 1.8~20.9% higher than those of the non-fire damaged RC beam. On the other hand, ductility ratios of the rehabilitated RC beams are decreased than that of the non-fire damaged RC beam. In addition, structural analyses are performed using ABAQUS 6.10-3 with same conditions as experiments to provide accurate predictions on structural and mechanical behaviors of rehabilitated RC beams. For the rehabilitated RC beam models, integrated temperature–structural analyses are performed in advance to obtain geometries of the fire damaged RC beams. After spalled and damaged parts are removed, rehabilitated part is added to the damaged model with material properties of polymeric mortar. Three dimensional continuum brick elements are used for both temperature and structural analyses. The same loading and boundary conditions as experiments are implemented to the rehabilitated beam models and nonlinear geometrical analyses are performed. Structural analytical results show good rehabilitation effects, when the result predicted from the rehabilitated models are compared to structural behaviors of the non-damaged RC beams. In this study, fire damaged high strength concrete beams are rehabilitated using polymeric mortar. From four point loading tests, it is found that such rehabilitation is able to make the structural performance of fire damaged beams similar to non-damaged RC beams. The predictions from the finite element models show good agreements with the experimental results and the modeling approaches can be used to investigate applicability of various rehabilitation methods for further study.Keywords: fire, high strength concrete, rehabilitation, reinforced concrete beam
Procedia PDF Downloads 445774 Remote Sensing of Aerated Flows at Large Dams: Proof of Concept
Authors: Ahmed El Naggar, Homyan Saleh
Abstract:
Dams are crucial for flood control, water supply, and the creation of hydroelectric power. Every dam has a water conveyance system, such as a spillway, providing the safe discharge of catastrophic floods when necessary. Spillway design has historically been investigated in laboratory research owing to the absence of suitable full-scale flow monitoring equipment and safety problems. Prototype measurements of aerated flows are urgently needed to quantify projected scale effects and provide missing validation data for design guidelines and numerical simulations. In this work, an image-based investigation of free-surface flows on a tiered spillway was undertaken at the laboratory (fixed camera installation) and prototype size (drone video) (drone footage) (drone footage). The drone videos were generated using data from citizen science. Analyses permitted the measurement of the free-surface aeration inception point, air-water surface velocities, fluctuations, and residual energy at the chute's downstream end from a remote site. The prototype observations offered full-scale proof of concept, while laboratory results were efficiently confirmed against invasive phase-detection probe data. This paper stresses the efficacy of image-based analyses at prototype spillways. It highlights how citizen science data may enable academics better understand real-world air-water flow dynamics and offers a framework for a small collection of long-missing prototype data.Keywords: remote sensing, aerated flows, large dams, proof of concept, dam spillways, air-water flows, prototype operation, remote sensing, inception point, optical flow, turbulence, residual energy
Procedia PDF Downloads 92773 Development of a Computer Aided Diagnosis Tool for Brain Tumor Extraction and Classification
Authors: Fathi Kallel, Abdulelah Alabd Uljabbar, Abdulrahman Aldukhail, Abdulaziz Alomran
Abstract:
The brain is an important organ in our body since it is responsible about the majority actions such as vision, memory, etc. However, different diseases such as Alzheimer and tumors could affect the brain and conduct to a partial or full disorder. Regular diagnosis are necessary as a preventive measure and could help doctors to early detect a possible trouble and therefore taking the appropriate treatment, especially in the case of brain tumors. Different imaging modalities are proposed for diagnosis of brain tumor. The powerful and most used modality is the Magnetic Resonance Imaging (MRI). MRI images are analyzed by doctor in order to locate eventual tumor in the brain and describe the appropriate and needed treatment. Diverse image processing methods are also proposed for helping doctors in identifying and analyzing the tumor. In fact, a large Computer Aided Diagnostic (CAD) tools including developed image processing algorithms are proposed and exploited by doctors as a second opinion to analyze and identify the brain tumors. In this paper, we proposed a new advanced CAD for brain tumor identification, classification and feature extraction. Our proposed CAD includes three main parts. Firstly, we load the brain MRI. Secondly, a robust technique for brain tumor extraction is proposed. This technique is based on both Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). DWT is characterized by its multiresolution analytic property, that’s why it was applied on MRI images with different decomposition levels for feature extraction. Nevertheless, this technique suffers from a main drawback since it necessitates a huge storage and is computationally expensive. To decrease the dimensions of the feature vector and the computing time, PCA technique is considered. In the last stage, according to different extracted features, the brain tumor is classified into either benign or malignant tumor using Support Vector Machine (SVM) algorithm. A CAD tool for brain tumor detection and classification, including all above-mentioned stages, is designed and developed using MATLAB guide user interface.Keywords: MRI, brain tumor, CAD, feature extraction, DWT, PCA, classification, SVM
Procedia PDF Downloads 250772 Authorship Attribution Using Sociolinguistic Profiling When Considering Civil and Criminal Cases
Authors: Diana A. Sokolova
Abstract:
This article is devoted to one of the possibilities for identifying the author of an oral or written text - sociolinguistic profiling. Sociolinguistic profiling is utilized as a forensic linguistics technique to identify individuals through language patterns, particularly in criminal cases. It examines how social factors influence language use. This study aims to showcase the significance of linguistic profiling for attributing authorship in texts and emphasizes the necessity for its continuous enhancement while considering its strengths and weaknesses. The study employs semantic-syntactic, lexical-semantic, linguopragmatic, logical, presupposition, authorization, and content analysis methods to investigate linguistic profiling. The research highlights the relevance of sociolinguistic profiling in authorship attribution and underscores the importance of ongoing refinement of the technique, considering its limitations. This study emphasizes the practical application of linguistic profiling in legal settings and underscores the impact of social factors on language use, contributing to the field of forensic linguistics. Data collection involves collecting oral and written texts from criminal and civil court cases to analyze language patterns for authorship attribution. The collected data is analyzed using various linguistic analysis methods to identify individual characteristics and patterns that can aid in authorship attribution. The study addresses the effectiveness of sociolinguistic profiling in identifying authors of texts and explores the impact of social factors on language use in legal contexts. In spite of advantages challenges in linguistics profiling have spurred debates and controversies in academic circles, legal environments, and the public sphere. So, this research highlights the significance of sociolinguistic profiling in authorship attribution and emphasizes the need for further development of this method, considering its strengths and weaknesses.Keywords: authorship attribution, detection of identifying, dialect, features, forensic linguistics, social influence, sociolinguistics, unique speech characteristics
Procedia PDF Downloads 38771 Gear Fault Diagnosis Based on Optimal Morlet Wavelet Filter and Autocorrelation Enhancement
Authors: Mohamed El Morsy, Gabriela Achtenová
Abstract:
Condition monitoring is used to increase machinery availability and machinery performance, whilst reducing consequential damage, increasing machine life, reducing spare parts inventories, and reducing breakdown maintenance. An efficient condition monitoring system provides early warning of faults by predicting them at an early stage. When a localized fault occurs in gears, the vibration signals always exhibit non-stationary behavior. The periodic impulsive feature of the vibration signal appears in the time domain and the corresponding gear mesh frequency (GMF) emerges in the frequency domain. However, one limitation of frequency-domain analysis is its inability to handle non-stationary waveform signals, which are very common when machinery faults occur. Particularly at the early stage of gear failure, the GMF contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. In this paper, a new hybrid method based on optimal Morlet wavelet filter and autocorrelation enhancement is presented. First, to eliminate the frequency associated with interferential vibrations, the vibration signal is filtered with a band-pass filter determined by a Morlet wavelet whose parameters are selected or optimized based on maximum Kurtosis. Then, to further reduce the residual in-band noise and highlight the periodic impulsive feature, an autocorrelation enhancement algorithm is applied to the filtered signal. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers induce a load on the output joint shaft flanges. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. The gearbox used for experimental measurements is of the type most commonly used in modern small to mid-sized passenger cars with transversely mounted powertrain and front wheel drive: a five-speed gearbox with final drive gear and front wheel differential. The results obtained from practical experiments prove that the proposed method is very effective for gear fault diagnosis.Keywords: wavelet analysis, pitted gear, autocorrelation, gear fault diagnosis
Procedia PDF Downloads 389770 Submarine Topography and Beach Survey of Gang-Neung Port in South Korea, Using Multi-Beam Echo Sounder and Shipborne Mobile Light Detection and Ranging System
Authors: Won Hyuck Kim, Chang Hwan Kim, Hyun Wook Kim, Myoung Hoon Lee, Chan Hong Park, Hyeon Yeong Park
Abstract:
We conducted submarine topography & beach survey from December 2015 and January 2016 using multi-beam echo sounder EM3001(Kongsberg corporation) & Shipborne Mobile LiDAR System. Our survey area were the Anmok beach in Gangneung, South Korea. We made Shipborne Mobile LiDAR System for these survey. Shipborne Mobile LiDAR System includes LiDAR (RIEGL LMS-420i), IMU ((Inertial Measurement Unit, MAGUS Inertial+) and RTKGNSS (Real Time Kinematic Global Navigation Satellite System, LEIAC GS 15 GS25) for beach's measurement, LiDAR's motion compensation & precise position. Shipborne Mobile LiDAR System scans beach on the movable vessel using the laser. We mounted Shipborne Mobile LiDAR System on the top of the vessel. Before beach survey, we conducted eight circles IMU calibration survey for stabilizing heading of IMU. This exploration should be as close as possible to the beach. But our vessel could not come closer to the beach because of latency objects in the water. At the same time, we conduct submarine topography survey using multi-beam echo sounder EM3001. A multi-beam echo sounder is a device observing and recording the submarine topography using sound wave. We mounted multi-beam echo sounder on left side of the vessel. We were equipped with a motion sensor, DGNSS (Differential Global Navigation Satellite System), and SV (Sound velocity) sensor for the vessel's motion compensation, vessel's position, and the velocity of sound of seawater. Shipborne Mobile LiDAR System was able to reduce the consuming time of beach survey rather than previous conventional methods of beach survey.Keywords: Anmok, beach survey, Shipborne Mobile LiDAR System, submarine topography
Procedia PDF Downloads 429769 Forensic Medical Capacities of Research of Saliva Stains on Physical Evidence after Washing
Authors: Saule Mussabekova
Abstract:
Recent advances in genetics have allowed increasing acutely the capacities of the formation of reliable evidence in conducting forensic examinations. Thus, traces of biological origin are important sources of information about a crime. Currently, around the world, sexual offenses have increased, and among them are those in which the criminals use various detergents to remove traces of their crime. A feature of modern synthetic detergents is the presence of biological additives - enzymes. Enzymes purposefully destroy stains of biological origin. To study the nature and extent of the impact of modern washing powders on saliva stains on the physical evidence, specially prepared test specimens of different types of tissues to which saliva was applied have been examined. Materials and Methods: Washing machines of famous manufacturers of household appliances have been used with different production characteristics and advertised brands of washing powder for test washing. Over 3,500 experimental samples were tested. After washing, the traces of saliva were identified using modern research methods of forensic medicine. Results: The influence was tested and the dependence of the use of different washing programs, types of washing machines and washing powders in the process of establishing saliva trace and identify of the stains on the physical evidence while washing was revealed. The results of experimental and practical expert studies have shown that in most cases it is not possible to draw the conclusions in the identification of saliva traces on physical evidence after washing. This is a consequence of the effect of biological additives and other additional factors on traces of saliva during washing. Conclusions: On the basis of the results of the study, the feasibility of saliva traces of the stains on physical evidence after washing is established. The use of modern molecular genetic methods makes it possible to partially solve the problems arising in the study of unlaundered evidence. Additional study of physical evidence after washing facilitates detection and investigation of sexual offenses against women and children.Keywords: saliva research, modern synthetic detergents, laundry detergents, forensic medicine
Procedia PDF Downloads 216768 TNF-Alpha and MDA Levels in Hearts of Cholesterol-Fed Rats Supplemented with Extra Virgin Olive Oil or Sunflower Oil, in Either Commercial or Modified Forms
Authors: Ageliki I. Katsarou, Andriana C. Kaliora, Antonia Chiou, Apostolos Papalois, Nick Kalogeropoulos, Nikolaos K. Andrikopoulos
Abstract:
Oxidative stress is a major mechanism underlying CVDs while inflammation, an intertwined process with oxidative stress, is also linked to CVDs. Extra virgin olive oil (EVOO) is widely known to play a pivotal role in CVD prevention and CVD reduction. However, in most studies, olive oil constituents are evaluated individually and not as part of the native food, hence potential synergistic effects as drivers of EVOO beneficial properties may be underestimated. In this study, EVOO lipidic and polar phenolics fractions were evaluated for their effect on inflammatory (TNF-alpha) and oxidation (malondialdehyde/MDA) markers, in cholesterol-fed rats. Thereat, oils with discernible lipidic profile and polar phenolic content were used. Wistar rats were fed on either a high-cholesterol diet (HCD) or a HCD supplemented with oils, either commercially available, i.e. EVOO, sunflower oil (SO), or modified as to their polar phenol content, i.e. phenolics deprived-EVOO (EVOOd), SO enriched with the EVOO phenolics (SOe). After 9 weeks of dietary intervention, heart and blood samples were collected. HCD induced dylipidemia shown by increase in serum total cholesterol, low-density lipoprotein cholesterol (LDL-c) and triacylglycerols. Heart tissue has been affected by dyslipidemia; oxidation was indicated by increase in MDA in cholesterol-fed rats and inflammation by increase in TNF-alpha. In both cases, this augmentation was attenuated in EVOO and SOe diets. With respect to oxidation, SO enrichment with the EVOO phenolics brought its lipid peroxidation levels as low as in EVOO-fed rats. This suggests that phenolic compounds may act as antioxidant agents in rat heart. A possible mechanism underlying this activity may be the protective effect of phenolics in mitochondrial membrane against oxidative damage. This was further supported by EVOO/EVOOd comparison with the former presenting lower heart MDA content. As for heart inflammation, phenolics naturally present in EVOO as well as phenolics chemically added in SO, exhibited quenching abilities in heart TNF-alpha levels of cholesterol-fed rats. TNF-alpha may have played a causative role in oxidative stress induction while the opposite may have also happened, hence setting up a vicious cycle. Overall, diet supplementation with EVOO or SOe attenuated hypercholesterolemia-induced increase in MDA and TNF-alpha in Wistar rat hearts. This is attributed to phenolic compounds either naturally existing in olive oil or as fortificants in seed oil.Keywords: extra virgin olive oil, hypercholesterolemic rats, MDA, polar phenolics, TNF-alpha
Procedia PDF Downloads 500767 Patient Agitation and Violence in Medical-Surgical Settings at BronxCare Hospital, Before and During COVID-19 Pandemic; A Retrospective Chart Review
Authors: Soroush Pakniyat-Jahromi, Jessica Bucciarelli, Souparno Mitra, Neda Motamedi, Ralph Amazan, Samuel Rothman, Jose Tiburcio, Douglas Reich, Vicente Liz
Abstract:
Violence is defined as an act of physical force that is intended to cause harm and may lead to physical and/or psychological damage. Violence toward healthcare workers (HCWs) is more common in psychiatric settings, emergency departments, and nursing homes; however, healthcare workers in medical setting are not spared from such events. Workplace violence has a huge burden in the healthcare industry and has a major impact on the physical and mental wellbeing of staff. The purpose of this study is to compare the prevalence of patient agitation and violence in medical-surgical settings in BronxCare Hospital (BCH) Bronx, New York, one year before and during the COVID-19 pandemic. Data collection occurred between June 2021 and August 2021, while the sampling time was from 2019 to 2021. The data were separated into two separate time categories: pre-COVID-19 (03/2019-03/2020) and COVID-19 (03/2020-03/2021). We created frequency tables for 19 variables. We used a chi-square test to determine a variable's statistical significance. We tested all variables against “restraint type”, determining if a patient was violent or became violent enough to restrain. The restraint types were “chemical”, “physical”, or both. This analysis was also used to determine if there was a statistical difference between the pre-COVID-19 and COVID-19 timeframes. Our data shows that there was an increase in incidents of violence in COVID-19 era (03/2020-03/2021), with total of 194 (62.8%) reported events, compared to pre COVID-19 era (03/2019-03/2020) with 115 (37.2%) events (p: 0.01). Our final analysis, completed using a chi-square test, determined the difference in violence in patients between pre-COVID-19 and COVID-19 era. We then tested the violence marker against restraint type. The result was statistically significant (p: 0.01). This is the first paper to systematically review the prevalence of violence in medical-surgical units in a hospital in New York, pre COVID-19 and during the COVID-19 era. Our data is in line with the global trend of increased prevalence of patient agitation and violence in medical settings during the COVID-19 pandemic. Violence and its management is a challenge in healthcare settings, and the COVID-19 pandemic has brought to bear a complexity of circumstances, which may have increased its incidence. It is important to identify and teach healthcare workers the best preventive approaches in dealing with patient agitation, to decrease the number of restraints in medical settings, and to create a less restrictive environment to deliver care.Keywords: COVID-19 pandemic, patient agitation, restraints, violence
Procedia PDF Downloads 143766 Highly Responsive p-NiO/n-rGO Heterojunction Based Self-Powered UV Photodetectors
Authors: P. Joshna, Souvik Kundu
Abstract:
Detection of ultraviolet (UV) radiation is very important as it has exhibited a profound influence on humankind and other existences, including military equipment. In this work, a self-powered UV photodetector was reported based on oxides heterojunctions. The thin films of p-type nickel oxide (NiO) and n-type reduced graphene oxide (rGO) were used for the formation of p-n heterojunction. Low-Cost and low-temperature chemical synthesis was utilized to prepare the oxides, and the spin coating technique was employed to deposit those onto indium doped tin oxide (ITO) coated glass substrates. The top electrode platinum was deposited utilizing physical vapor evaporation technique. NiO offers strong UV absorption with high hole mobility, and rGO prevents the recombination rate by separating electrons out from the photogenerated carriers. Several structural characterizations such as x-ray diffraction, atomic force microscope, scanning electron microscope were used to study the materials crystallinity, microstructures, and surface roughness. On one side, the oxides were found to be polycrystalline in nature, and no secondary phases were present. On the other side, surface roughness was found to be low with no pit holes, which depicts the formation of high-quality oxides thin films. Whereas, x-ray photoelectron spectroscopy was employed to study the chemical compositions and oxidation structures. The electrical characterizations such as current-voltage and current response were also performed on the device to determine the responsivity, detectivity, and external quantum efficiency under dark and UV illumination. This p-n heterojunction device offered faster photoresponse and high on-off ratio under 365 nm UV light illumination of zero bias. The device based on the proposed architecture shows the efficacy of the oxides heterojunction for efficient UV photodetection under zero bias, which opens up a new path towards the development of self-powered photodetector for environment and health monitoring sector.Keywords: chemical synthesis, oxides, photodetectors, spin coating
Procedia PDF Downloads 123765 Coupling Static Multiple Light Scattering Technique With the Hansen Approach to Optimize Dispersibility and Stability of Particle Dispersions
Authors: Guillaume Lemahieu, Matthias Sentis, Giovanni Brambilla, Gérard Meunier
Abstract:
Static Multiple Light Scattering (SMLS) has been shown to be a straightforward technique for the characterization of colloidal dispersions without dilution, as multiply scattered light in backscattered and transmitted mode is directly related to the concentration and size of scatterers present in the sample. In this view, the use of SMLS for stability measurement of various dispersion types has already been widely described in the literature. Indeed, starting from a homogeneous dispersion, the variation of backscattered or transmitted light can be attributed to destabilization phenomena, such as migration (sedimentation, creaming) or particle size variation (flocculation, aggregation). In a view to investigating more on the dispersibility of colloidal suspensions, an experimental set-up for “at the line” SMLS experiment has been developed to understand the impact of the formulation parameters on particle size and dispersibility. The SMLS experiment is performed with a high acquisition rate (up to 10 measurements per second), without dilution, and under direct agitation. Using such experimental device, SMLS detection can be combined with the Hansen approach to optimize the dispersing and stabilizing properties of TiO₂ particles. It appears that the dispersibility and the stability spheres generated are clearly separated, arguing that lower stability is not necessarily a consequence of poor dispersibility. Beyond this clarification, this combined SMLS-Hansen approach is a major step toward the optimization of dispersibility and stability of colloidal formulations by finding solvents having the best compromise between dispersing and stabilizing properties. Such study can be intended to find better dispersion media, greener and cheaper solvents to optimize particles suspensions, reduce the content of costly stabilizing additives or satisfy product regulatory requirements evolution in various industrial fields using suspensions (paints & inks, coatings, cosmetics, energy).Keywords: dispersibility, stability, Hansen parameters, particles, solvents
Procedia PDF Downloads 110764 Resting-State Functional Connectivity Analysis Using an Independent Component Approach
Authors: Eric Jacob Bacon, Chaoyang Jin, Dianning He, Shuaishuai Hu, Lanbo Wang, Han Li, Shouliang Qi
Abstract:
Objective: Refractory epilepsy is a complicated type of epilepsy that can be difficult to diagnose. Recent technological advancements have made resting-state functional magnetic resonance (rsfMRI) a vital technique for studying brain activity. However, there is still much to learn about rsfMRI. Investigating rsfMRI connectivity may aid in the detection of abnormal activities. In this paper, we propose studying the functional connectivity of rsfMRI candidates to diagnose epilepsy. Methods: 45 rsfMRI candidates, comprising 26 with refractory epilepsy and 19 healthy controls, were enrolled in this study. A data-driven approach known as independent component analysis (ICA) was used to achieve our goal. First, rsfMRI data from both patients and healthy controls were analyzed using group ICA. The components that were obtained were then spatially sorted to find and select meaningful ones. A two-sample t-test was also used to identify abnormal networks in patients and healthy controls. Finally, based on the fractional amplitude of low-frequency fluctuations (fALFF), a chi-square statistic test was used to distinguish the network properties of the patient and healthy control groups. Results: The two-sample t-test analysis yielded abnormal in the default mode network, including the left superior temporal lobe and the left supramarginal. The right precuneus was found to be abnormal in the dorsal attention network. In addition, the frontal cortex showed an abnormal cluster in the medial temporal gyrus. In contrast, the temporal cortex showed an abnormal cluster in the right middle temporal gyrus and the right fronto-operculum gyrus. Finally, the chi-square statistic test was significant, producing a p-value of 0.001 for the analysis. Conclusion: This study offers evidence that investigating rsfMRI connectivity provides an excellent diagnosis option for refractory epilepsy.Keywords: ICA, RSN, refractory epilepsy, rsfMRI
Procedia PDF Downloads 76763 Landslide Hazard Zonation Using Satellite Remote Sensing and GIS Technology
Authors: Ankit Tyagi, Reet Kamal Tiwari, Naveen James
Abstract:
Landslide is the major geo-environmental problem of Himalaya because of high ridges, steep slopes, deep valleys, and complex system of streams. They are mainly triggered by rainfall and earthquake and causing severe damage to life and property. In Uttarakhand, the Tehri reservoir rim area, which is situated in the lesser Himalaya of Garhwal hills, was selected for landslide hazard zonation (LHZ). The study utilized different types of data, including geological maps, topographic maps from the survey of India, Landsat 8, and Cartosat DEM data. This paper presents the use of a weighted overlay method in LHZ using fourteen causative factors. The various data layers generated and co-registered were slope, aspect, relative relief, soil cover, intensity of rainfall, seismic ground shaking, seismic amplification at surface level, lithology, land use/land cover (LULC), normalized difference vegetation index (NDVI), topographic wetness index (TWI), stream power index (SPI), drainage buffer and reservoir buffer. Seismic analysis is performed using peak horizontal acceleration (PHA) intensity and amplification factors in the evaluation of the landslide hazard index (LHI). Several digital image processing techniques such as topographic correction, NDVI, and supervised classification were widely used in the process of terrain factor extraction. Lithological features, LULC, drainage pattern, lineaments, and structural features are extracted using digital image processing techniques. Colour, tones, topography, and stream drainage pattern from the imageries are used to analyse geological features. Slope map, aspect map, relative relief are created by using Cartosat DEM data. DEM data is also used for the detailed drainage analysis, which includes TWI, SPI, drainage buffer, and reservoir buffer. In the weighted overlay method, the comparative importance of several causative factors obtained from experience. In this method, after multiplying the influence factor with the corresponding rating of a particular class, it is reclassified, and the LHZ map is prepared. Further, based on the land-use map developed from remote sensing images, a landslide vulnerability study for the study area is carried out and presented in this paper.Keywords: weighted overlay method, GIS, landslide hazard zonation, remote sensing
Procedia PDF Downloads 133762 PbLi Activation Due to Corrosion Products in WCLL BB (EU-DEMO) and Its Impact on Reactor Design and Recycling
Authors: Nicole Virgili, Marco Utili
Abstract:
The design of the Breeding Blanket in Tokamak fusion energy systems has to guarantee sufficient availability in addition to its functions, that are, tritium breeding self-sufficiency, power extraction and shielding (the magnets and the VV). All these function in the presence of extremely harsh operating conditions in terms of heat flux and neutron dose as well as chemical environment of the coolant and breeder that challenge structural materials (structural resistance and corrosion resistance). The movement and activation of fluids from the BB to the Ex-vessel components in a fusion power plant have an important radiological consideration because flowing material can carry radioactivity to safety-critical areas. This includes gamma-ray emission from activated fluid and activated corrosion products, and secondary activation resulting from neutron emission, with implication for the safety of maintenance personnel and damage to electrical and electronic equipment. In addition to the PbLi breeder activation, it is important to evaluate the contribution due to the activated corrosion products (ACPs) dissolved in the lead-lithium eutectic alloy, at different concentration levels. Therefore, the purpose of the study project is to evaluate the PbLi activity utilizing the FISPACT II inventory code. Emphasis is given on how the design of the EU-DEMO WCLL, and potential recycling of the breeder material will be impacted by the activation of PbLi and the associated active corrosion products (ACPs). For this scope the following Computational Tools, Data and Geometry have been considered: • Neutron source: EU-DEMO neutron flux < 1014/cm2/s • Neutron flux distribution in equatorial breeding blanket module (BBM) #13 in the WCLL BB outboard central zone, which is the most activated zone, with the aim to introduce a conservative component utilizing MNCP6. • The recommended geometry model: 2017 EU DEMO CAD model. • Blanket Module Material Specifications (Composition) • Activation calculations for different ACP concentration levels in the PbLi breeder, with a given chemistry in stationary equilibrium conditions, using FISPACT II code. Results suggest that there should be a waiting time of about 10 years from the shut-down (SD) to be able to safely manipulate the PbLi for recycling operations with simple shielding requirements. The dose rate is mainly given by the PbLi and the ACP concentration (x1 or x 100) does not shift the result. In conclusion, the results show that there is no impact on PbLi activation due to ACPs levels.Keywords: activation, corrosion products, recycling, WCLL BB., PbLi
Procedia PDF Downloads 132761 Attitude and Knowledge of Primary Health Care Physicians and Local Inhabitants about Leishmaniasis and Sandfly in West Alexandria, Egypt
Authors: Randa M. Ali, Naguiba F. Loutfy, Osama M. Awad
Abstract:
Background: Leishmaniasis is a worldwide disease, affecting 88 countries, it is estimated that about 350 million people are at risk of leishmaniasis. Overall prevalence is 12 million people with annual mortality of about 60,000. Annual incidence is 1,500,000 cases of cutaneous leishmaniasis (CL) worldwide and half million cases of visceral Leishmaniasis (VL). Objectives: The objective of this study was to assess primary health care physicians knowledge (PHP) and attitude about leishmaniasis and to assess awareness of local inhabitants about the disease and its vector in four areas in west Alexandria, Egypt. Methods: This study was a cross sectional survey that was conducted in four PHC units in west Alexandria. All physicians currently working in these units during the study period were invited to participate in the study, only 20 PHP completed the questionnaire. 60 local inhabitant were selected randomly from the four areas of the study, 15 from each area; Data was collected through two different specially designed questionnaires. Results: 11(55%) percent of the physicians had satisfactory knowledge, they answered more than 9 (60%) questions out of a total 14 questions about leishmaniasis and sandfly. The second part of the questionnaire is concerned with attitude of the primary health care physicians about leishmaniasis, 17 (85%) had good attitude and 3 (15%) had poor attitude. The second questionnaire showed that the awareness of local inhabitants about leishmaniasis and sandly as a vector of the disease is poor and needs to be corrected. Most of the respondents (90%) had not heard about leishmaniasis, Only 3 (5%) of the interviewed inhabitants said they know sandfly and its role in transmission of leishmaniasis. Conclusions: knowledge and attitudes of physicians are acceptable. However, there is, room for improvement and could be done through formal training courses and distribution of guidelines. In addition to raising the awareness of primary health care physicians about the importance of early detection and notification of cases of lesihmaniasis. Moreover, health education for raising awareness of the public regarding the vector and the disease is necessary because related studies have demonstrated that if the inhabitants do not perceive mosquitoes to be responsible for diseases such as malaria they do not take enough measures to protect themselves against the vector.Keywords: leishmaniasis, PHP, knowledge, attitude, local inhabitants
Procedia PDF Downloads 449760 Synthesis of MIPs towards Precursors and Intermediates of Illicit Drugs and Their following Application in Sensing Unit
Authors: K. Graniczkowska, N. Beloglazova, S. De Saeger
Abstract:
The threat of synthetic drugs is one of the most significant current drug problems worldwide. The use of drugs of abuse has increased dramatically during the past three decades. Among others, Amphetamine-Type Stimulants (ATS) are globally the second most widely used drugs after cannabis, exceeding the use of cocaine and heroin. ATS are potent central nervous system (CNS) stimulants, capable of inducing euphoric static similar to cocaine. Recreational use of ATS is widespread, even though warnings of irreversible damage of the CNS were reported. ATS pose a big problem and their production contributes to the pollution of the environment by discharging big volumes of liquid waste to sewage system. Therefore, there is a demand to develop robust and sensitive sensors that can detect ATS and their intermediates in environmental water samples. A rapid and simple test is required. Analysis of environmental water samples (which sometimes can be a harsh environment) using antibody-based tests cannot be applied. Therefore, molecular imprinted polymers (MIPs), which are known as synthetic antibodies, have been chosen for that approach. MIPs are characterized with a high mechanical and thermal stability, show chemical resistance in a broad pH range and various organic or aqueous solvents. These properties make them the preferred type of receptors for application in the harsh conditions imposed by environmental samples. To the best of our knowledge, there are no existing MIPs-based sensors toward amphetamine and its intermediates. Also not many commercial MIPs for this application are available. Therefore, the aim of this study was to compare different techniques to obtain MIPs with high specificity towards ATS and characterize them for following use in a sensing unit. MIPs against amphetamine and its intermediates were synthesized using a few different techniques, such as electro-, thermo- and UV-initiated polymerization. Different monomers, cross linkers and initiators, in various ratios, were tested to obtain the best sensitivity and polymers properties. Subsequently, specificity and selectivity were compared with commercially available MIPs against amphetamine. Different linkers, such as lipoic acid, 3-mercaptopioponic acid and tyramine were examined, in combination with several immobilization techniques, to select the best procedure for attaching particles on sensor surface. Performed experiments allowed choosing an optimal method for the intended sensor application. Stability of MIPs in extreme conditions, such as highly acidic or basic was determined. Obtained results led to the conclusion about MIPs based sensor applicability in sewage system testing.Keywords: amphetamine type stimulants, environment, molecular imprinted polymers, MIPs, sensor
Procedia PDF Downloads 250759 Kernel-Based Double Nearest Proportion Feature Extraction for Hyperspectral Image Classification
Authors: Hung-Sheng Lin, Cheng-Hsuan Li
Abstract:
Over the past few years, kernel-based algorithms have been widely used to extend some linear feature extraction methods such as principal component analysis (PCA), linear discriminate analysis (LDA), and nonparametric weighted feature extraction (NWFE) to their nonlinear versions, kernel principal component analysis (KPCA), generalized discriminate analysis (GDA), and kernel nonparametric weighted feature extraction (KNWFE), respectively. These nonlinear feature extraction methods can detect nonlinear directions with the largest nonlinear variance or the largest class separability based on the given kernel function. Moreover, they have been applied to improve the target detection or the image classification of hyperspectral images. The double nearest proportion feature extraction (DNP) can effectively reduce the overlap effect and have good performance in hyperspectral image classification. The DNP structure is an extension of the k-nearest neighbor technique. For each sample, there are two corresponding nearest proportions of samples, the self-class nearest proportion and the other-class nearest proportion. The term “nearest proportion” used here consider both the local information and other more global information. With these settings, the effect of the overlap between the sample distributions can be reduced. Usually, the maximum likelihood estimator and the related unbiased estimator are not ideal estimators in high dimensional inference problems, particularly in small data-size situation. Hence, an improved estimator by shrinkage estimation (regularization) is proposed. Based on the DNP structure, LDA is included as a special case. In this paper, the kernel method is applied to extend DNP to kernel-based DNP (KDNP). In addition to the advantages of DNP, KDNP surpasses DNP in the experimental results. According to the experiments on the real hyperspectral image data sets, the classification performance of KDNP is better than that of PCA, LDA, NWFE, and their kernel versions, KPCA, GDA, and KNWFE.Keywords: feature extraction, kernel method, double nearest proportion feature extraction, kernel double nearest feature extraction
Procedia PDF Downloads 344758 Controlled Growth of Au Hierarchically Ordered Crystals Architectures for Electrochemical Detection of Traces of Molecules
Authors: P. Bauer, K. Mougin, V. Vignal, A. Buch, P. Ponthiaux, D. Faye
Abstract:
Nowadays, noble metallic nanostructures with unique morphology are widely used as new sensors due to their fascinating optical, electronic and catalytic properties. Among various shapes, dendritic nanostructures have attracted much attention because of their large surface-to-volume ratio, high sensitivity and special texture with sharp tips and nanoscale junctions. Several methods have been developed to fabricate those specific structures such as electrodeposition, photochemical way, seed-mediated growth or wet chemical method. The present study deals with a novel approach for a controlled growth pattern-directed organisation of Au flower-like crystals (NFs) deposited onto stainless steel plates to achieve large-scale functional surfaces. This technique consists in the deposition of a soft nanoporous template on which Au NFs are grown by electroplating and seed-mediated method. Size, morphology, and interstructure distance have been controlled by a site selective nucleation process. Dendritic Au nanostructures have appeared as excellent Raman-active candidates due to the presence of very sharp tips of multi-branched Au nanoparticles that leads to a large local field enhancement and a good SERS sensitivity. In addition, these structures have also been used as electrochemical sensors to detect traces of molecules present in a solution. A correlation of the number of active sites on the surface and the current charge by both colorimetric method and cyclic voltammetry of gold structures have allowed a calibration of the system. This device represents a first step for the fabrication of MEMs platform that could ultimately be integrated into a lab-on-chip system. It also opens pathways to several technologically large-scale nanomaterials fabrication such as hierarchically ordered crystal architectures for sensor applications.Keywords: dendritic, electroplating, gold, template
Procedia PDF Downloads 186757 Vehicles Analysis, Assessment and Redesign Related to Ergonomics and Human Factors
Authors: Susana Aragoneses Garrido
Abstract:
Every day, the roads are scenery of numerous accidents involving vehicles, producing thousands of deaths and serious injuries all over the world. Investigations have revealed that Human Factors (HF) are one of the main causes of road accidents in modern societies. Distracted driving (including external or internal aspects of the vehicle), which is considered as a human factor, is a serious and emergent risk to road safety. Consequently, a further analysis regarding this issue is essential due to its transcendence on today’s society. The objectives of this investigation are the detection and assessment of the HF in order to provide solutions (including a better vehicle design), which might mitigate road accidents. The methodology of the project is divided in different phases. First, a statistical analysis of public databases is provided between Spain and The UK. Second, data is classified in order to analyse the major causes involved in road accidents. Third, a simulation between different paths and vehicles is presented. The causes related to the HF are assessed by Failure Mode and Effects Analysis (FMEA). Fourth, different car models are evaluated using the Rapid Upper Body Assessment (RULA). Additionally, the JACK SIEMENS PLM tool is used with the intention of evaluating the Human Factor causes and providing the redesign of the vehicles. Finally, improvements in the car design are proposed with the intention of reducing the implication of HF in traffic accidents. The results from the statistical analysis, the simulations and the evaluations confirm that accidents are an important issue in today’s society, especially the accidents caused by HF resembling distractions. The results explore the reduction of external and internal HF through the global analysis risk of vehicle accidents. Moreover, the evaluation of the different car models using RULA method and the JACK SIEMENS PLM prove the importance of having a good regulation of the driver’s seat in order to avoid harmful postures and therefore distractions. For this reason, a car redesign is proposed for the driver to acquire the optimum position and consequently reducing the human factors in road accidents.Keywords: analysis vehicles, asssesment, ergonomics, car redesign
Procedia PDF Downloads 335756 Adaption to Climate Change as a Challenge for the Manufacturing Industry: Finding Business Strategies by Game-Based Learning
Authors: Jan Schmitt, Sophie Fischer
Abstract:
After the Corona pandemic, climate change is a further, long-lasting challenge the society must deal with. An ongoing climate change need to be prevented. Nevertheless, the adoption tothe already changed climate conditionshas to be focused in many sectors. Recently, the decisive role of the economic sector with high value added can be seen in the Corona crisis. Hence, manufacturing industry as such a sector, needs to be prepared for climate change and adaption. Several examples from the manufacturing industry show the importance of a strategic effort in this field: The outsourcing of a major parts of the value chain to suppliers in other countries and optimizing procurement logistics in a time-, storage- and cost-efficient manner within a network of global value creation, can lead vulnerable impacts due to climate-related disruptions. E.g. the total damage costs after the 2011 flood disaster in Thailand, including costs for delivery failures, were estimated at 45 billion US dollars worldwide. German car manufacturers were also affected by supply bottlenecks andhave close its plant in Thailand for a short time. Another OEM must reduce the production output. In this contribution, a game-based learning approach is presented, which should enable manufacturing companies to derive their own strategies for climate adaption out of a mix of different actions. Based on data from a regional study of small, medium and large manufacturing companies in Mainfranken, a strongly industrialized region of northern Bavaria (Germany) the game-based learning approach is designed. Out of this, the actual state of efforts due to climate adaption is evaluated. First, the results are used to collect single actions for manufacturing companies and second, further actions can be identified. Then, a variety of climate adaption activities can be clustered according to the scope of activity of the company. The combination of different actions e.g. the renewal of the building envelope with regard to thermal insulation, its benefits and drawbacks leads to a specific strategy for climate adaption for each company. Within the game-based approach, the players take on different roles in a fictionalcompany and discuss the order and the characteristics of each action taken into their climate adaption strategy. Different indicators such as economic, ecologic and stakeholder satisfaction compare the success of the respective measures in a competitive format with other virtual companies deriving their own strategy. A "play through" climate change scenarios with targeted adaptation actions illustrate the impact of different actions and their combination onthefictional company.Keywords: business strategy, climate change, climate adaption, game-based learning
Procedia PDF Downloads 207755 Development and Validation of a Carbon Dioxide TDLAS Sensor for Studies on Fermented Dairy Products
Authors: Lorenzo Cocola, Massimo Fedel, Dragiša Savić, Bojana Danilović, Luca Poletto
Abstract:
An instrument for the detection and evaluation of gaseous carbon dioxide in the headspace of closed containers has been developed in the context of Packsensor Italian-Serbian joint project. The device is based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) with a Wavelength Modulation Spectroscopy (WMS) technique in order to accomplish a non-invasive measurement inside closed containers of fermented dairy products (yogurts and fermented cheese in cups and bottles). The purpose of this instrument is the continuous monitoring of carbon dioxide concentration during incubation and storage of products over a time span of the whole shelf life of the product, in the presence of different microorganisms. The instrument’s optical front end has been designed to be integrated in a thermally stabilized incubator. An embedded computer provides processing of spectral artifacts and storage of an arbitrary set of calibration data allowing a properly calibrated measurement on many samples (cups and bottles) of different shapes and sizes commonly found in the retail distribution. A calibration protocol has been developed in order to be able to calibrate the instrument on the field also on containers which are notoriously difficult to seal properly. This calibration protocol is described and evaluated against reference measurements obtained through an industry standard (sampling) carbon dioxide metering technique. Some sets of validation test measurements on different containers are reported. Two test recordings of carbon dioxide concentration evolution are shown as an example of instrument operation. The first demonstrates the ability to monitor a rapid yeast growth in a contaminated sample through the increase of headspace carbon dioxide. Another experiment shows the dissolution transient with a non-saturated liquid medium in presence of a carbon dioxide rich headspace atmosphere.Keywords: TDLAS, carbon dioxide, cups, headspace, measurement
Procedia PDF Downloads 324754 Survey of Indoor Radon/Thoron Concentrations in High Lung Cancer Incidence Area in India
Authors: Zoliana Bawitlung, P. C. Rohmingliana, L. Z. Chhangte, Remlal Siama, Hming Chungnunga, Vanram Lawma, L. Hnamte, B. K. Sahoo, B. K. Sapra, J. Malsawma
Abstract:
Mizoram state has the highest lung cancer incidence rate in India due to its high-level consumption of tobacco and its products which is supplemented by the food habits. While smoking is mainly responsible for this incidence, the effect of inhalation of indoor radon gas cannot be discarded as the hazardous nature of this radioactive gas and its progenies on human population have been well-established worldwide where the radiation damage to bronchial cells eventually can be the second leading cause of lung cancer next to smoking. It is also known that the effect of radiation, however, small may be the concentration, cannot be neglected as they can bring about the risk of cancer incidence. Hence, estimation of indoor radon concentration is important to give a useful reference against radiation effects as well as establishing its safety measures and to create a baseline for further case-control studies. The indoor radon/thoron concentrations in Mizoram had been measured in 41 dwellings selected on the basis of spot gamma background radiation and construction type of the houses during 2015-2016. The dwellings were monitored for one year, in 4 months cycles to indicate seasonal variations, for the indoor concentration of radon gas and its progenies, outdoor gamma dose, and indoor gamma dose respectively. A time-integrated method using Solid State Nuclear Track Detector (SSNTD) based single entry pin-hole dosimeters were used for measurement of indoor Radon/Thoron concentration. Gamma dose measurements for indoor as well as outdoor were carried out using Geiger Muller survey meters. Seasonal variation of indoor radon/ thoron concentration was monitored. The results show that the annual average radon concentrations varied from 54.07 – 144.72 Bq/m³ with an average of 90.20 Bq/m³ and the annual average thoron concentration varied from 17.39 – 54.19 Bq/m³ with an average of 35.91 Bq/m³ which are below the permissible limit. The spot survey of gamma background radiation level varies between 9 to 24 µR/h inside and outside the dwellings throughout Mizoram which are all within acceptable limits. From the above results, there is no direct indication that radon/thoron is responsible for the high lung cancer incidence in the area. In order to find epidemiological evidence of natural radiations to high cancer incidence in the area, one may need to conduct a case-control study which is beyond this scope. However, the derived data of measurement will provide baseline data for further studies.Keywords: background gamma radiation, indoor radon/thoron, lung cancer, seasonal variation
Procedia PDF Downloads 144753 Accurate Calculation of the Penetration Depth of a Bullet Using ANSYS
Authors: Eunsu Jang, Kang Park
Abstract:
In developing an armored ground combat vehicle (AGCV), it is a very important step to analyze the vulnerability (or the survivability) of the AGCV against enemy’s attack. In the vulnerability analysis, the penetration equations are usually used to get the penetration depth and check whether a bullet can penetrate the armor of the AGCV, which causes the damage of internal components or crews. The penetration equations are derived from penetration experiments which require long time and great efforts. However, they usually hold only for the specific material of the target and the specific type of the bullet used in experiments. Thus, penetration simulation using ANSYS can be another option to calculate penetration depth. However, it is very important to model the targets and select the input parameters in order to get an accurate penetration depth. This paper performed a sensitivity analysis of input parameters of ANSYS on the accuracy of the calculated penetration depth. Two conflicting objectives need to be achieved in adopting ANSYS in penetration analysis: maximizing the accuracy of calculation and minimizing the calculation time. To maximize the calculation accuracy, the sensitivity analysis of the input parameters for ANSYS was performed and calculated the RMS error with the experimental data. The input parameters include mesh size, boundary condition, material properties, target diameter are tested and selected to minimize the error between the calculated result from simulation and the experiment data from the papers on the penetration equation. To minimize the calculation time, the parameter values obtained from accuracy analysis are adjusted to get optimized overall performance. As result of analysis, the followings were found: 1) As the mesh size gradually decreases from 0.9 mm to 0.5 mm, both the penetration depth and calculation time increase. 2) As diameters of the target decrease from 250mm to 60 mm, both the penetration depth and calculation time decrease. 3) As the yield stress which is one of the material property of the target decreases, the penetration depth increases. 4) The boundary condition with the fixed side surface of the target gives more penetration depth than that with the fixed side and rear surfaces. By using above finding, the input parameters can be tuned to minimize the error between simulation and experiments. By using simulation tool, ANSYS, with delicately tuned input parameters, penetration analysis can be done on computer without actual experiments. The data of penetration experiments are usually hard to get because of security reasons and only published papers provide them in the limited target material. The next step of this research is to generalize this approach to anticipate the penetration depth by interpolating the known penetration experiments. This result may not be accurate enough to be used to replace the penetration experiments, but those simulations can be used in the early stage of the design process of AGCV in modelling and simulation stage.Keywords: ANSYS, input parameters, penetration depth, sensitivity analysis
Procedia PDF Downloads 401752 Microalbuminuria in Patients with Hypertension Visiting Tertiary Care Centre, Western Nepal
Authors: Binaya Tamang, Buddhi R. Pokharel, Narayan Gautam, Puspa R. Dhakal, Yuresh Twayana
Abstract:
Background and Objective: Microalbuminuria is often regarded as a sign of end-organ damage due to hypertension, with an increased risk for renal diseases. The present study was designed to find the prevalence of microalbuminuria in hypertensive patients by determining albumin creatinine ratio (ACR) and the association of ACR and microalbuminuria status with different stages and duration of hypertension (HTN). Also, to establish the correlation of systolic and diastolic blood pressure (SBP and DBP) with various parameters viz; ACR, urinary microalbumin (UMA), estimated glomerular filtration rate (eGFR), urinary creatinine (Ucreat), serum creatinine (Screat), and find out their significance among HTN and ACR status. Materials and Methods: A hospital-based cross-sectional study was conducted in the Department of Biochemistry in collaboration with the Department of Internal Medicine, UCMS, Bhairahawa, Nepal from April 2019 to September 2019 after obtaining ethical approval from institutional review committee (IRC), UCMS. A total of 120 hypertensive patients were enrolled whose blood, and spot urine samples were taken. eGFR was calculated by using Cockcroft-Gault formula after determining Screat while ACR was calculated after measuring Ucreat and UMA from the spot urine sample. Creatinine was estimated from modified jaffes’ reaction, whereas urinary micro albumin was done by Mispa i3 analyzer. Data were analyzed by using SPSS. 20 using p-value ≤ 0.05 as statistically significant. Results: In our study, the highest enrolled were grade II HTN (36.7%) followed by normal (33.3%), grade I (20.8%) and grade III (9.2%). Evaluating the ACR status, 19.2% were microalbuminuria, and the rest were normal. Though the ACR status (normal and microalbuminuria) was not statistically significant with HTN status (P=0.860) and the duration of HTN status (P=0.165), 5 (45.5%) out of 11 grade III HTN were microalbuminuria and the prevalence was also higher for longer duration .i.e., more than 10 years. In microalbuminuria, both the SBP (p=0.023, r=0.471) and DBP (P=0.034, r= 0.444) were strongly and positively correlated with Screat, in contrast to eGFR, which was negatively but weakly correlated. With the significant difference between the HTN group, the mean ACR (P=0.047) and UMA (P=0.02) were found to be highest among grade III patients, i.e., 84.3 ± 113.3 mg/gm. and 88.4 ± 83.9 mg/l respectively. The mean eGFR (64.2 ± 24.8 vs 77.2 ± 18.1 ml/min) was considerably lower in microalbuminuria ( p=0.026) than the normal in contrast to the SBP (160 ± 33.7 vs. 146.6 ± 19.5 mm of Hg) which was significantly higher (P=0.008). Among the different BMI category, the mean ACR was found to be significantly different (P= 0.01) with the highest value in underweight (115.2 ± 51.5 mg/gm.) and lowest in overweight (31.8 ± 4.3 mg/gm.). Conclusion: The study recommends that the microalbuminuria can be a very useful and imperative predictor of deranged kidney functions in hypertensive patients. The high value of ACR and UMA in hypertensive patients along with significant increased Screat, SBP whereas decreased eGFR in microalbuminuria patients explicitly supports the above statement.Keywords: albumin creatinine ratio, hypertension, microalbuminuria, renal disease
Procedia PDF Downloads 136751 Investigations on Pyrolysis Model for Radiatively Dominant Diesel Pool Fire Using Fire Dynamic Simulator
Authors: Siva K. Bathina, Sudheer Siddapureddy
Abstract:
Pool fires are formed when the flammable liquid accidentally spills on the ground or water and ignites. Pool fire is a kind of buoyancy-driven and diffusion flame. There have been many pool fire accidents caused during processing, handling and storing of liquid fuels in chemical and oil industries. Such kind of accidents causes enormous damage to property as well as the loss of lives. Pool fires are complex in nature due to the strong interaction among the combustion, heat and mass transfers and pyrolysis at the fuel surface. Moreover, the experimental study of such large complex fires involves fire safety issues and difficulties in performing experiments. In the present work, large eddy simulations are performed to study such complex fire scenarios using fire dynamic simulator. A 1 m diesel pool fire is considered for the studied cases, and diesel is chosen as it is most commonly involved fuel in fire accidents. Fire simulations are performed by specifying two different boundary conditions: one the fuel is in liquid state and pyrolysis model is invoked, and the other by assuming the fuel is initially in a vapor state and thereby prescribing the mass loss rate. A domain of size 11.2 m × 11.2 m × 7.28 m with uniform structured grid is chosen for the numerical simulations. Grid sensitivity analysis is performed, and a non-dimensional grid size of 12 corresponding to 8 cm grid size is considered. Flame properties like mass burning rate, irradiance, and time-averaged axial flame temperature profile are predicted. The predicted steady-state mass burning rate is 40 g/s and is within the uncertainty limits of the previously reported experimental data (39.4 g/s). Though the profile of the irradiance at a distance from the fire along the height is somewhat in line with the experimental data and the location of the maximum value of irradiance is shifted to a higher location. This may be due to the lack of sophisticated models for the species transportation along with combustion and radiation in the continuous zone. Furthermore, the axial temperatures are not predicted well (for any of the boundary conditions) in any of the zones. The present study shows that the existing models are not sufficient enough for modeling blended fuels like diesel. The predictions are strongly dependent on the experimental values of the soot yield. Future experiments are necessary for generalizing the soot yield for different fires.Keywords: burning rate, fire accidents, fire dynamic simulator, pyrolysis
Procedia PDF Downloads 197750 Comprehensive Approach to Control Virus Infection and Energy Consumption in An Occupant Classroom
Authors: SeyedKeivan Nateghi, Jan Kaczmarczyk
Abstract:
People nowadays spend most of their time in buildings. Accordingly, maintaining a good quality of indoor air is very important. New universal matters related to the prevalence of Covid-19 also highlight the importance of indoor air conditioning in reducing the risk of virus infection. Cooling and Heating of a house will provide a suitable zone of air temperature for residents. One of the significant factors in energy demand is energy consumption in the building. In general, building divisions compose more than 30% of the world's fundamental energy requirement. As energy demand increased, greenhouse effects emerged that caused global warming. Regardless of the environmental damage to the ecosystem, it can spread infectious diseases such as malaria, cholera, or dengue to many other parts of the world. With the advent of the Covid-19 phenomenon, the previous instructions to reduce energy consumption are no longer responsive because they increase the risk of virus infection among people in the room. Two problems of high energy consumption and coronavirus infection are opposite. A classroom with 30 students and one teacher in Katowice, Poland, considered controlling two objectives simultaneal. The probability of transmission of the disease is calculated from the carbon dioxide concentration of people. Also, in a certain period, the amount of energy consumption is estimated by EnergyPlus. The effect of three parameters of number, angle, and time or schedule of opening windows on the probability of infection transmission and energy consumption of the class were investigated. Parameters were examined widely to determine the best possible condition for simultaneous control of infection spread and energy consumption. The number of opening windows is discrete (0,3), and two other parameters are continuous (0,180) and (8 AM, 2 PM). Preliminary results show that changes in the number, angle, and timing of window openings significantly impact the likelihood of virus transmission and class energy consumption. The greater the number, tilt, and timing of window openings, the less likely the student will transmit the virus. But energy consumption is increasing. When all the windows were closed at all hours of the class, the energy consumption for the first day of January was only 0.2 megajoules. In comparison, the probability of transmitting the virus per person in the classroom is more than 45%. But when all windows were open at maximum angles during class, the chance of transmitting the infection was reduced to 0.35%. But the energy consumption will be 36 megajoules. Therefore, school classrooms need an optimal schedule to control both functions. In this article, we will present a suitable plan for the classroom with natural ventilation through windows to control energy consumption and the possibility of infection transmission at the same time.Keywords: Covid-19, energy consumption, building, carbon dioxide, energyplus
Procedia PDF Downloads 99749 Off-Line Text-Independent Arabic Writer Identification Using Optimum Codebooks
Authors: Ahmed Abdullah Ahmed
Abstract:
The task of recognizing the writer of a handwritten text has been an attractive research problem in the document analysis and recognition community with applications in handwriting forensics, paleography, document examination and handwriting recognition. This research presents an automatic method for writer recognition from digitized images of unconstrained writings. Although a great effort has been made by previous studies to come out with various methods, their performances, especially in terms of accuracy, are fallen short, and room for improvements is still wide open. The proposed technique employs optimal codebook based writer characterization where each writing sample is represented by a set of features computed from two codebooks, beginning and ending. Unlike most of the classical codebook based approaches which segment the writing into graphemes, this study is based on fragmenting a particular area of writing which are beginning and ending strokes. The proposed method starting with contour detection to extract significant information from the handwriting and the curve fragmentation is then employed to categorize the handwriting into Beginning and Ending zones into small fragments. The similar fragments of beginning strokes are grouped together to create Beginning cluster, and similarly, the ending strokes are grouped to create the ending cluster. These two clusters lead to the development of two codebooks (beginning and ending) by choosing the center of every similar fragments group. Writings under study are then represented by computing the probability of occurrence of codebook patterns. The probability distribution is used to characterize each writer. Two writings are then compared by computing distances between their respective probability distribution. The evaluations carried out on ICFHR standard dataset of 206 writers using Beginning and Ending codebooks separately. Finally, the Ending codebook achieved the highest identification rate of 98.23%, which is the best result so far on ICFHR dataset.Keywords: off-line text-independent writer identification, feature extraction, codebook, fragments
Procedia PDF Downloads 512748 A Left Testicular Cancer with Multiple Metastases Nursing Experience
Authors: Syue-Wen Lin
Abstract:
Objective:This article reviews the care experience of a 40-year-old male patient who underwent a thoracoscopic right lower lobectomy following a COVID-19 infection. His complex medical history included multiple metastases (lungs, liver, spleen, and left kidney) and lung damage from COVID-19, which complicated the weaning process from mechanical ventilation. The care involved managing cancer treatment, postoperative pain, wound care, and palliative care. Methods:Nursing care was provided from August 16 to August 17, 2024. Challenges included difficulty with sputum clearance, which exacerbated the patient's anxiety and fear of reintubation. Pain management strategies combined analgesic drugs, non-drug methods, essential oil massages with family members, and playing the patient’s favorite music to reduce pain and anxiety. Progressive rehabilitation began with stabilizing vital signs, followed by assistance with sitting on the edge of the bed and walking within the ward. Strict sterile procedures and advanced wound care technology were used for daily dressing changes, with meticulous documentation of wound conditions and appropriate dressing selection. Holistic cancer care and palliative measures were integrated to address the patient’s physical and psychological needs. Results:The interdisciplinary care team developed a comprehensive plan addressing both physical and psychological aspects. Respiratory therapy, lung expansion exercises, and a high-frequency chest wall oscillation vest facilitated sputum expulsion and assisted in weaning from mechanical ventilation. The integration of cancer care, pain management, wound care, and palliative care led to improved quality of life and recovery. The collaborative approach between nursing staff and family ensured that the patient received compassionate and effective care. Conclusion: The complex interplay of emergency surgery, COVID-19, and advanced cancer required a multifaceted care strategy. The care team’s approach, combining critical care with tailored cancer and palliative care, effectively improved the patient’s quality of life and facilitated recovery. The comprehensive care plan, developed with family collaboration, provided both high-quality medical care and compassionate support for the terminally ill patient.Keywords: multiple metastases, testicular cancer, palliative care, nursing experience
Procedia PDF Downloads 22747 Elevated Creatinine Clearance and Normal Glomerular Filtration Rate in Patients with Systemic Lupus erythematosus
Authors: Stoyanka Vladeva, Elena Kirilova, Nikola Kirilov
Abstract:
Background: The creatinine clearance is a widely used value to estimate the GFR. Increased creatinine clearance is often called hyperfiltration and is usually seen during pregnancy, patients with diabetes mellitus preceding the diabetic nephropathy. It may also occur with large dietary protein intake or with plasma volume expansion. Renal injury in lupus nephritis is known to affect the glomerular, tubulointerstitial, and vascular compartment. However high creatinine clearance has not been found in patients with SLE, Target: Follow-up of creatinine clearance values in patients with systemic lupus erythematosus without history of kidney injury. Material and methods: We observed the creatinine, creatinine clearance, GFR and dipstick protein values of 7 women (with a mean age of 42.71 years) with systemic lupus erythematosus. Patients with active lupus have been monthly tested in the period of 13 months. Creatinine clearance has been estimated by Cockcroft-Gault Equation formula in ml/sec. GFR has been estimated by MDRD formula (The Modification of Diet in renal Disease) in ml/min/1.73 m2. Proteinuria has been defined as present when dipstick protein > 1+.Results: In all patients without history of kidney injury we found elevated creatinine clearance levels, but GFRremained within the reference range. Two of the patients were in remission while the other five patients had clinically and immunologically active Lupus. Three of the patients had a permanent presence of high creatinine clearance levels and proteinuria. Two of the patients had periodically elevated creatinine clearance without proteinuria. These results show that kidney disturbances may be caused by the vascular changes typical for SLE. Glomerular hyperfiltration can be result of focal segmental glomerulosclerosis caused by a reduction in renal mass. Probably lupus nephropathy is preceded not only by glomerular vascular changes, but also by tubular vascular changes. Using only the GFR is not a sufficient method to detect these primary functional disturbances. Conclusion: For early detection of kidney injury in patients with SLE we determined that the follow up of creatinine clearance values could be helpful.Keywords: systemic Lupus erythematosus, kidney injury, elevated creatinine clearance level, normal glomerular filtration rate
Procedia PDF Downloads 271