Search results for: pedestrian behavior
1719 Preparation of Fluoroalkyl End-Capped Oligomers/Silica Nanocomposites Possessing a Nonflammable Characteristic Even After Calcination at 800 oC
Authors: Hideo Sawada
Abstract:
Fluoroalkyl end-capped oligomers [RF-(M)n-RF; RF = fluoroalkyl groups; M = radical polymerizable monomers] can form nanometre size-controlled self-assembled oligomeric aggregates through the aggregations of end-capped fluoroalkyl groups. Fluoroalkyl end-capped oligomeric aggregates can also interact with guest molecules to afford fluorinated aggregate/guest molecule nanocomposites; although the corresponding non-fluorinated oligomers cannot form such molecular aggregates to interact with guest molecules. For example, silica nanoparticles should act as guest molecules in fluorinated oligomeric aggregate cores to give new fluorinated oligomer-coated silica nanoparticles (fluorinated oligomer/silica nanocomposites). In these fluoroalkyl end-capped oligomers/silica nanocomposites, some fluorinated oligomers/silica nanocomposites were found to exhibit no weight loss behavior corresponding to the contents of oligomers in the silica matrices even after calcination at 800 oC. Fluoroalkyl end-capped vinyltrimethoxysilane oligomer-coated silica nanoparticles can be prepared by the sol-gel reaction of the corresponding fluorinated oligomer under alkaline conditions. The modified glass surface treated with this fluorinated oligomeric nanoparticle exhibited a completely super-hydrophobic characteristic. These fluorinated nanoparticles were also applied to the surface modification possessing a super-oleophobic characteristic. Not only fluoroalkyl end-capped oligomers but also low molecular weight fluorinated surfactants such as perfluoro-1,3-propanedisulfonic acid (PFPS) were applied to the preparation of fluorinated surfactants/silica nanocomposites to give no weight loss in proportion to the content of the surfactants in the nanocomposites even after calcination at 800 oC.Keywords: fluorinated oligomer, silica nanocomposite, nonflammable characteristic, superamphiphobic chracteristic
Procedia PDF Downloads 4781718 Behavioral Response of Dogs to Interior Environment: An Exploratory Study on Design Parameters for Designing Dog Boarding Centers in Indian Context
Authors: M. R. Akshaya, Veena Rao
Abstract:
Pet population in India is increasing phenomenally owing to the changes in urban lifestyle with increasing number of single professionals, single parents, delayed parenthood etc. The animal companionship as a means of reducing stress levels, deriving emotional support, and unconditional love provided by dogs are a few reasons attributed for increasing pet ownership. The consequence is the booming of the pet care products and dog care centers catering to the different requirements of rearing the pets. Dog care centers quite popular in tier 1 metros of India cater to the requirement of the dog owners providing space for the dogs in absence of the owner. However, it is often reported that the absence of the owner leads to destructive and exploratory behavior issues; the main being the anxiety disorders. In the above context, it becomes imperative for a designer to design dog boarding centers that help in reducing the separation anxiety in dogs keeping in mind the different interior design parameters. An exploratory research with focus group discussion is employed involving a group of dog owners, behaviorists, proprietors of day care as well as boarding centers, and veterinarians to understand their perception on the significance of different interior parameters of color, texture, ventilation, aroma therapy and acoustics as a means of reducing the stress levels in dogs sent to the boarding centers. The data collected is organized as thematic networks thus enabling the listing of the interior design parameters that needs to be considered in designing dog boarding centers.Keywords: behavioral response, design parameters, dog boarding centers, interior environment
Procedia PDF Downloads 2051717 Dynamic Process Model for Designing Smart Spaces Based on Context-Awareness and Computational Methods Principles
Authors: Heba M. Jahin, Ali F. Bakr, Zeyad T. Elsayad
Abstract:
As smart spaces can be defined as any working environment which integrates embedded computers, information appliances and multi-modal sensors to remain focused on the interaction between the users, their activity, and their behavior in the space; hence, smart space must be aware of their contexts and automatically adapt to their changing context-awareness, by interacting with their physical environment through natural and multimodal interfaces. Also, by serving the information used proactively. This paper suggests a dynamic framework through the architectural design process of the space based on the principles of computational methods and context-awareness principles to help in creating a field of changes and modifications. It generates possibilities, concerns about the physical, structural and user contexts. This framework is concerned with five main processes: gathering and analyzing data to generate smart design scenarios, parameters, and attributes; which will be transformed by coding into four types of models. Furthmore, connecting those models together in the interaction model which will represent the context-awareness system. Then, transforming that model into a virtual and ambient environment which represents the physical and real environments, to act as a linkage phase between the users and their activities taking place in that smart space . Finally, the feedback phase from users of that environment to be sure that the design of that smart space fulfill their needs. Therefore, the generated design process will help in designing smarts spaces that can be adapted and controlled to answer the users’ defined goals, needs, and activity.Keywords: computational methods, context-awareness, design process, smart spaces
Procedia PDF Downloads 3361716 An Evaluation of the Effectiveness of the Juvenile Justice in Rehabilitating the Youth in South Africa
Authors: Leah Gwatimba, Nanga Raymond Raselekoane
Abstract:
The incidences of youth who engage in unlawful or criminal activities are of great concern for the criminal justice system and government in South Africa. In terms of the juvenile justice system in South Africa, under-age youth who have been found guilty and sentenced to serve a jail term cannot be sent to the same detention facility as adults. The juvenile justice system is meant to protect young offenders from physical, emotional and mental exploitation by adult prisoners. Under-age young offenders should be assisted and exposed to educational, entrepreneurial and behavioral programmes that can equip them with the much needed skills that will turn them into law-abiding and economically productive citizens. The aim of this study was to evaluate the effectiveness of the justice system in South Africa in the rehabilitation young offenders. A qualitative method was used. The study used the non-probability purposive sampling to select the respondents. In-depth interviews, focus groups, observation and thematic coding were used to collect and analyse the data respectively. The study population consisted of social workers and offending youth. The sample comprised of 16 respondents (i.e. 4 social workers and twelve offending youth (6 males and 6 females). The study indicated that there is worrying recurrence of the anti-social behavior by some of the young offenders. According to this study, the effectiveness of the juvenile justice system in the rehabilitation of the offending youth can be achieved by paying serious attention to follow-up services, participation of families of the offending youth in the diversion programmes and by improving the socio-economic conditions in the homes and communities of the offending youth.Keywords: juvenile delinquent, juvenile justice system, diversion programmes, rehabilitation, restorative justice
Procedia PDF Downloads 3251715 From Liquid to Solid: Advanced Characterization of Glass Applying Oscillatory Rheometry
Authors: Christopher Giehl, Anja Allabar, Daniela Ehgartner
Abstract:
Rotational rheometry is standard practice for the viscosity measurement of molten glass, neglecting the viscoelastic properties of this material, especially at temperatures approaching the glass transition. Oscillatory rheometry serves as a powerful toolbox for glass melt characterization beyond viscosity measurements. Heating and cooling rates and the time-dependent visco-elastic behavior influence the temperature where materials undergo the glass transition. This study presents quantitative thermo-mechanical visco-elasticity measurements on three samples in the Na-K-Al-Si-O system. The measurements were performed with a Furnace Rheometer System combined with an air-bearing DSR 502 measuring head (Anton Paar) and a Pt90Rh10 measuring geometry. Temperature ramps were conducted in rotation and oscillation, and the (complex) viscosity values were compared to calculated viscosity values based on sample composition. Furthermore, temperature ramps with different frequencies were conducted, also revealing the frequency-dependence of the shear loss modulus G’’ and the shear storage modulus G’. Here, lower oscillatory frequency results in lower glass transition temperature, as defined by the G’-G’’ crossover point. This contribution demonstrates that oscillatory rheometry serves as a powerful toolbox beyond viscosity measurements, as it considers the visco-elasticity of glass melts quantifying viscous and elastic moduli. Further, it offers a strong definition of Tg beyond the 10^12 Pas concept, which cannot be utilized with rotational viscometry data.Keywords: frequency dependent glass transition, Na-K-Al-Si-O glass melts, oscillatory rheometry, visco-elasticity
Procedia PDF Downloads 1081714 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran
Authors: Saba Gachpaz, Hamid Reza Heidari
Abstract:
The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. To achieve this, more resources should be consumed and, besides other environmental concerns, highlight sustainable agricultural development. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for ten different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.Keywords: land suitability, machine learning, random forest, sustainable agriculture
Procedia PDF Downloads 861713 Vibration Damping Properties of Electrorheological Materials Based on Chitosan/Perlite Composite
Authors: M. Cabuk, M. Yavuz, T. A. Yesil, H. I. Unal
Abstract:
Electrorheological (ER) fluids are a class of smart materials exhibiting reversible changes in their rheological and mechanical properties under an applied electric field (E). ER fluids generally are composed of polarisable solid particles dispersed in non-conducting oil. ER fluids are fluids which exhibit. The resistance to motion of the ER fluid can be controlled by adjusting the applied E, due to their fast and reversible changes in their rheological properties presence of E. In this study, a series of chitosan/expanded perlite (CS/EP) composites with different chitosan mass fractions (10%, 20%, and 50%) was used. Characterizations of the composites were carried out by Fourier Transform Infrared (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) techniques. Antisedimentation stability and dielectric properties of the composites were also determined. The effects of volume fraction, electric field strength, shear rate, shear stress, and temperature onto ER properties of the CS/EP composite particles dispersed in silicone oil (SO) were investigated in detail. Vibration damping behavior of the CS/EP composites were determined as a function of frequence, storage (Gʹ) and loss (Gʹ ʹ) moduli. It was observed that ER response of the CS/EP/SO ER fluids increased with increasing electric field strength and exhibited the typical shear thinning non-Newtonian viscoelastic behaviors with increasing shear rate. The maximum yield stress was obtained with 1250 Pa under E = 3 kV/mm. Further, the CS/EP/SO ER fluids were observed to sensitive to vibration control by showing reversible viscosity enhancements (Gʹ > Gʹ ʹ). Acknowledgements: The authors thank the TÜBİTAK (214Z199) for the financial support of this work.Keywords: chitosan, electrorheology, perlite, vibration control
Procedia PDF Downloads 2371712 The Impact of Surface Roughness and PTFE/TiF3/FeF3 Additives in Plain ZDDP Oil on the Friction and Wear Behavior Using Thermal and Tribological Analysis under Extreme Pressure Condition
Authors: Gabi N. Nehme, Saeed Ghalambor
Abstract:
The use of titanium fluoride and iron fluoride (TiF3/FeF3) catalysts in combination with polutetrafluoroethylene (PTFE) in plain zinc dialkyldithiophosphate (ZDDP) oil is important for the study of engine tribocomponents and is increasingly a strategy to improve the formation of tribofilm and to provide low friction and excellent wear protection in reduced phosphorus plain ZDDP oil. The influence of surface roughness and the concentration of TiF3/FeF3/PTFE were investigated using bearing steel samples dipped in lubricant solution @100°C for two different heating time durations. This paper addresses the effects of water drop contact angle using different surface finishes after treating them with different lubricant combination. The calculated water drop contact angles were analyzed using Design of Experiment software (DOE) and it was determined that a 0.05 μm Ra surface roughness would provide an excellent TiF3/FeF3/PTFE coating for antiwear resistance as reflected in the scanning electron microscopy (SEM) images and the tribological testing under extreme pressure conditions. Both friction and wear performance depend greatly on the PTFE/and catalysts in plain ZDDP oil with 0.05% phosphorous and on the surface finish of bearing steel. The friction and wear reducing effects, which was observed in the tribological tests, indicated a better micro lubrication effect of the 0.05 μm Ra surface roughness treated at 100°C for 24 hours when compared to the 0.1 μm Ra surface roughness with the same treatment.Keywords: scanning electron microscopy, ZDDP, catalysts, PTFE, friction, wear
Procedia PDF Downloads 3521711 Al-Ti-W Metallic Glass Thin Films Deposited by Magnetron Sputtering Technology to Protect Steel Against Hydrogen Embrittlement
Authors: Issam Lakdhar, Akram Alhussein, Juan Creus
Abstract:
With the huge increase in world energy consumption, researchers are working to find other alternative sources of energy instead of fossil fuel one causing many environmental problems as the production of greenhouse effect gases. Hydrogen is considered a green energy source, which its combustion does not cause environmental pollution. The transport and the storage of the gas molecules or the other products containing this smallest chemical element in metallic structures (pipelines, tanks) are crucial issues. The dissolve and the permeation of hydrogen into the metal lattice lead to the formation of hydride phases and the embrittlement of structures. To protect the metallic structures, a surface treatment could be a good solution. Among the different techniques, magnetron sputtering is used to elaborate micrometric coatings capable of slowing down or stop hydrogen permeation. In the plasma environment, the deposition parameters of new thin-film metallic glasses Al-Ti-W were optimized and controlled in order to obtain, hydrogen barrier. Many characterizations were carried out (SEM, XRD and Nano-indentation…) to control the composition and understand the influence of film microstructure and chemical composition on the hydrogen permeation through the coatings. The coating performance was evaluated under two hydrogen production methods: chemical and electrochemical (cathodic protection) techniques. The hydrogen quantity absorbed was experimentally determined using the Thermal-Desorption Spectroscopy method (TDS)). An ideal ATW thin film was developed and showed excellent behavior against the diffusion of hydrogen.Keywords: thin films, hydrogen, PVD, plasma technology, electrochemical properties
Procedia PDF Downloads 1871710 Body Composition Evaluation among High Intensity and Long Term Walking Distance Participants
Authors: Priscila Vitorino, Jeeziane Rezende, Edison Pereira, Adrielly Silva, Weimar Barroso
Abstract:
Body composition insight during physical activity is relevant to follow up sports income since it can be important and actuate in velocity, resistance, potency, and has an effect on force and agility. The purpose of this study was to identify anthropometric profile, evaluate and correlate body mass index and bioimpedance behavior during the days of Caminhada Ecológica de Goiás - Brasil. A longitudinal study was performed with 25 male participants, with an average age of 45.6±9.1 years. All patients were actives. Body composition was evaluated by body mass index (BMI) measurement and bioimpedance procedures. Both were collected 20 days before walking beginning (A0) and in the four days along the same (A1, A2, A3 e A4). Data were collected in the end of each walking day at athletes accommodations. Final distance during walking route was 308 km in five days, with an average of 62km/day and 7,6 km/hour, and an average temperature of 30°C. Data are represented with mean and standard deviation. ANOVA (Bonferroni pos test) was used to compare frequent measurements between the days. Pearson's correlation test was used to correlate BMI with lean mass, fat mass, and water. BMI decreased from A0 to A1, A2 and A3 (p < 0,01) and increased on A4 (p < 0,01). No changes were observed concerning fat percentage (p=0,60), lean mass (p=0,10) and body water composition (p=0,09). A positive and moderate correlation between BMI and fat percentage was observed; an inverse and moderate correlation between BMI, lean mass and body water composition occurred. Total body mass increased during high intensity and long term walking distance. However, the values of body fat, lean mass and water were maintained.Keywords: aerobic exercise, body composition, metabolism, sports
Procedia PDF Downloads 3131709 The Physically Handicapped in the City
Authors: Bekhemmas Youcef
Abstract:
The category of the disabled, like other social groups, is considered to have been affected by fate with a disability that led to a reduction in the fulfillment of its social roles to the fullest extent or led to its complete abandonment. Psychological, and until we understand its behavioral methods that express a lot of this complexity and intertwining, and despite all that, this category has not yet received the appropriate great interest from specialized researchers, and even officials, and it is natural that the category of people with disabilities has psychological and social requirements in order to regains their capabilities or some From her, it also needs to prepare the environment in which she lives in order to integrate into society As the motor disability is one of the most common types of disability in the world, and it is constantly increasing, considering the increase in the causes leading to it, such as the traffic accident, and the motor disability often affects individuals from a psychological point of view, but it also affects their social surroundings, whether close or extended, and thus it draws limits and quality For their way of life, as well as determining roles for them as actors of a special kind within their societies. The methodology is similar to the organizational framework for the production of any scientific knowledge and based on the fact that sociology is a project that aims to understand and interpret the social reality scientifically and through the nature of the subject studied in the framework of the reality of the disabled in the city and in order to get closer to the daily life of the physically disabled within the urban center, we adopted the qualitative approach A choice that complies with the spirit of Viberian sociology, especially since Max Weber insists on the need to search for the meaning that the social actor gives to his behavior. Through the results reached in this study, it was found that the city still suffers from several deficiencies at the level of equipment and urban planning in a way that keeps pace with the number of people with disabilities in the city.Keywords: physically, handicapped, in, the city
Procedia PDF Downloads 741708 Electronic, Optical, and Thermodynamic Properties of a Quantum Spin Liquid Candidate NaRuO₂: Ab-initio Investigation
Authors: A. Bouhmouche, I. Rhrissi, A. Jabar, R. Moubah
Abstract:
Quantum spin liquids (QSLs), known for their competing interactions that prevent conventional ordering, exhibit emergent phenomena and exotic properties resulting from quantum correlations. Despite these recent advancements in QSLs, a significant portion of the optical and thermodynamic properties in the Kagome lattice remains unknown. In addition, the thermodynamic phenomenology of NaRuO₂ bears a resemblance to that of highly frustrated magnets. Here, we employed ab-initio calculations to explore the electronic, optical and thermodynamic properties of NaRuO₂, a new QSL candidate. NaRuO₂ was identified as a semiconductor with a small bandgap energy of 0.69 eV. Our results reveal huge anisotropic optical properties, in which a distinct refractive index within the ab-plane indicating an impressive birefringent character of the NaRuO₂ system and a significant enhancement of the optical absorption coefficient and optical conductivity in the in-plane with respect to the c-axis. The investigation also examines the electronic anisotropy of the gap energy; by applying strain, the gap energy displays significant variations in the ab-plane compared to the out-of-plane direction. Conversely, calculations of the thermodynamic properties reveal a low thermal conductivity (2.5-0.5 W.m-¹. K-¹) and specific heat, which suggests the existence of strong interactions among the NaRuO₂ quantum spins. The linear specific heat behavior observed in NaRuO₂ suggests the fractionalization of electrons and the presence of a spinons Fermi surface. These findings hold promising potential for future quantum applications.Keywords: quantum spin liquids, anisotropy, hybrid-DFT, applied strain, optoelectronic and thermodynamic properties
Procedia PDF Downloads 241707 Performance of Autoclaved Aerated Concrete Containing Recycled Ceramic and Gypsum Waste as Partial Replacement for Sand
Authors: Efil Yusrianto, Noraini Marsi, Noraniah Kassim, Izzati Abdul Manaf, Hafizuddin Hakim Shariff
Abstract:
Today, municipal solid waste (MSW), noise pollution, and attack fire are three ongoing issues for inhabitants of urban including in Malaysia. To solve these issues, eco-friendly autoclaved aerated concrete (AAC) containing recycled ceramic and gypsum waste (CGW) as a partial replacement for sand with different ratios (0%, 5%, 10%, 15%, 20%, and 25% wt) has been prepared. The performance of samples, such as the physical, mechanical, sound absorption coefficient, and direct fire resistance, has been investigated. All samples showed normal color behavior, i.e., grey and free crack. The compressive strength was increased in the range of 6.10% to 29.88%. The maximum value of compressive strength was 2.13MPa for 15% wt of CGW. The positive effect of CGW on the compressive strength of AAC has also been confirmed by crystalline phase and microstructure analysis. The acoustic performances, such as sound absorption coefficients of samples at low frequencies (500Hz), are higher than the reference sample (RS). AAC-CGW samples are categorized as AAC material classes B and C. The fire resistance results showed the physical surface of the samples had a free crack and was not burned during the direct fire at 950ºC for 300s. The results showed that CGW succeeded in enhancing the performance of fresh AAC, such as compressive strength, crystalline phase, sound absorption coefficient, and fire resistance of samples.Keywords: physical, mechanical, acoustic, direct fire resistance performance, autoclaved aerated concrete, recycled ceramic-gypsum waste
Procedia PDF Downloads 1421706 Prospective Visitors' Perception towards Spice Tourism: With Reference to Spice Gardens in Kolonna Divisional Secretariat Division of Ratnapura District in Sri Lanka
Authors: Malkanthi S. H. P., Ishana A. S. F., Sivashankar P.
Abstract:
This research was conducted to study prospective visitors’ expectation and future behavior regarding agro tourism destinations in spice gardens (spice tourism) in Kolonna. A field survey was conducted for the 40 randomly selected local and foreign visitors who have come to visit three famous tourism destinations in Kolonna namely “Maduwanwela Walawwa”, “Wawulpane Limestone cave” and “Panamure Eth gala” during three month of time period from February to April 2014. Descriptive and Chi square statistical tests were used to analyze the data. The results revealed that 98% of visitors were willing to visit the spice tourism destinations. Furthermore, visitors with urban residency, higher education level and employment opportunities revealed an association with having awareness on agro tourism. Moreover, visitors having higher age, higher level of education and higher amount of monthly income revealed an association with the willingness to visit spice tourism destinations. Nevertheless, out of eight demographic factors, three factors; gender, occupation and income had significant effect on willingness to purchase spice products from Kolonna. According to research findings it can be concluded that there are large number of perspective visitors for spice tourism and they are middle aged, educated and having significant monthly income and they are also very much interest to visit spice tourism destinations and buy spice products (high demand). Therefore, it is significantly beneficial to establish spice tourism destinations in spice gardens by successful spice cultivating farmers or owners as an extra income earning activity in Kolonna area.Keywords: agro tourism, spice gardens, perception, prospective visitors, Sri Lanka
Procedia PDF Downloads 2591705 Impact of Soci̇al Media in Tourism Marketing
Authors: Betül Garda
Abstract:
Technological developments have diversified marketing activities of the tourism sector and it has increased tourism opportunities to compete on a global scale for tourism businesses. Tourism businesses have been forced to use its core skills and knowledge effectively with the increase in effectiveness of the technology in the global competitive environment. Tourism businesses have been reached beyond the traditional boundaries because of their commercial activities, so, the boundaries of the national market either eliminated or blurred. Therefore, the internet is the alternative promotion tool and distribution channel to providing unlimited facilities for tourism suppliers. For example, the internet provides an opportunity to reach customers on a global scale with direct email marketing, advertising, customer service, promotion, sales, and marketing. Tourism businesses have improved themselves with the continuous information flows and also they have provided the permanence of the changes. Especially in terms of tourism businesses, social media is emerging as an extremely important tool in the use of knowledge effectively. This research paper investigates the impact of social media on the tourism businesses. A social networking site is a type of social media that provides a platform for business and people to connect with each other. Social media is so flexible that it can be used for both leisure and business purposes. In the tourism industry, social networking sites are one of the essential tools that play an important and beneficial role. The topic that will be discussed in this research paper are consumer behavior, connection with consumers, effectiveness in terms of time and cost, creating brand awareness and building the image of the company, promoting company, targeting consumers in a conceptual frame.Keywords: branding, promoting, social media in tourism, tourism marketing tools
Procedia PDF Downloads 2861704 Model-Based Fault Diagnosis in Carbon Fiber Reinforced Composites Using Particle Filtering
Abstract:
Carbon fiber reinforced composites (CFRP) used as aircraft structure are subject to lightning strike, putting structural integrity under risk. Indirect damage may occur after a lightning strike where the internal structure can be damaged due to excessive heat induced by lightning current, while the surface of the structures remains intact. Three damage modes may be observed after a lightning strike: fiber breakage, inter-ply delamination and intra-ply cracks. The assessment of internal damage states in composite is challenging due to complicated microstructure, inherent uncertainties, and existence of multiple damage modes. In this work, a model based approach is adopted to diagnose faults in carbon composites after lighting strikes. A resistor network model is implemented to relate the overall electrical and thermal conduction behavior under simulated lightning current waveform to the intrinsic temperature dependent material properties, microstructure and degradation of materials. A fault detection and identification (FDI) module utilizes the physics based model and a particle filtering algorithm to identify damage mode as well as calculate the probability of structural failure. Extensive simulation results are provided to substantiate the proposed fault diagnosis methodology with both single fault and multiple faults cases. The approach is also demonstrated on transient resistance data collected from a IM7/Epoxy laminate under simulated lightning strike.Keywords: carbon composite, fault detection, fault identification, particle filter
Procedia PDF Downloads 1961703 A Mixed 3D Finite Element for Highly Deformable Thermoviscoplastic Materials Under Ductile Damage
Authors: João Paulo Pascon
Abstract:
In this work, a mixed 3D finite element formulation is proposed in order to analyze thermoviscoplastic materials under large strain levels and ductile damage. To this end, a tetrahedral element of linear order is employed, considering a thermoviscoplastic constitutive law together with the neo-Hookean hyperelastic relationship and a nonlocal Gurson`s porous plasticity theory The material model is capable of reproducing finite deformations, elastoplastic behavior, void growth, nucleation and coalescence, thermal effects such as plastic work heating and conductivity, strain hardening and strain-rate dependence. The nonlocal character is introduced by means of a nonlocal parameter applied to the Laplacian of the porosity field. The element degrees of freedom are the nodal values of the deformed position, the temperature and the nonlocal porosity field. The internal variables are updated at the Gauss points according to the yield criterion and the evolution laws, including the yield stress of matrix, the equivalent plastic strain, the local porosity and the plastic components of the Cauchy-Green stretch tensor. Two problems involving 3D specimens and ductile damage are numerically analyzed with the developed computational code: the necking problem and a notched sample. The effect of the nonlocal parameter and the mesh refinement is investigated in detail. Results indicate the need of a proper nonlocal parameter. In addition, the numerical formulation can predict ductile fracture, based on the evolution of the fully damaged zone.Keywords: mixed finite element, large strains, ductile damage, thermoviscoplasticity
Procedia PDF Downloads 971702 A Comparative Study Mechanical Properties of Polytetrafluoroethylene Materials Synthesized by Non-Conventional and Conventional Techniques
Authors: H. Lahlali F. El Haouzi, A.M.Al-Baradi, I. El Aboudi, M. El Azhari, A. Mdarhri
Abstract:
Polytetrafluoroethylene (PTFE) is a high performance thermoplastic polymer with exceptional physical and chemical properties, such as a high melting temperature, high thermal stability, and very good chemical resistance. Nevertheless, manufacturing PTFE is problematic due to its high melt viscosity (10 12 Pa.s). In practice, it is by now well established that this property presents a serious problem when the classical methods are used to synthesized the dense PTFE materials in particularly hot pressing, high temperature extrusion. In this framework, we use here a new process namely spark plasma sintering (SPS) to elaborate PTFE samples from the micro metric particles powder. It consists in applying simultaneous electric current and pressure directly on the sample powder. By controlling the processing parameters of this technique, a series of PTFE samples are easy obtained and associated to remarkably short time as is reported in an early work. Our central goal in the present study is to understand how the non conventional SPS affects the mechanical properties at room temperature. For this end, a second commercially series of PTFE synthesized by using the extrusion method is investigated. The first data according to the tensile mechanical properties are found to be superior for the first set samples (SPS). However, this trend is not observed for the results obtained from the compression testing. The observed macro-behaviors are correlated to some physical properties of the two series of samples such as their crystallinity or density. Upon a close examination of these properties, we believe the SPS technique can be seen as a promising way to elaborate the polymer having high molecular mass without compromising their mechanical properties.Keywords: PTFE, extrusion, Spark Plasma Sintering, physical properties, mechanical behavior
Procedia PDF Downloads 3091701 Clinical Signs of Neonatal Calves in Experimental Colisepticemia
Authors: Samad Lotfollahzadeh
Abstract:
Escherichia coli (E.coli) is the most isolated bacteria from blood circulation of septicemic calves. Given the prevalence of septicemia in animals and its economic importance in veterinary practice, better understanding of changes in clinical signs following disease, may contribute to early detection of the disorder. The present study has been carried out to detect changes of clinical signs in induced sepsis in calves with E.coli. Colisepticemia has been induced in 10 twenty-day old healthy Holstein- Frisian calves with intravenous injection of 1.5 X 109 colony forming units (cfu) of O111: H8 strain of E.coli. Clinical signs including rectal temperature, heart rate, respiratory rate, shock, appetite, sucking reflex, feces consistency, general behavior, dehydration and standing ability were recorded in experimental calves during 24 hours after induction of colisepticemia. Blood culture was also carried out from calves four times during the experiment. ANOVA with repeated measure is used to see changes of calves’ clinical signs to experimental colisepticemia, and values of P≤ 0.05 was considered statistically significant. Mean values of rectal temperature and heart rate as well as median values of respiratory rate, appetite, suckling reflex, standing ability and feces consistency of experimental calves increased significantly during the study (P<0.05). In the present study, median value of shock score was not significantly increased in experimental calves (P> 0.05). The results of present study showed that total score of clinical signs in calves with experimental colisepticemia increased significantly, although the score of some clinical signs such as shock did not change significantly.Keywords: calves, clinical signs scoring, E. coli O111:H8, experimental colisepticemia
Procedia PDF Downloads 3791700 Sustainable Resource Use as a Means of Preserving the Integrity of the Eco-System and Environment
Authors: N. Hedayat, E. Karamifar
Abstract:
Sustainable food and fiber production is emerging as an irresistible option in agrarian planning. Although one should not underestimate the successes of the Green Revolution in enhancing crop production, its adverse environmental and ecosystem consequences have also been remarkable. The aim of this paper is to identify ways of improving crop production to ensure agricultural sustainability and environmental integrity. Systematic observations are used for data collection on intensive farming, deforestation and the environmental implications of industrial pollutants on agricultural sustainability at national and international levels. These were achieved within a comparative analytical model of data interpretation. Results show that while multiple factors enhance yield, they have a simultaneous effect in undermining the ecosystem and environmental integrity. Results show that application of excessive agrichemical have been one of the major cause of polluting the surface and underground water bodies as well as soil layers in affected croplands. Results consider rapid deforestation in the tropical regions has been the underlying cause of impairing the integrity of biodiversity and oxygen-generation regime. These, coupled with production of greenhouse gasses, have contributed to global warming and hydrological irregularities. Continuous production of pollutants and effluents has affected marine and land biodiversity arising from acid rains generated by modern farming and deforestation. Continuous production of greenhouse gases has also been instrumental in affecting climatic behavior manifested in recurring draughts and contraction of lakes and ponds as well as emergence of potential flooding of waterways and floodplains in the future.Keywords: agricultural sustainability, environmental integrity, pollution, eco-system
Procedia PDF Downloads 4031699 Comparison of Phynotypic Traits of Three Arabian Horse Strains
Authors: Saria Almarzook, Monika Reissmann, Gudrun Brockmann
Abstract:
Due to its history, occurrence in different ecosystems and diverse using, the modern horse (Equus caballus) shows large variability in size, appearance, behavior and habits. At all times, breeders try to create groups (breeds, strains) representing high homology but showing clear differences in comparison to other groups. A great interest of analyzing phenotypic and genetic traits looking for real diversity and genetic uniqueness existents for Arabian horses in Syria. 90 Arabian horses from governmental research center of Arabian horses in Damascus were included. The horses represent three strains (Kahlawi, Saklawi, Hamdani) originated from different geographical zones. They were raised on the same farm, under stable conditions. Twelve phenotypic traits were measured: wither height (WH), croup width (CW), croup height (CH), neck girth (NG), thorax girth (TG), chest girth (ChG), chest depth (ChD), chest width (ChW), back line length (BLL), body length (BL), fore cannon length (FCL) and hind cannon length (HCL). The horses were divided into groups according to age (less than 2 years, 2-4 years, 4-9 years, over 9 years) and to sex (male, female). The statistical analyzes show that age has significant influence of WH while the strain has only a very limited effect. On CW, NG, BLL, FCL and HCL, there is only a significant influence of sex. Age has significant effect on CH and BL. All sources of classes have a significant effect on TG, ChG, ChD and ChW. Strain has a significant effect on the BL. These results provide first information for real biodiversity in and between the strains and can be used to develop the breeding work in the Arabian horse breed.Keywords: Arabian horse, phenotypic traits, strains, Syria
Procedia PDF Downloads 3921698 Co-Disposal of Coal Ash with Mine Tailings in Surface Paste Disposal Practices: A Gold Mining Case Study
Authors: M. L. Dinis, M. C. Vila, A. Fiúza, A. Futuro, C. Nunes
Abstract:
The present paper describes the study of paste tailings prepared in laboratory using gold tailings, produced in a Finnish gold mine with the incorporation of coal ash. Natural leaching tests were conducted with the original materials (tailings, fly and bottom ashes) and also with paste mixtures that were prepared with different percentages of tailings and ashes. After leaching, the solid wastes were physically and chemically characterized and the results were compared to those selected as blank – the unleached samples. The tailings and the coal ash, as well as the prepared mixtures, were characterized, in addition to the textural parameters, by the following measurements: grain size distribution, chemical composition and pH. Mixtures were also tested in order to characterize their mechanical behavior by measuring the flexural strength, the compressive strength and the consistency. The original tailing samples presented an alkaline pH because during their processing they were previously submitted to pressure oxidation with destruction of the sulfides. Therefore, it was not possible to ascertain the effect of the coal ashes in the acid mine drainage. However, it was possible to verify that the paste reactivity was affected mostly by the bottom ash and that the tailings blended with bottom ash present lower mechanical strength than when blended with a combination of fly and bottom ash. Surface paste disposal offer an attractive alternative to traditional methods in addition to the environmental benefits of incorporating large-volume wastes (e.g. bottom ash). However, a comprehensive characterization of the paste mixtures is crucial to optimize paste design in order to enhance engineer and environmental properties.Keywords: coal ash, mine tailings, paste blends, surface disposal
Procedia PDF Downloads 2981697 Optical Analysis of the Plasmon Resonances of Gold Nano-Ring
Authors: Mehrnaz Mostafavi
Abstract:
The current research aims to explore a method for creating nano-ring structures through chemical reduction. By employing a direct reduction process at a controlled, slow pace, and concurrently introducing specific reduction agents, the goal is to fabricate these unique nano-ring formations. The deliberate slow reduction of nanoparticles within this process helps prevent spatial hindrances caused by the reduction agents. The timing of the reduction of metal atoms, facilitated by these agents, emerges as a crucial factor influencing the creation of nano-ring structures. In investigation involves a chemical approach utilizing bovine serum albumin and human serum albumin as organic reducing agents to produce gold nano-rings. The controlled reduction of metal atoms at a slow pace and under specific pH conditions plays a pivotal role in the successful fabrication of these nanostructures. Optical spectroscopic analyses revealed distinctive plasmonic behavior in both visible and infrared spectra, owing to the collective movement of electrons along the inner and outer walls of the gold nano-rings. Importantly, these ring-shaped nanoparticles exhibit customizable plasmon resonances in the near-infrared spectrum, a characteristic absent in solid particles of similar sizes. This unique attribute makes the generated samples valuable for applications in Nanomedicine and Nanobiotechnology, leveraging the distinct optical properties of these nanostructures.Keywords: nano-ring structure, nano-particles, reductant agents, plasmon resonace
Procedia PDF Downloads 1041696 Management of ASD with Co-Morbid OCD: A Literature Review to Compare the Pharmacological and Psychological Treatment Options in Individuals Under the Age of 18
Authors: Melissa Nelson, Simran Jandu, Hana Jalal, Mia Ingram, Chrysi Stefanidou
Abstract:
There is a significant overlap between autism spectrum disorder (ASD) and obsessive compulsive disorder (OCD), with up to 90% of young people diagnosed with ASD having this co-morbidity. Distinguishing between the symptoms of the two leads to issues with accurate treatment, yet this is paramount in benefitting the young person. There are two distinct methods of treatment, psychological or pharmacological, with clinicians tending to choose one or the other, potentially due to the lack of research available. This report reviews the efficacy of psychological and pharmacological treatments for young people diagnosed with ASD and co-morbid OCD. A literature review was performed on papers from the last fifteen years, including “ASD,” “OCD,” and individuals under the age of 18. Eleven papers were selected as relevant. The report looks at the comparison between more traditional methods, such as selective serotonin reuptake inhibitors (SSRI) and cognitive behavior therapy (CBT), and newer therapies, such as modified or intensive ASD-focused psychotherapies and the use of other medication classes. On reviewing the data, it was identified that there was a distinct lack of information on this important topic. The most widely used treatment was medication such as Fluoxetine, an SSRI, which rarely showed an improvement in symptoms or outcomes. This is in contrast to modified forms of CBT, which often reduces symptoms or even results in OCD remission. With increased research into the non-traditional management of these co-morbid conditions, it is clear there is scope that modified CBT may become the future treatment of choice for OCD in young people with ASD.Keywords: autism spectrum disorder, intensive or adapted cognitive behavioral therapy, obsessive compulsive disorder, pharmacological management
Procedia PDF Downloads 151695 A Bayesian Parameter Identification Method for Thermorheological Complex Materials
Authors: Michael Anton Kraus, Miriam Schuster, Geralt Siebert, Jens Schneider
Abstract:
Polymers increasingly gained interest in construction materials over the last years in civil engineering applications. As polymeric materials typically show time- and temperature dependent material behavior, which is accounted for in the context of the theory of linear viscoelasticity. Within the context of this paper, the authors show, that some polymeric interlayers for laminated glass can not be considered as thermorheologically simple as they do not follow a simple TTSP, thus a methodology of identifying the thermorheologically complex constitutive bahavioir is needed. ‘Dynamical-Mechanical-Thermal-Analysis’ (DMTA) in tensile and shear mode as well as ‘Differential Scanning Caliometry’ (DSC) tests are carried out on the interlayer material ‘Ethylene-vinyl acetate’ (EVA). A navoel Bayesian framework for the Master Curving Process as well as the detection and parameter identification of the TTSPs along with their associated Prony-series is derived and applied to the EVA material data. To our best knowledge, this is the first time, an uncertainty quantification of the Prony-series in a Bayesian context is shown. Within this paper, we could successfully apply the derived Bayesian methodology to the EVA material data to gather meaningful Master Curves and TTSPs. Uncertainties occurring in this process can be well quantified. We found, that EVA needs two TTSPs with two associated Generalized Maxwell Models. As the methodology is kept general, the derived framework could be also applied to other thermorheologically complex polymers for parameter identification purposes.Keywords: bayesian parameter identification, generalized Maxwell model, linear viscoelasticity, thermorheological complex
Procedia PDF Downloads 2641694 A Numerical Study on Semi-Active Control of a Bridge Deck under Seismic Excitation
Authors: A. Yanik, U. Aldemir
Abstract:
This study investigates the benefits of implementing the semi-active devices in relation to passive viscous damping in the context of seismically isolated bridge structures. Since the intrinsically nonlinear nature of semi-active devices prevents the direct evaluation of Laplace transforms, frequency response functions are compiled from the computed time history response to sinusoidal and pulse-like seismic excitation. A simple semi-active control policy is used in regard to passive linear viscous damping and an optimal non-causal semi-active control strategy. The control strategy requires optimization. Euler-Lagrange equations are solved numerically during this procedure. The optimal closed-loop performance is evaluated for an idealized controllable dash-pot. A simplified single-degree-of-freedom model of an isolated bridge is used as numerical example. Two bridge cases are investigated. These cases are; bridge deck without the isolation bearing and bridge deck with the isolation bearing. To compare the performances of the passive and semi-active control cases, frequency dependent acceleration, velocity and displacement response transmissibility ratios Ta(w), Tv(w), and Td(w) are defined. To fully investigate the behavior of the structure subjected to the sinusoidal and pulse type excitations, different damping levels are considered. Numerical results showed that, under the effect of external excitation, bridge deck with semi-active control showed better structural performance than the passive bridge deck case.Keywords: bridge structures, passive control, seismic, semi-active control, viscous damping
Procedia PDF Downloads 2441693 A Consumption-Based Hybrid Life Cycle Assessment of Carbon Footprints in California: High Footprints in Small Urban Households
Authors: Jukka Heinonen
Abstract:
Higher density reduces distances, private car dependency and thus reduces greenhouse gas emissions (GHGs). As a result, increased density has been given a central role among urban development targets. However, it is not just travel behavior that changes along with density. Rather, the consumption patterns, or overall lifestyles, change along with changing urban structure, particularly with changing housing types and consumption opportunities. Furthermore, elevated consumption of services, more frequent flying and less intra-household sharing have been shown to potentially outweigh the gains from reduced driving in more dense urban settlements. In this study, the geography of carbon footprints (CFs) in California is analyzed paying close attention to the household size differences and the resulting economies-of-scale advantages and disadvantages. A hybrid life cycle assessment (LCA) framework is employed together with consumer expenditure data to assess the CFs. According to the study, small urban households have the highest CFs in California. Their transport related emissions are significantly lower than those of the residents of less urbanized areas, but higher emissions from other consumption categories, together with the low degree of sharing of goods, overweigh the gains. Two functional units, per capita and per household, are used to analyze the CFs and to demonstrate the importance of household size. The lifestyle impacts visible through the consumption data are also discussed. The study suggests that there are still significant gaps in our understanding of the premises of low-carbon human settlements.Keywords: carbon footprint, life cycle assessment, lifestyle, household size, consumption, economies-of-scale
Procedia PDF Downloads 3561692 Remote Controlled of In-Situ Forming Thermo-sensitive Hydrogel Nanocomposite for Hyperthermia Therapy Application: Synthesis and Characterizations
Authors: Elbadawy A. Kamoun
Abstract:
Magnetically responsive hydrogel nanocomposite (NCH) based on composites of superparamagnetic of Fe3O4 nano-particles and temperature responsive hydrogel matrices were developed. The nanocomposite hydrogel system based on the temperature sensitive N-isopropylacrylamide hydrogels crosslinked by poly(ethylene glycol)-400 dimethacrylate (PEG400DMA) incorporating with chitosan derivative, was synthesized and characterized. Likewise, the NCH system was synthesized by visible-light free radical photopolymerization, using carboxylated camphorquinone-amine system to avoid the common risks of the use of UV-light especially in hyperthermia treatment. Superparamagnetic of iron oxide nanoparticles were introduced into the hydrogel system by polymerizing mixture technique and monomer solution. FT-IR with Raman spectroscopy and Wide angle-XRD analysis were utilized to verify the chemical structure of NCH and exfoliation reaction for nanoparticles, respectively. Additionally, morphological structure of NCH was investigated using SEM and TEM photographs. The swelling responsive of the current nanocomposite hydrogel system with different crosslinking conditions, temperature, magnetic field efficiency, and the presence effect of magnetic nanoparticles were evaluated. Notably, hydrolytic degradation of this system was proved in vitro application. While, in-vivo release profile behavior is under investigation nowadays. Moreover, the compatibility and cytotoxicity tests were previously investigated in our studies for photoinitiating system. These systems show promised polymeric material candidate devices and are expected to have a wide applicability in various biomedical applications as mildly.Keywords: hydrogel nanocomposites, tempretaure-responsive hydrogel, superparamagnetic nanoparticles, hyperthermia therapy
Procedia PDF Downloads 2811691 The Influence of Class and Gender on the Capitalist Patriarchal Society in Fitzgerald’s “The Great Gatsby”: A Marxist Feminist Perspective
Authors: Atousa Mirzapour Kouhdasht
Abstract:
The Great Gatsby is a 1925 novel set in the Jazz Age on Long Island by American writer F. Scott Fitzgerald. The novel depicts interactions between the first-person narrator, Nick Carraway, and his mysterious millionaire neighbor, Jay Gatsby, and his obsession to reunite with his former lover, Daisy Buchanan. During World War II, the Council on Books in Wartime sent free copies to American soldiers, so the novel experienced an unanticipated wave in popularity. This newfound popularity brought up critical literary re-examination. The work soon became a part of most American high school curricula and, as a result, a part of American popular culture. Multiple adaptations, on stage and screen, followed in the succeeding decades. The novel's treatment of social class, old money versus those who do not have familial wealth, gender, race, and its cynical attitude towards the American Dream is now a matter of discussion. The old money does not allow the new money to present itself due to its fear of changes. Although Gatsby is now a wealthy man who throws many parties, he is not considered equal to Thomas Buchanan, Daisy's husband, a millionaire who lives in East Egg. Even Gatsby feels shame when it comes to the history of his family, who was not actually from the bourgeoisie. Furthermore, the patriarchal system restrains women's behavior in society and puts them in the second position after men to follow what men ask them to do. The female characters are not able to make decisions for themselves. So the researcher uses The Great Gatsby, patriarchal theory, and Marxist feminist perspective to investigate the influence of gender and social status on women's position in a patriarchal society.Keywords: Marxist, feminist, class status, gender, the American dream, The Great Gatsby, Fitzgerald
Procedia PDF Downloads 1291690 Preparation of Carbon Nanofiber Reinforced HDPE Using Dialkylimidazolium as a Dispersing Agent: Effect on Thermal and Rheological Properties
Authors: J. Samuel, S. Al-Enezi, A. Al-Banna
Abstract:
High-density polyethylene reinforced with carbon nanofibers (HDPE/CNF) have been prepared via melt processing using dialkylimidazolium tetrafluoroborate (ionic liquid) as a dispersion agent. The prepared samples were characterized by thermogravimetric (TGA) and differential scanning calorimetric (DSC) analyses. The samples blended with imidazolium ionic liquid exhibit higher thermal stability. DSC analysis showed clear miscibility of ionic liquid in the HDPE matrix and showed single endothermic peak. The melt rheological analysis of HDPE/CNF composites was performed using an oscillatory rheometer. The influence of CNF and ionic liquid concentration (ranging from 0, 0.5, and 1 wt%) on the viscoelastic parameters was investigated at 200 °C with an angular frequency range of 0.1 to 100 rad/s. The rheological analysis shows the shear-thinning behavior for the composites. An improvement in the viscoelastic properties was observed as the nanofiber concentration increases. The progress in the modulus values was attributed to the structural rigidity imparted by the high aspect ratio CNF. The modulus values and complex viscosity of the composites increased significantly at low frequencies. Composites blended with ionic liquid exhibit slightly lower values of complex viscosity and modulus over the corresponding HDPE/CNF compositions. Therefore, reduction in melt viscosity is an additional benefit for polymer composite processing as a result of wetting effect by polymer-ionic liquid combinations.Keywords: high-density polyethylene, carbon nanofibers, ionic liquid, complex viscosity
Procedia PDF Downloads 129