Search results for: headspace solid phase microextraction (HS-SPME)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6188

Search results for: headspace solid phase microextraction (HS-SPME)

1298 Determination of Antioxidant Activity in Raphanus raphanistrum L.

Authors: Esma Hande Alıcı, Gülnur Arabacı

Abstract:

Antioxidants are compounds or systems that can safely interact with free radicals and terminate the chain reaction before vital molecules are damaged. The anti-oxidative effectiveness of these compounds depends on their chemical characteristics and physical location within a food (proximity to membrane phospholipids, emulsion interfaces, or in the aqueous phase). Antioxidants (e.g., flavonoids, phenolic acids, tannins, vitamin C, vitamin E) have diverse biological properties, such as antiinflammatory, anti-carcinogenic and anti-atherosclerotic effects, reduce the incidence of coronary diseases and contribute to the maintenance of gut health by the modulation of the gut microbial balance. Plants are excellent sources of antioxidants especially with their high content of phenolic compounds. Raphanus raphanistrum L., the wild radish, is a flowering plant in the family Brassicaceae. It grows in Asia and Mediterranean region. It has been introduced into most parts of the world. It spreads rapidly, and is often found growing on roadsides or in other places where the ground has been disturbed. It is an edible plant, in Turkey its fresh aerial parts are mostly consumed as a salad with olive oil and lemon juice after boiled. The leaves of the plant are also used as anti-rheumatic in traditional medicine. In this study, we determined the antioxidant capacity of two different solvent fractions (methanol and ethyl acetate) obtained from Raphanus raphanistrum L. plant leaves. Antioxidant capacity of the plant was introduced by using three different methods: DPPH radical scavenging activity, CUPRAC (Cupric Ion Reducing Antioxidant Capacity) activity and Reducing power activity.

Keywords: antioxidant activity, antioxidant capacity, Raphanis raphanistrum L., wild radish

Procedia PDF Downloads 272
1297 Performance Tests of Wood Glues on Different Wood Species Used in Wood Workshops: Morogoro Tanzania

Authors: Japhet N. Mwambusi

Abstract:

High tropical forests deforestation for solid wood furniture industry is among of climate change contributing agents. This pressure indirectly is caused by furniture joints failure due to poor gluing technology based on improper use of different glues to different wood species which lead to low quality and weak wood-glue joints. This study was carried in order to run performance tests of wood glues on different wood species used in wood workshops: Morogoro Tanzania whereby three popular wood species of C. lusitanica, T. glandis and E. maidenii were tested against five glues of Woodfix, Bullbond, Ponal, Fevicol and Coral found in the market. The findings were necessary on developing a guideline for proper glue selection for a particular wood species joining. Random sampling was employed to interview carpenters while conducting a survey on the background of carpenters like their education level and to determine factors that influence their glues choice. Monsanto Tensiometer was used to determine bonding strength of identified wood glues to different wood species in use under British Standard of testing wood shear strength (BS EN 205) procedures. Data obtained from interviewing carpenters were analyzed through Statistical Package of Social Science software (SPSS) to allow the comparison of different data while laboratory data were compiled, related and compared by the use of MS Excel worksheet software as well as Analysis of Variance (ANOVA). Results revealed that among all five wood glues tested in the laboratory to three different wood species, Coral performed much better with the average shear strength 4.18 N/mm2, 3.23 N/mm2 and 5.42 N/mm2 for Cypress, Teak and Eucalyptus respectively. This displays that for a strong joint to be formed to all tree wood species for soft wood and hard wood, Coral has a first priority in use. The developed table of guideline from this research can be useful to carpenters on proper glue selection to a particular wood species so as to meet glue-bond strength. This will secure furniture market as well as reduce pressure to the forests for furniture production because of the strong existing furniture due to their strong joints. Indeed, this can be a good strategy on reducing climate change speed in tropics which result from high deforestation of trees for furniture production.

Keywords: climate change, deforestation, gluing technology, joint failure, wood-glue, wood species

Procedia PDF Downloads 238
1296 In-Fun-Mation: Putting the Fun in Information Retrieval at the Linnaeus University, Sweden

Authors: Aagesson, Ekstrand, Persson, Sallander

Abstract:

A description of how a team of librarians at Linnaeus University Library in Sweden utilizes a pedagogical approach to deliver engaging digital workshops on information retrieval. The team consists of four librarians supporting three different faculties. The paper discusses the challenges faced in engaging students who may perceive information retrieval as a boring and difficult subject. The paper emphasizes the importance of motivation, inclusivity, constructive feedback, and collaborative learning in enhancing student engagement. By employing a two-librarian teaching model, maintaining a lighthearted approach, and relating information retrieval to everyday experiences, the team aimed to create an enjoyable and meaningful learning experience. The authors describe their approach to increase student engagement and learning outcomes through a three-phase workshop structure: before, during, and after the workshops. The "flipped classroom" method was used, where students were provided with pre-workshop materials, including a short film on information search and encouraged to reflect on the topic using a digital collaboration tool. During the workshops, interactive elements such as quizzes, live demonstrations, and practical training were incorporated, along with opportunities for students to ask questions and provide feedback. The paper concludes by highlighting the benefits of the flipped classroom approach and the extended learning opportunities provided by the before and after workshop phases. The authors believe that their approach offers a sustainable alternative for enhancing information retrieval knowledge among students at Linnaeus University.

Keywords: digital workshop, flipped classroom, information retrieval, interactivity, LIS practitioner, student engagement

Procedia PDF Downloads 61
1295 A Study on the Effect of Cod to Sulphate Ratio on Performance of Lab Scale Upflow Anaerobic Sludge Blanket Reactor

Authors: Neeraj Sahu, Ahmad Saadiq

Abstract:

Anaerobic sulphate reduction has the potential for being effective and economically viable over conventional treatment methods for the treatment of sulphate-rich wastewater. However, a major challenge in anaerobic sulphate reduction is the diversion of a fraction of organic carbon towards methane production and some minor problem such as odour problems, corrosion, and increase of effluent chemical oxygen demand. A high-rate anaerobic technology has encouraged researchers to extend its application to the treatment of complex wastewaters with relatively low cost and energy consumption compared to physicochemical methods. Therefore, the aim of this study was to investigate the effects of COD/SO₄²⁻ ratio on the performance of lab scale UASB reactor. A lab-scale upflow anaerobic sludge blanket (UASB) reactor was operated for 170 days. In which first 60 days, for successful start-up with acclimation under methanogenesis and sulphidogenesis at COD/SO₄²⁻ of 18 and were operated at COD/SO₄²⁻ ratios of 12, 8, 4 and 1 to evaluate the effects of the presence of sulfate on the reactor performance. The reactor achieved maximum COD removal efficiency and biogas evolution at the end of acclimation (control). This phase lasted 53 days with 89.5% efficiency. The biogas was 0.6 L/d at (OLR) of 1.0 kg COD/m³d when it was treating synthetic wastewater with effective volume of reactor as 2.8 L. When COD/SO₄²⁻ ratio changed from 12 to 1, slight decrease in COD removal efficiencies (76.8–87.4%) was observed, biogas production decreased from 0.58 to 0.32 L/d, while the sulfate removal efficiency increased from 42.5% to 72.7%.

Keywords: anaerobic, chemical oxygen demand, organic loading rate, sulphate, up-flow anaerobic sludge blanket reactor

Procedia PDF Downloads 213
1294 The Documentation of Modernisation Processes in Spain Based on the Residential Architecture of the 1960s. A Patrimonial Perspective on El Plantinar Neighbourhood in Seville

Authors: Julia Rey-Pérez, Julia Díaz Borrego

Abstract:

The modernisation process of the city of Sevilla in Spain and the transformation of the city took place through national and local government initiatives from the 1960s onwards. Part of these actions was the execution of numerous residential neighbourhoodsthat prepared Sevilla for the change of era. This process was possible thanks to the implementation of public policies that showed the imminent need for new architectural programmes, as well as for high-rise architecture built in reinforced concrete. However, very little is known to this day about the modernisation process in Sevilla and the development of these neighbourhoods, which were designed to house a large number of people and are today a key reference point in the Historic Urban Landscape of the city of Seville. Therefore, the present research aims to learn and reflect upon the urban transformation of the city at this time andto deepen the heritage uniqueness of these neighbourhoods, as is the case of ElPlantinarneighbourhood.The methodology proposed for this research is structured in three phases, where in the first stage, a general study of the El Plantinarneighbourhood was carried out on three scales: urban, object-typological and perceptive. In the second stage, the cultural attributes and values of the urban complex in question were identified in order to determine whether the case study is truly representative of the beginnings of modernity in Spain and whether it needs a heritage approach. Finally, a third phase is proposed in which criteria will be defined on how to intervene in this neighbourhood to guarantee its presence in the urban landscape of the city of Seville. The expected results will help to understand the process of modernisation that the city has undergone, as well as the heritage value of this architecture in the construction of the collective memory.

Keywords: modern heritage, urban obsolescence, methodology, develop

Procedia PDF Downloads 144
1293 Study of the Non-isothermal Crystallization Kinetics of Polypropylene Homopolymer/Impact Copolymer Composites

Authors: Pixiang Wang, Shaoyang Liu, Yucheng Peng

Abstract:

Polypropylene (PP) is an essential material of numerous applications in different industrial sectors, including packaging, construction, and automotive. Because the application of homopolypropylene (HPP) is limited by its relatively low impact strength and high embrittlement temperature, various types of impact copolymer PP (ICPP) that incorporate elastomers/rubbers into HPP to increase impact strength have been successfully commercialized. Crystallization kinetics of an isotactic HPP, an ICPP, and their composites were studied in this work understand the composites’ behaviors better. The Avrami-Jeziorny model was used to describe the crystallization process. For most samples, the Avrami exponent, n, was greater than 3, indicating the crystal grew in three dimensions with spherical geometry. However, the n value could drop below 3 when the ICPP content was 80 wt.% or higher and the cooling rate was 7.5°C/min or lower, implying that the crystals could grow in two dimensions and some lamella structures could be formed under those conditions. The nucleation activity increased with the increase of the ICPP content, demonstrating that the rubber phase in the ICPP acted as a nucleation agent and facilitated the nucleation process. The decrease in crystallization rate after the ICPP content exceeded 60 wt.% might be caused by the excessive amount of crystal nuclei induced by the high ICPP content, which caused strong crystal-crystal interactions and limited the crystal growth space. The nucleation activity and the n value showed high correlations to the mechanical and thermal properties of the materials. The quantitative study of the kinetics of crystallization in this work could be a helpful reference for manufacturing ICPP and HPP/ICPP mixtures.

Keywords: polypropylene, crystallization kinetics, Avrami-Jeziorny model, crystallization activation energy, Nucleation activity

Procedia PDF Downloads 78
1292 Fed-Batch Mixotrophic Cultivation of Microalgae Scenedesmus sp., Using Airlift Photobioreactor

Authors: Lakshmidevi Rajendran, Bharathidasan Kanniappan, Gopi Raja, Muthukumar Karuppan

Abstract:

This study investigates the feasibility of fed-batch mixotrophic cultivation of microalgae Scenedesmus sp. in a 3-litre airlift photobioreactor under standard operating conditions. The results of this study suggest the algae species may serve as an excellent feed for aquatic species using organic byproducts. Microalgae Scenedesmus sp., was cultured using a synthetic wastewater by stepwise addition of crude glycerol concentration ranging from 2-10g/l under fed-batch mixotrophic mode for a period of 15 days. The attempts were made with the stepwise addition of crude glycerol as a carbon source in the initial growth phase to evade the inhibitory nature of high glycerol concentration on the growth of Scenedesmus sp. Crude glycerol was chosen since it is readily accessible as byproduct from biodiesel production sectors. Highest biomass concentration was achieved to be 2.43 g/l at the crude glycerol concentration of 6g/l after 10 days which is 3 fold times the increase in the biomass concentration compared with the control medium without the addition of glycerol. Biomass growth data obtained for the microalgae Scenedesmus sp. was fitted well with the modified Logistic equation. Substrate utilization kinetics was also employed to model the biomass productivity with respect to the various crude glycerol concentration. The results indicated that the supplement of crude glycerol to the mixotrophic culture of Scenedesmus sp., enhances the biomass concentration, chlorophyll and lutein productivity. Thus the application of fed-batch mixotrophic cultivation with stepwise addition of crude glycerol to Scenedesmus sp., provides a subtle way to reduce the production cost and improvisation in the large-scale cultivation along with biochemical compound synthesis.

Keywords: airlift photobioreactor, crude glycerol, microalgae Scenedesmus sp., mixotrophic cultivation, lutein production

Procedia PDF Downloads 177
1291 Cold Spray High Entropy Alloy Coating Surface Microstructural Characterization and Mechanical Testing

Authors: Raffaella Sesana, Nazanin Sheibanian, Luca Corsaro, Sedat Özbilen, Rocco Lupoi, Francesco Artusio

Abstract:

High Entropy Alloy (HEA) coatings of Al0.1-0.5CoCrCuFeNi and MnCoCrCuFeNi on Mg substrates were prepared from mechanically alloyed HEA powder feedstocks and at three different Cold Spray (CS) process gas (N2) temperatures (650, 750 and 850°C). Mechanically alloyed and cold-sprayed HEA coatings were characterized by macro photography, OM, SEM+EDS study, micro-hardness testing, roughness, and porosity measurements. As a result of mechanical alloying (MA), harder particles are deformed and fractured. The particles in the Cu-rich region were coarser and more globular than those in the A1 phase, which is relatively soft and ductile. In addition to the A1 particles, there were some separate Cu-rich regions. Due to the brittle nature of the powder and the acicular shape, Mn-HEA powder exhibited a different trend with smaller particle sizes. It is observed that MA results in a loose structure characterized by many gaps, cracks, signs of plastic deformation, and small particles attached to the surface of the particle. Considering the experimental results obtained, it is not possible to conclude that the chemical composition of the high entropy alloy influences the roughness of the coating. It has been observed that the deposited volume increases with temperature only in the case of Al0.1 and Mg-based HEA, while for the rest of the Al-based HEA, there are no noticeable changes. There is a direct correlation between micro-hardness and the chemical composition of a coating: the micro-hardness of a coating increases as the percentage of aluminum increases in the sample. Compared to the substrate, the coating has a much higher hardness, and the hardness measured at the interface is intermediate.

Keywords: characterisation, cold spraying, HEA coatings, SEM+EDS

Procedia PDF Downloads 57
1290 Music Tourism for Identity and Cultural Communication in Qualitative Analysis with MAXQDA

Authors: Yixuan Peng

Abstract:

Music tourism is the phenomenon of people visiting a place because of their association with music, as well as the process of creating an emotional attachment to a place through the connection between people and music. Music offers people the opportunity to immerse themselves in the local culture. Music tourism is increasingly recognized as an industry with economic and social impacts. People often come together for a common purpose of music at a certain time and place, such as concert, opera, or music workshop. This is very similar to the act of pilgrimage: the process of participation evokes strong emotions; it takes time and money to get to the destination; the gathering, and the emotional co-frequency. This study conducted further qualitative research using MAXQDA by applying the musical topophilia model with East Asians as interview subjects. There are three steps to traveling: before, during and after the trip. To date, 53 individuals living in East Asia have been interviewed one-on-one (online/offline) about their travel experiences. This part of the interview is limited to the two stages that are before and after travel. Based on the results of the interviews above, and as Europe has the most representative music industry and the richest variety of music genres. The " during the trip" phase of the observations and interviews were conducted in Europe and involved on-site music in Salzburg and London, including musical theater, street music, and musical pilgrimages. Interviews with 24 people were conducted in English, Chinese and Japanese. This study will use data to demonstrate the followings: the irreplaceability of music in faraway places; the identity and sense of belonging that music brings; the ethnic barriers that music crosses; and the cultural communication that music enables.

Keywords: belongingness, gathering, modern pilgrimage, anthropology of music, sociology of music

Procedia PDF Downloads 66
1289 Application of Numerical Modeling and Field Investigations for Groundwater Recharge Characterization at Abydos Archeological Site, Sohag, Egypt

Authors: Sherif A. Abu El-Magd, Ahmed M. Sefelnasr, Ahmed M. Masoud

Abstract:

Groundwater modeling is the way and tool for assessing and managing groundwater resources efficiently. The present work was carried out in the ancient Egyptian archeological site (Abydos) fromDynastyIandII.Theareaislocated about 13km west of the River Nilecourse, Upper Egypt. The main problem in this context is that the ground water level rise threatens and damages fragile carvings and paintings of the ancient buildings. The main objective of the present work is to identify the sources of the groundwater recharge in the site, further more, equally important there is to control the ground water level rise. Numerical modeling combined with field water level measurements was implemented to understand the ground water recharge sources. However, building a conceptual model was an important step in the groundwater modeling to phase to satisfy the modeling objectives. Therefore, boreholes, crosssections, and a high-resolution digital elevation model were used to construct the conceptual model. To understand the hydrological system in the site, the model was run under both steady state and transient conditions. Then, the model was calibrated agains the observation of the water level measurements. Finally, the results based on the modeling indicated that the groundwater recharge is originating from an indirect flow path mainly from the southeast. Besides, there is a hydraulic connection between the surface water and groundwater in the study site. The decision-makers and archeologyists could consider the present work to understand the behavior of groundwater recharge and water table level rise.

Keywords: numerical modeling, archeological site, groundwater recharge, egypt

Procedia PDF Downloads 117
1288 Improving Tower Grounding and Insulation Level vs. Line Surge Arresters for Protection of Subtransmission Lines

Authors: Navid Eghtedarpour, Mohammad Reza Hasani

Abstract:

Since renewable wind power plants are usually installed in mountain regions and high-level lands, they are often prone to lightning strikes and their hazardous effects. Although the transmission line is protected using guard wires in order to prevent the lightning surges to strike the phase conductors, the back-flashover may also occur due to tower footing resistance. A combination of back-flashover corrective methods, tower-footing resistance reduction, insulation level improvement, and line arrester installation, are analyzed in this paper for back-flashover rate reduction of a double-circuit 63 kV line in the south region of Fars province. The line crosses a mountain region in some sections with a moderate keraunic level, whereas tower-footing resistance is substantially high at some towers. Consequently, an exceptionally high back-flashover rate is recorded. A new method for insulation improvement is studied and employed in the current study. The method consists of using a composite-type creepage extender in the string. The effectiveness of this method for insulation improvement of the string is evaluated through the experimental test. Simulation results besides monitoring the one-year operation of the 63-kV line show that due to technical, practical, and economic restrictions in operated sub-transmission lines, a combination of corrective methods can lead to an effective solution for the protection of transmission lines against lightning.

Keywords: lightning protection, BF rate, grounding system, insulation level, line surge arrester

Procedia PDF Downloads 125
1287 Evaluation of Natural Waste Materials for Ammonia Removal in Biofilters

Authors: R. F. Vieira, D. Lopes, I. Baptista, S. A. Figueiredo, V. F. Domingues, R. Jorge, C. Delerue-matos, O. M. Freitas

Abstract:

Odours are generated in municipal solid wastes management plants as a result of decomposition of organic matter, especially when anaerobic degradation occurs. Information was collected about the substances and respective concentration in the surrounding atmosphere of some management plants. The main components which are associated with these unpleasant odours were identified: ammonia, hydrogen sulfide and mercaptans. The first is the most common and the one that presents the highest concentrations, reaching values of 700 mg/m3. Biofiltration, which involves simultaneously biodegradation, absorption and adsorption processes, is a sustainable technology for the treatment of these odour emissions when a natural packing material is used. The packing material should ideally be cheap, durable, and allow the maximum microbiological activity and adsorption/absorption. The presence of nutrients and water is required for biodegradation processes. Adsorption and absorption are enhanced by high specific surface area, high porosity and low density. The main purpose of this work is the exploitation of natural waste materials, locally available, as packing media: heather (Erica lusitanica), chestnut bur (from Castanea sativa), peach pits (from Prunus persica) and eucalyptus bark (from Eucalyptus globulus). Preliminary batch tests of ammonia removal were performed in order to select the most interesting materials for biofiltration, which were then characterized. The following physical and chemical parameters were evaluated: density, moisture, pH, buffer and water retention capacity. The determination of equilibrium isotherms and the adjustment to Langmuir and Freundlich models was also performed. Both models can fit the experimental results. Based both in the material performance as adsorbent and in its physical and chemical characteristics, eucalyptus bark was considered the best material. It presents a maximum adsorption capacity of 0.78±0.45 mol/kg for ammonia. The results from its characterization are: 121 kg/m3 density, 9.8% moisture, pH equal to 5.7, buffer capacity of 0.370 mmol H+/kg of dry matter and water retention capacity of 1.4 g H2O/g of dry matter. The application of natural materials locally available, with little processing, in biofiltration is an economic and sustainable alternative that should be explored.

Keywords: ammonia removal, biofiltration, natural materials, odour control

Procedia PDF Downloads 363
1286 Structural and Optical Characterization of Rice-Husk-Derived SiO₂ Crystals-reinforced PVA Composites

Authors: Suminar Pratapa, Agus Riyanto, Silmi Machmudah, Sri Yani Purwaningsih

Abstract:

The objective of this study was to investigate the optical properties of polyvinyl alcohol (PVA) and its prospective applications by adding crystalline silica which is usually used as a reinforcing agent. To do this, we synthesized and evaluated PVA-based composites reinforced with silica crystals, namely cristobalite, derived from rice husk. The experimental procedure involved the production of SiO2 particles using rice husk precursors, which were subsequently subjected to calcination at a rate of 10 °C/min for a duration of 3 hours. This process primarily resulted in the formation of SiO2 crystals in the cristobalite phase, according to X-ray diffraction (XRD). Following this, the crystals were incorporated into polyvinyl alcohol (PVA) via a casting technique, resulting in the formation of composite sheets. The SiO2 contents in the composites were 0, 2.5, 5.0, and 10.%. XRD and Fourier-transform infrared spectroscopy (FTIR) techniques provided confirmation of the composites' successful synthesis, i.e., it did not yield any indications of chemical bonding between polyvinyl alcohol (PVA) and silicon dioxide (SiO2), indicating that the interaction was limited to interfacial reactions. The incorporation of SiO2 crystals resulted in a notable enhancement in UV-vis light absorption and a decrease in the optical band gap. Addition of 2.5, 5.0, and 10.% SiO2, for example, decreases the direct optical band gap of the composites form 5.37, 5.19, and 5.02 eV respectively, while the indirect band gaps of the samples were 4.44, 4.84, and 4.48 eV, correspondingly. These findings emphasize the efficacy of rice husk-derived SiO2 crystals as both reinforcement agents and modifiers of optical properties in the polymer composites, showcasing their significant potential to modify the composite's structural and optical characteristics.

Keywords: rice husk, cristaline SiO₂, PVA-based composites, structural characteristics, optical properties.

Procedia PDF Downloads 36
1285 Multidimensional Modeling of Solidification Process of Multi-Crystalline Silicon under Magnetic Field for Solar Cell Technology

Authors: Mouhamadou Diop, Mohamed I. Hassan

Abstract:

Molten metallic flow in metallurgical plant is highly turbulent and presents a complex coupling with heat transfer, phase transfer, chemical reaction, momentum transport, etc. Molten silicon flow has significant effect in directional solidification of multicrystalline silicon by affecting the temperature field and the emerging crystallization interface as well as the transport of species and impurities during casting process. Owing to the complexity and limits of reliable measuring techniques, computational models of fluid flow are useful tools to study and quantify these problems. The overall objective of this study is to investigate the potential of a traveling magnetic field for an efficient operating control of the molten metal flow. A multidimensional numerical model will be developed for the calculations of Lorentz force, molten metal flow, and the related phenomenon. The numerical model is implemented in a laboratory-scale silicon crystallization furnace. This study presents the potential of traveling magnetic field approach for an efficient operating control of the molten flow. A numerical model will be used to study the effects of magnetic force applied on the molten flow, and their interdependencies. In this paper, coupled and decoupled, steady and unsteady models of molten flow and crystallization interface will be compared. This study will allow us to retrieve the optimal traveling magnetic field parameter range for crystallization furnaces and the optimal numerical simulations strategy for industrial application.

Keywords: multidimensional, numerical simulation, solidification, multicrystalline, traveling magnetic field

Procedia PDF Downloads 241
1284 Thermodynamic Modeling and Exergoeconomic Analysis of an Isobaric Adiabatic Compressed Air Energy Storage System

Authors: Youssef Mazloum, Haytham Sayah, Maroun Nemer

Abstract:

The penetration of renewable energy sources into the electric grid is significantly increasing. However, the intermittence of these sources breaks the balance between supply and demand for electricity. Hence, the importance of the energy storage technologies, they permit restoring the balance and reducing the drawbacks of intermittence of the renewable energies. This paper discusses the modeling and the cost-effectiveness of an isobaric adiabatic compressed air energy storage (IA-CAES) system. The proposed system is a combination among a compressed air energy storage (CAES) system with pumped hydro storage system and thermal energy storage system. The aim of this combination is to overcome the disadvantages of the conventional CAES system such as the losses due to the storage pressure variation, the loss of the compression heat and the use of fossil fuel sources. A steady state model is developed to perform an energy and exergy analyses of the IA-CAES system and calculate the distribution of the exergy losses in the latter system. A sensitivity analysis is also carried out to estimate the effects of some key parameters on the system’s efficiency, such as the pinch of the heat exchangers, the isentropic efficiency of the rotating machinery and the pressure losses. The conducted sensitivity analysis is a local analysis since the sensibility of each parameter changes with the variation of the other parameters. Therefore, an exergoeconomic study is achieved as well as a cost optimization in order to reduce the electricity cost produced during the production phase. The optimizer used is OmOptim which is a genetic algorithms based optimizer.

Keywords: cost-effectiveness, Exergoeconomic analysis, isobaric adiabatic compressed air energy storage (IA-CAES) system, thermodynamic modeling

Procedia PDF Downloads 242
1283 Threshold Sand Detection Limits for Acoustic Monitors in Multiphase Flow

Authors: Vinod Ponnagandla, Brenton McLaury, Siamack Shirazi

Abstract:

Sand production can lead to deposition of particles or erosion. Low production rates resulting in deposition can partially clog systems and cause under deposit corrosion. Commercially available nonintrusive acoustic sand detectors are attractive as they claim to detect sand production. Acoustic sand detectors are used during oil and gas production; however, operators often do not know the threshold detection limits of these devices. It is imperative to know the detection limits to appropriately plan for cleaning of separation equipment or examine risk of erosion. These monitors are based on detecting the acoustic signature of sand as the particles impact the pipe walls. The objective of this work is to determine threshold detection limits for acoustic sand monitors that are commercially available. The minimum threshold sand concentration that can be detected in a pipe are determined as a function of flowing gas and liquid velocities. A large scale flow loop with a 4-inch test section is utilized. Commercially available sand monitors (ClampOn and Roxar) are evaluated for different flow regimes, sand sizes and pipe orientation (vertical and horizontal). The manufacturers’ recommend that the monitors be placed on a bend to maximize the number of particle impacts, so results are shown for monitors placed at 45 and 90 degree positions in a bend. Acoustic sand monitors that clamp to the outside of pipe are passive and listen for solid particle impact noise. The threshold sand rate is calculated by eliminating the background noise created by the flow of gas and liquid in the pipe for various flow regimes that are generated in horizontal and vertical test sections. The average sand sizes examined are 150 and 300 microns. For stratified and bubbly flows the threshold sand rates are much higher than other flow regimes such as slug and annular flow regimes that are investigated. However, the background noise generated by slug flow regime is very high and cause a high uncertainty in detection limits. The threshold sand rates for annular flow and dry gas conditions are the lowest because of high gas velocities. The effects of monitor placement around elbows that are in vertical and horizontal pipes are also examined for 150 micron. The results show that the threshold sand rates that are detected in vertical orientation are generally lower for all various flow regimes that are investigated.

Keywords: acoustic monitor, sand, multiphase flow, threshold

Procedia PDF Downloads 397
1282 BiFeO3-CoFe2O4-PbTiO3 Composites: Structural, Multiferroic and Optical Characteristics

Authors: Nidhi Adhlakha, K. L. Yadav

Abstract:

Three phase magnetoelectric (ME) composites (1-x)(0.7BiFeO3-0.3CoFe2O4)-xPbTiO3 (or equivalently written as (1-x)(0.7BFO-0.3CFO)-xPT) with x variations 0, 0.30, 0.35, 0.40, 0.45 and 1.0 were synthesized using hybrid processing route. The effects of PT addition on structural, multiferroic and optical properties have been subsequently investigated. A detailed Rietveld refinement analysis of X-ray diffraction patterns has been performed, which confirms the presence of structural phases of individual constituents in the composites. Field emission scanning electron microscopy (FESEM) images are taken for microstructural analysis and grain size determination. Transmission electron microscopy (TEM) analysis of 0.3CFO-0.7BFO reveals the average particle size to be lying in the window of 8-10 nm. The temperature dependent dielectric constant at various frequencies (1 kHz, 10 kHz, 50 kHz, 100 kHz and 500 kHz) has been studied and the dielectric study reveals that the increase of dielectric constant and decrease of average dielectric loss of composites with incorporation of PT content. The room temperature ferromagnetic behavior of composites is confirmed through the observation of Magnetization vs. Magnetic field (M-H) hysteresis loops. The variation of magnetization with temperature indicates the presence of spin glass behavior in composites. Magnetoelectric coupling is evidenced in the composites through the observation of the dependence of the dielectric constant on the magnetic field, and magnetodielectric response of 2.05 % is observed for 45 mol% addition of PT content. The fractional change of magnetic field induced dielectric constant can also be expressed as ∆ε_r~γM^2 and the value of γ is found to be ~1.08×10-2 (emu/g)-2 for composite with x=0.40. Fourier transformed infrared (FTIR) spectroscopy of samples is carried out to analyze various bonds formation in the composites.

Keywords: composite, X-ray diffraction, dielectric properties, optical properties

Procedia PDF Downloads 301
1281 High Temperature Deformation Behavior of Al0.2CoCrFeNiMo0.5 High Entropy alloy

Authors: Yasam Palguna, Rajesh Korla

Abstract:

The efficiency of thermally operated systems can be improved by increasing the operating temperature, thereby decreasing the fuel consumption and carbon footprint. Hence, there is a continuous need for replacing the existing materials with new alloys with higher temperature working capabilities. During the last decade, multi principal element alloys, commonly known as high entropy alloys are getting more attention because of their superior high temperature strength along with good high temperature corrosion and oxidation resistance, The present work focused on the microstructure and high temperature tensile behavior of Al0.2CoCrFeNiMo0.5 high entropy alloy (HEA). Wrought Al0.2CoCrFeNiMo0.5 high entropy alloy, produced by vacuum induction melting followed by thermomechanical processing, is tested in the temperature range of 200 to 900oC. It is exhibiting very good resistance to softening with increasing temperature up to 700oC, and thereafter there is a rapid decrease in the strength, especially beyond 800oC, which may be due to simultaneous occurrence of recrystallization and precipitate coarsening. Further, it is exhibiting superplastic kind of behavior with a uniform elongation of ~ 275 % at 900 oC temperature and 1 x 10-3 s-1 strain rate, which may be due to the presence of fine stable equi-axed grains. Strain rate sensitivity of 0.3 was observed, suggesting that solute drag dislocation glide might be the active mechanism during superplastic kind of deformation. Post deformation microstructure suggesting that cavitation at the sigma phase-matrix interface is the failure mechanism during high temperature deformation. Finally, high temperature properties of the present alloy will be compared with the contemporary high temperature materials such as ferritic, austenitic steels, and superalloys.

Keywords: high entropy alloy, high temperature deformation, super plasticity, post-deformation microstructures

Procedia PDF Downloads 158
1280 3D Medical Printing the Key Component in Future of Medical Applications

Authors: Zahra Asgharpour, Eric Renteria, Sebastian De Boodt

Abstract:

There is a growing trend towards personalization of medical care, as evidenced by the emphasis on outcomes based medicine, the latest developments in CT and MR imaging and personalized treatment in a variety of surgical disciplines. 3D Printing has been introduced and applied in the medical field since 2000. The first applications were in the field of dental implants and custom prosthetics. According to recent publications, 3D printing in the medical field has been used in a wide range of applications which can be organized into several categories including implants, prosthetics, anatomical models and tissue bioprinting. Some of these categories are still in their infancy stage of the concept of proof while others are in application phase such as the design and manufacturing of customized implants and prosthesis. The approach of 3D printing in this category has been successfully used in the health care sector to make both standard and complex implants within a reasonable amount of time. In this study, some of the clinical applications of 3D printing in design and manufacturing of a patient-specific hip implant would be explained. In cases where patients have complex bone geometries or are undergoing a complex revision on hip replacement, the traditional surgical methods are not efficient, and hence these patients require patient-specific approaches. There are major advantages in using this new technology for medical applications, however, in order to get this technology widely accepted in medical device industry, there is a need for gaining more acceptance from the medical device regulatory offices. This is a challenge that is moving onward and will help the technology find its way at the end as an accepted manufacturing method for medical device industry in an international scale. The discussion will conclude with some examples describing the future directions of 3D Medical Printing.

Keywords: CT/MRI, image processing, 3D printing, medical devices, patient specific implants

Procedia PDF Downloads 290
1279 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology

Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon

Abstract:

There is not much effective guideline on development of design parameters selection on springback for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for springback in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in U-channel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on springback of flange angle (β2) and wall opening angle (β1), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the springback behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for springback was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental values

Keywords: advance high strength steel, u-channel process, springback, design of experiment, optimization, response surface methodology (rsm)

Procedia PDF Downloads 538
1278 Design of a Satellite Solar Panel Deployment Mechanism Using the Brushed DC Motor as Rotational Speed Damper

Authors: Hossein Ramezani Ali-Akbari

Abstract:

This paper presents an innovative method to control the rotational speed of a satellite solar panel during its deployment phase. A brushed DC motor has been utilized in the passive spring driven deployment mechanism to reduce the deployment speed. In order to use the DC motor as a damper, its connector terminals have been connected with an external resistance in a closed circuit. It means that, in this approach, there is no external power supply in the circuit. The working principle of this method is based on the back electromotive force (or back EMF) of the DC motor when an external torque (here the torque produced by the torsional springs) is coupled to the DC motor’s shaft. In fact, the DC motor converts to an electric generator and the current flows into the circuit and then produces the back EMF. Based on Lenz’s law, the generated current produced a torque which acts opposite to the applied external torque, and as a result, the deployment speed of the solar panel decreases. The main advantage of this method is to set an intended damping coefficient to the system via changing the external resistance. To produce the sufficient current, a gearbox has been assembled to the DC motor which magnifies the number of turns experienced by the DC motor. The coupled electro-mechanical equations of the system have been derived and solved, then, the obtained results have been presented. A full-scale prototype of the deployment mechanism has been built and tested. The potential application of brushed DC motors as a rotational speed damper has been successfully demonstrated.

Keywords: back electromotive force, brushed DC motor, rotational speed damper, satellite solar panel deployment mechanism

Procedia PDF Downloads 319
1277 Comprehensive Validation of High-Performance Liquid Chromatography-Diode Array Detection (HPLC-DAD) for Quantitative Assessment of Caffeic Acid in Phenolic Extracts from Olive Mill Wastewater

Authors: Layla El Gaini, Majdouline Belaqziz, Meriem Outaki, Mariam Minhaj

Abstract:

In this study, it introduce and validate a high-performance liquid chromatography method with diode-array detection (HPLC-DAD) specifically designed for the accurate quantification of caffeic acid in phenolic extracts obtained from olive mill wastewater. The separation process of caffeic acid was effectively achieved through the use of an Acclaim Polar Advantage column (5µm, 250x4.6mm). A meticulous multi-step gradient mobile phase was employed, comprising water acidified with phosphoric acid (pH 2.3) and acetonitrile, to ensure optimal separation. The diode-array detection was adeptly conducted within the UV–VIS spectrum, spanning a range of 200–800 nm, which facilitated precise analytical results. The method underwent comprehensive validation, addressing several essential analytical parameters, including specificity, repeatability, linearity, as well as the limits of detection and quantification, alongside measurement uncertainty. The generated linear standard curves displayed high correlation coefficients, underscoring the method's efficacy and consistency. This validated approach is not only robust but also demonstrates exceptional reliability for the focused analysis of caffeic acid within the intricate matrices of wastewater, thus offering significant potential for applications in environmental and analytical chemistry.

Keywords: high-performance liquid chromatography (HPLC-DAD), caffeic acid analysis, olive mill wastewater phenolics, analytical method validation

Procedia PDF Downloads 63
1276 Landscape Planning And Development Of Integrated Farming Based On Low External Input Sustainable Agriculture (LEISA) In Pangulah Village, Karawang County, West Java, Indonesia

Authors: Eduwin Eko Franjaya, Yesi Hendriani Supartoyo

Abstract:

Integrated farming with LEISA concept as one of the systems or sustainable farming techniques in agriculture has provided opportunities to increase farmers' income. This system also has a positive impact on the environment. However, the development of integrated farming is still on a small scale/site scale. Development on a larger scale is necessary considering to the number of potential resources in the village that can be integrated each other. The aim of this research is to develop an integrated farming landscape on small scale that has been done in previous study, into the village scale. The method used in this study follows the rules of scientific planning in landscape architecture. The initial phase begins with an inventory of the existing condition of the village, by conducting a survey. The second stage is analysis of potential and constraints in the village based on the results of a survey that has been done before. The next stage is concept-making that consists of basic concept, design concept, and development concept. The basic concept is integrated farming based on LEISA. The design concept is based on commodities that are developed in the village. The development concept consists of space concept, circulation concept, the concept of vegetation and commodities, and the concept of the production system. The last stage is planning process which produces Site Plan based on LEISA on village scale. Site Plan is also the end product of this research. The results of this research are expected to increase the income and welfare of the farmers in the village, and can be develop into a tourism area of integrated farming.

Keywords: integrated farming, LEISA, site plan, sustainable agriculture

Procedia PDF Downloads 445
1275 The Mechanism Study on the Difference between High and Low Voltage Performance of Li3V2(PO4)3

Authors: Enhui Wang, Qingzhu Ou, Yan Tang, Xiaodong Guo

Abstract:

As one of most popular polyanionic compounds in lithium-ion cathode materials, Li3V2(PO4)3 has always suffered from the low rate capability especially during 3~4.8V, which is considered to be related with the ion diffusion resistance and structural transformation during the Li+ de/intercalation. Here, as the change of cut-off voltages, cycling numbers and current densities, the process of SEI interfacial film’s formation-growing- destruction-repair on the surface of the cathode, the structural transformation during the charge and discharge, the de/intercalation kinetics reflected by the electrochemical impedance and the diffusion coefficient, have been investigated in detail. Current density, cycle numbers and cut-off voltage impacting on interfacial film and structure was studied specifically. Firstly, the matching between electrolyte and material was investigated, it turned out that the batteries with high voltage electrolyte showed the best electrochemical performance and high voltage electrolyte would be the best electrolyte. Secondly, AC impedance technology was used to study the changes of interface impedance and lithium ion diffusion coefficient, the results showed that current density, cycle numbers and cut-off voltage influenced the interfacial film together and the one who changed the interfacial properties most was the key factor. Scanning electron microscopy (SEM) analysis confirmed that the attenuation of discharge specific capacity was associated with the destruction and repair process of the SEI film. Thirdly, the X-ray diffraction was used to study the changes of structure, which was also impacted by current density, cycle numbers and cut-off voltage. The results indicated that the cell volume of Li3V2 (PO4 )3 increased as the current density increased; cycle numbers merely influenced the structure of material; the cell volume decreased first and moved back gradually after two Li-ion had been deintercalated as the charging cut-off voltage increased, and increased as the intercalation number of Li-ion increased during the discharging process. Then, the results which studied the changes of interface impedance and lithium ion diffusion coefficient turned out that the interface impedance and lithium ion diffusion coefficient increased when the cut-off voltage passed the voltage platforms and decreased when the cut-off voltage was between voltage platforms. Finally, three-electrode system was first adopted to test the activation energy of the system, the results indicated that the activation energy of the three-electrode system (22.385 KJ /mol) was much smaller than that of two-electrode system (40.064 KJ /mol).

Keywords: cut-off voltage, de/intercalation kinetics, solid electrolyte interphase film, structural transformation

Procedia PDF Downloads 293
1274 Redesigning Malaysia Batik Sarong by Applying Quality Function Deployment

Authors: M. Kamal, Y. Wang, R. Kennon

Abstract:

Quality Function Deployment is a useful tool in product development with the application of voice of customer. In this paper, it aims to be applied as a product development tool in redesigning fashion and textile product. The purpose of these studies is to apply the effective use of Voice of Customer in redesigning cultural fashion product. The data collection from Voice of Customer or consumers’ feedback might help the producer to improve the quality of merchandise ahead. Voice of Customer could give a specific detailing for quality which needs to be redesigned according to customers’ requirements. Meanwhile, the next objective is to differentiate design specifications and characteristics using House of Quality. In product designing phase, it is very important to distinguish each specification and characteristic which translated from Voice of Customer to House of Quality matrix. This matrix would help designers to development according to qualities that customer wants for the better and successful product in the market. It is hope this research would indicate the customers’ requirements and production team idea might be measured and translated to a systematic data. The specific technical data could be planned ahead with specific design details as well. This could be a sustainable approach for a traditional product which could control the material that they use and sustain the quality as the past production. As a conclusion, this study would benefit the Small Medium Enterprises design team or the designers to style an item from customers view with organised projection of the product. The finding also could assist designers or batik producers’ to recognise specific details Batik sarong from consumers as well as in in advertising and marketing strategy plan.

Keywords: house of quality, Malaysia batik sarong, quality function deployment, voice of customer

Procedia PDF Downloads 586
1273 Numerical Simulation of Phase Transfer during Cryosurgery for an Irregular Tumor Using Hybrid Approach

Authors: Rama Bhargava, Surabhi Nishad

Abstract:

The infusion of nanofluids has dramatically enhanced the heat-carrying capacity of the fluids, applicable to many engineering and medical process where the temperature below freezing is required. Cryosurgery is an efficient therapy for the treatment of cancer, but sometimes the excessive cooling may harm the nearby healthy cells. Efforts are therefore done to develop a model which can cause to generate the low temperature as required. In the present study, a mathematical model is developed based on the bioheat transfer equation to simulate the heat transfer from the probe on a tumor (with irregular domain) using the hybrid technique consisting of element free Galerkin method with αα-family of approximation. The probe is loaded will nano-particles. The effects of different nanoparticles, namely Al₂O₃, Fe₃O₄, Au on the heat-producing rate, is obtained. It is observed that the temperature can be brought to (60°C)-(-30°C) at a faster freezing rate on the infusion of different nanoparticles. Besides increasing the freezing rate, the volume of the nanoparticle can also control the size and growth of ice crystals formed during the freezing process. The study is also made to find the time required to achieve the desired temperature. The problem is further extended for multi tumors of different shapes and sizes. The irregular shape of the frozen domain and the direction of ice growth are very sensitive issues, posing a challenge for simulation. The Meshfree method has been one of the accurate methods in such problems as a domain is naturally irregular. The discretization is done using the nodes only. MLS approximation is taken in order to generate the shape functions. Sufficiently accurate results are obtained.

Keywords: cryosurgery, EFGM, hybrid, nanoparticles

Procedia PDF Downloads 115
1272 Growth Performance and Blood Characteristics of Broilers Chicken Fed on Diet Containing Brewer Spent Grain at Finisher Phase

Authors: O. A. Anjola, M. A. Adejobi, L. A Tijani

Abstract:

This study was conducted to investigate the effects of brewer spent grain (BSG) on growth performance and serum biochemistry characteristics of blood of broilers chickens. Three hundred and fifteen (4 weeks old) Oba – Marshall Broilers were used for the experiment. Five experimental diets were formulated with diet 1 (T1) containing 100% soya bean meal as the control, Diet 2, 3, 4 and 5 had BSG as replacement for soya bean meal at 0%, 36%, 57%, 76% and 100% respectively. The birds were allocated into each dietary group in a completely randomized design with 63 chicks in 3 replicates of 21 chicks each. The birds were offered these diets ad libitum from four weeks old to nine weeks old (35 days). Feed intake, body weight, weight gain, and feed conversion ratio (FCR) were assessed. Blood samples were also collected to examine the effect of BSG waste on hematology and serum biochemistry of broilers. Result indicated that BSG did not significantly (P>0.05) affect feed intake and weight gain. However, FCR and final weight of finishing broilers differs significantly (P<0.05) among treatments. The blood hematology and serum biochemistry indices did not follow a particular trend. Cholesterol concentration reduced with increasing level of BSG in the diet. Hb, RBC, WBC, neutrophils, lymphocytes, heterophiles and MCHC were significant (P<0.05) while MHC and MVC were not significantly (P>0.05) affected by BSG in diets. serum total protein, albumin, and cholesterol concentration also showed significance (P<0.05) difference. Thus, BSG can replace soya bean meal up to 14% in the broiler finisher diet without deleterious effect on the growth, hematology and the serum biochemistry of broiler chicken.

Keywords: broilers, growth performance, haematology, serum biochemistry

Procedia PDF Downloads 340
1271 Importance of Risk Assessment in Managers´ Decision-Making Process

Authors: Mária Hudáková, Vladimír Míka, Katarína Hollá

Abstract:

Making decisions is the core of management and a result of conscious activities which is under way in a particular environment and concrete conditions. The managers decide about the goals, procedures and about the methods how to respond to the changes and to the problems which developed. Their decisions affect the effectiveness, quality, economy and the overall successfulness in every organisation. In spite of this fact, they do not pay sufficient attention to the individual steps of the decision-making process. They emphasise more how to cope with the individual methods and techniques of making decisions and forget about the way how to cope with analysing the problem or assessing the individual solution variants. In many cases, the underestimating of the analytical phase can lead to an incorrect assessment of the problem and this can then negatively influence its further solution. Based on our analysis of the theoretical solutions by individual authors who are dealing with this area and the realised research in Slovakia and also abroad we can recognise an insufficient interest of the managers to assess the risks in the decision-making process. The goal of this paper is to assess the risks in the managers´ decision-making process relating to the conditions of the environment, to the subject’s activity (the manager’s personality), to the insufficient assessment of individual variants for solving the problems but also to situations when the arisen problem is not solved. The benefit of this paper is the effort to increase the need of the managers to deal with the risks during the decision-making process. It is important for every manager to assess the risks in his/her decision-making process and to make efforts to take such decisions which reflect the basic conditions, states and development of the environment in the best way and especially for the managers´ decisions to contribute to achieving the determined goals of the organisation as effectively as possible.

Keywords: risk, decision-making, manager, process, analysis, source of risk

Procedia PDF Downloads 260
1270 An Investigation of the Relationship between Organizational Culture and Innovation Type: A Mixed Method Study Using the OCAI in a Telecommunication Company in Saudi Arabia

Authors: A. Almubrad, R. Clouse, A. Aljlaoud

Abstract:

Organizational culture (OC) is recognized to have an influence on the propensity of organizations to innovate. It is also presumed that it may impede the innovation process from thriving within the organization. Investigating the role organizational culture plays in enabling or inhibiting innovation merits exploration to investigate organizational cultural attributes necessary to reach innovation goals. This study aims to investigate a preliminary matching heuristic of OC attributes to the type of innovation that has the potential to thrive within those attributes. A mixed methods research approach was adopted to achieve the research aims. Accordingly, participants from a national telecom company in Saudi Arabia took the Organizational Culture Assessment Instrument (OCAI). A further sample selected from the respondents’ pool holding the role of managing directors was interviewed in the qualitative phase. Our study findings reveal that the market culture type has a tendency to adopt radical innovations to disrupt the market and to preserve its market position. In contrast, we find that the adhocracy culture type tends to adopt the incremental innovation type and found this tends to be more convenient for employees due to its low levels of uncertainty. Our results are an encouraging indication that matching organizational culture attributes to the type of innovation aids in innovation management. This study carries limitations while drawing its findings from a limited sample of OC attributes that identify with the adhocracy and market culture types. An extended investigation is merited to explore other types of organizational cultures and their optimal innovation types.

Keywords: incremental innovation, radical innovation, organization culture, market culture, adhocracy culture, OACI

Procedia PDF Downloads 99
1269 Nanoparticulated (U,Gd)O2 Characterization

Authors: A. Fernandez Zuvich, I. Gana Watkins, H. Zolotucho, H. Troiani, A. Caneiro, M. Prado, A. L. Soldati

Abstract:

The study of actinide nanoparticles (NPs) has attracted the attention of the scientific community not only because the lack of information about their ecotoxicological effects but also because the use of NPs could open a new way in the production of nuclear energy. Indeed, it was recently demonstrated that UO2 NPs sintered pellets exhibit closed porosity with improved fission gas retention and radiation-tolerance , ameliorated mechanical properties, and less detriment of the thermal conductivity upon use, making them an interesting option for new nuclear fuels. In this work, we used a combination of diffraction and microscopy tools to characterize the morphology, the crystalline structure and the composition of UO2 nanoparticles doped with 10%wt Gd2O3. The particles were synthesized by a modified sol-gel method at low temperatures. X-ray Diffraction (XRD) studies determined the presence of a unique phase with the cubic structure and Fm3m spatial group, supporting that Gd atoms substitute U atoms in the fluorite structure of UO2. In addition, Field Emission Gun Scanning (FEG-SEM) and Transmission (FEG-TEM) Electron Microscopy images revealed the presence of micrometric agglomerates of nanoparticles, with rounded morphology and an average crystallite size < 50 nm. Energy Dispersive Spectroscopy (EDS) coupled to TEM determined the presence of Gd in all the analyzed crystallites. Besides, FEG-SEM-EDS showed a homogeneous concentration distribution at the micrometer scale indicating that the small size of the crystallites compensates the variation in composition by averaging a large number of crystallites. These techniques, as combined tools resulted thus essential to find out details of morphology and composition distribution at the sub-micrometer scale, and set a standard for developing and analyzing nanoparticulated nuclear fuels.

Keywords: actinide nanoparticles, burnable poison, nuclear fuel, sol-gel

Procedia PDF Downloads 325