Search results for: green product
The Role of Home Composting in Waste Management Cost Reduction
Authors: Nahid Hassanshahi, Ayoub Karimi-Jashni, Nasser Talebbeydokhti
Abstract:
Due to the economic and environmental benefits of producing less waste, the US Environmental Protection Agency (EPA) introduces source reduction as one of the most important means to deal with the problems caused by increased landfills and pollution. Waste reduction involves all waste management methods, including source reduction, recycling, and composting, which reduce waste flow to landfills or other disposal facilities. Source reduction of waste can be studied from two perspectives: avoiding waste production, or reducing per capita waste production, and waste deviation that indicates the reduction of waste transfer to landfills. The present paper has investigated home composting as a managerial solution for reduction of waste transfer to landfills. Home composting has many benefits. The use of household waste for the production of compost will result in a much smaller amount of waste being sent to landfills, which in turn will reduce the costs of waste collection, transportation and burial. Reducing the volume of waste for disposal and using them for the production of compost and plant fertilizer might help to recycle the material in a shorter time and to use them effectively in order to preserve the environment and reduce contamination. Producing compost in a home-based manner requires very small piece of land for preparation and recycling compared with other methods. The final product of home-made compost is valuable and helps to grow crops and garden plants. It is also used for modifying the soil structure and maintaining its moisture. The food that is transferred to landfills will spoil and produce leachate after a while. It will also release methane and greenhouse gases. But, composting these materials at home is the best way to manage degradable materials, use them efficiently and reduce environmental pollution. Studies have shown that the benefits of the sale of produced compost and the reduced costs of collecting, transporting, and burying waste can well be responsive to the costs of purchasing home compost machine and the cost of related trainings. Moreover, the process of producing home compost may be profitable within 4 to 5 years and as a result, it will have a major role in reducing waste management.Keywords: compost, home compost, reducing waste, waste management
Procedia PDF Downloads 432Role of Higher Education Commission (HEC) in Strengthening the Academia and Industry Relationships: The Case of Pakistan
Authors: Shah Awan, Fahad Sultan, Shahid Jan Kakakhel
Abstract:
Higher education in the 21st century has been faced with game-changing developments impacting teaching and learning and also strengthening the academia and industry relationship. The academia and industry relationship plays a key role in economic development in developed, developing and emerging economies. The partnership not only explores innovation but also provide a real time experience of the theoretical knowledge. For this purpose, the paper assessing the role of HEC in the Pakistan and discusses the way in academia and industry contribute their role in improving Pakistani economy. Successive studies have reported the importance of innovation and technology , research development initiatives in public sector universities, and the significance of role of higher education commission in strengthening the academia and industrial relationship to improve performance and minimize failure. The paper presents the results of interviews conducted, using semi-structured interviews amongst 26 staff members of two public sector universities, higher education commission and managers from corporate sector.The study shows public sector universities face the several barriers in developing economy like Pakistan, to establish the successful collaboration between universities and industry. Of the participants interviewed, HEC provides an insufficient road map to improve organisational capabilities in facilitating and enhance the performance. The results of this study have demonstrated that HEC has to embrace and internalize support to industry and public sector universities to compete in the era of globalization. Publication of this research paper will help higher education sector to further strengthen research sector through industry and university collaboration. The research findings corroborate the findings of Dooley and Kirk who highlights the features of university-industry collaboration. Enhanced communication has implications for the quality of the product and human resource. Crucial for developing economies, feasible organisational design and framework is essential for the university-industry relationship.Keywords: higher education commission, role, academia and industry relationship, Pakistan
Procedia PDF Downloads 473Viewers’ Reactions to Excessive Ritual Themes in Nigerian Home Videos: A Portharcourt City Survey
Authors: Godwin Bassey Okon
Abstract:
The need to streamline viewers’ disposition towards the predominant portrayal of rituals, in most Nigerian home videos, as a way of life in the southern part of Nigeria necessitated this study. The focus however was on ascertaining if such portrayals dovetail within the framework of construction of social reality or misconstruction of social reality. In other words, do the people of the southern part of Nigeria engage in rituals as a means of acquiring wealth or do they merely have proclivity for diabolism, as frequently portrayed in home videos subsumed in their socio-cultural settings? The method of study was survey with the questionnaire as the predominant instrument. The questionnaire was used to elicit responses from Portharcourt city residents on their views and reactions in the light of ritual themes in Nigerian home videos. The choice of Portharcourt was informed by the fact that it is a foremost cosmopolitan city in the south. A Sample size of 400 was drawn from a population of 1,382,392 using Taro Yamane’s formula. Actual respondents were reached using a multi-stage cluster sampling technique. The reliability of the instrument as ascertained through Pearson’s Product Moment Correlation stood at 0.89. Findings however revealed that ritual themes, as used in Nigerian home videos, did not significantly reflect the cultural heritage of the people of southern Nigeria. Findings further showed that their excessive use in Nigerian home videos served only to create frills and thrills in plots. A synthesis of the foregoing, however, revealed that viewers are not favourably disposed towards the excessive use of ritual themes since they inadvertently portray the cultural heritage of the people of the south in the negative. To this end, it was recommended that producers of Nigerian home videos should focus more on themes that serve to construct social reality while projecting favorably the rich cultural heritage of the people. In terms of contribution to knowledge, the findings of this study tend to reinforce the notion of film as a conveyor belt in cognitive constructs.Keywords: disposition, home videos, ritual, social reality, themes
Procedia PDF Downloads 384Designing, Manufacturing and Testing a Portable Tractor Unit Biocoal Harvester Combine of Agriculture and Animal Wastes
Authors: Ali Moharrek, Hosein Mobli, Ali Jafari, Ahmad Tabataee Far
Abstract:
Biomass is a material generally produced by plants living on soil or water and their derivatives. The remains of agricultural and forest products contain biomass which is changeable into fuel. Besides, you can obtain biogas and ethanol from the charcoal produced from biomass through specific actions. this technology was designed for as a useful Native Fuel and Technology in Energy disasters Management Due to the sudden interruption of the flow of heat energy One of the problems confronted by mankind in the future is the limitations of fossil energy which necessitates production of new energies such as biomass. In order to produce biomass from the remains of the plants, different methods shall be applied considering factors like cost of production, production technology, area of requirement, speed of work easy utilization, ect. In this article we are focusing on designing a biomass briquetting portable machine. The speed of installation of the machine on a tractor is estimated as 80 MF 258. Screw press is used in designing this machine. The needed power for running this machine which is estimated as 17.4 kW is provided by the power axis of tractor. The pressing speed of the machine is considered to be 375 RPM Finally the physical and mechanical properties of the product were compared with utilized material which resulted in appropriate outcomes. This machine is designed for Gathering Raw materials of the ground by Head Section. During delivering the raw materials to Briquetting section, they Crushed, Milled & Pre Heated in Transmission section. This machine is a Combine Portable Tractor unit machine and can use all type of Agriculture, Forest & Livestock Animals Resides as Raw material to make Bio fuel. The Briquetting Section was manufactured and it successfully made bio fuel of Sawdust. Also this machine made a biofuel with Ethanol of sugarcane Wastes. This Machine is using P.T.O power source for Briquetting and Hydraulic Power Source for Pre Processing of Row Materials.Keywords: biomass, briquette, screw press, sawdust, animal wastes, portable, tractors
Procedia PDF Downloads 317Assessment of the Effects of Urban Development on Urban Heat Islands and Community Perception in Semi-Arid Climates: Integrating Remote Sensing, GIS Tools, and Social Analysis - A Case Study of the Aures Region (Khanchela), Algeria
Authors: Amina Naidja, Zedira Khammar, Ines Soltani
Abstract:
This study investigates the impact of urban development on the urban heat island (UHI) effect in the semi-arid Aures region of Algeria, integrating remote sensing data with statistical analysis and community surveys to examine the interconnected environmental and social dynamics. Using Landsat 8 satellite imagery, temporal variations in the Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and land use/land cover (LULC) changes are analyzed to understand patterns of urbanization and environmental transformation. These environmental metrics are correlated with land surface temperature (LST) data derived from remote sensing to quantify the UHI effect. To incorporate the social dimension, a structured questionnaire survey is conducted among residents in selected urban areas. The survey assesses community perceptions of urban heat, its impacts on daily life, health concerns, and coping strategies. Statistical analysis is employed to analyze survey responses, identifying correlations between demographic factors, socioeconomic status, and perceived heat stress. Preliminary findings reveal significant correlations between built-up areas (NDBI) and higher LST, indicating the contribution of urbanization to local warming. Conversely, areas with higher vegetation cover (NDVI) exhibit lower LST, highlighting the cooling effect of green spaces. Social survey results provide insights into how UHI affects different demographic groups, with vulnerable populations experiencing greater heat-related challenges. By integrating remote sensing analysis with statistical modeling and community surveys, this study offers a comprehensive understanding of the environmental and social implications of urban development in semi-arid climates. The findings contribute to evidence-based urban planning strategies that prioritize environmental sustainability and social well-being. Future research should focus on policy recommendations and community engagement initiatives to mitigate UHI impacts and promote climate-resilient urban development.Keywords: urban heat island, remote sensing, social analysis, NDVI, NDBI, LST, community perception
Procedia PDF Downloads 46A Step Towards Circular Economy: Assessing the Efficacy of Ion Exchange Resins in the Recycling of Automotive Engine Coolants
Authors: George Madalin Danila, Mihaiella Cretu, Cristian Puscasu
Abstract:
The recycling of used antifreeze/coolant is a widely discussed and intricate issue. Complying with government regulations for the proper disposal of hazardous waste poses a significant challenge for today's automotive and industrial industries. In recent years, global focus has shifted toward Earth's fragile ecology, emphasizing the need to restore and preserve the natural environment. The business and industrial sectors have undergone substantial changes to adapt and offer products tailored to these evolving markets. The global antifreeze market size was evaluated at US 5.4 billion in 2020 to reach USD 5,9 billion by 2025 due to the increased number of vehicles worldwide, but also to the growth of HVAC systems. This study presents the evaluation of an ion exchange resin-based installation designed for the recycling of engine coolants, specifically ethylene glycol (EG) and propylene glycol (PG). The recycling process aims to restore the coolant to meet the stringent ASTM standards for both new and recycled coolants. A combination of physical-chemical methods, gas chromatography-mass spectrometry (GC-MS), and inductively coupled plasma mass spectrometry (ICP-MS) was employed to analyze and validate the purity and performance of the recycled product. The experimental setup included performance tests, namely corrosion to glassware and the tendency to foaming of coolant, to assess the efficacy of the recycled coolants in comparison to new coolant standards. The results demonstrate that the recycled EG coolants exhibit comparable quality to new coolants, with all critical parameters falling within the acceptable ASTM limits. This indicates that the ion exchange resin method is a viable and efficient solution for the recycling of engine coolants, offering an environmentally friendly alternative to the disposal of used coolants while ensuring compliance with industry standards.Keywords: engine coolant, glycols, recycling, ion exchange resin, circular economy
Procedia PDF Downloads 50A Study on Relationship between Firm Managers Environmental Attitudes and Environment-Friendly Practices for Textile Firms in India
Authors: Anupriya Sharma, Sapna Narula
Abstract:
Over the past decade, sustainability has gone mainstream as more people are worried about environment-related issues than ever before. These issues are of even more concern for industries which leave a significant impact on the environment. Following these ecological issues, corporates are beginning to comprehend the impact on their business. Many such initiatives have been made to address these emerging issues in the consumer-driven textile industry. Demand from customers, local communities, government regulations, etc. are considered some of the major factors affecting environmental decision-making. Research also shows that motivations to go green are inevitably determined by the way top managers perceive environmental issues as managers personal values and ethical commitment act as a motivating factor towards corporate social responsibility. Little empirical research has been conducted to examine the relationship between top managers’ personal environmental attitudes and corporate environmental behaviors for the textile industry in the Indian context. The primary purpose of this study is to determine the current state of environmental management in textile industry and whether the attitude of textile firms’ top managers is significantly related to firm’s response to environmental issues and their perceived benefits of environmental management. To achieve the aforesaid objectives of the study, authors used structured questionnaire based on literature review. The questionnaire consisted of six sections with a total length of eight pages. The first section was based on background information on the position of the respondents in the organization, annual turnover, year of firm’s establishment and so on. The other five sections of the questionnaire were based upon (drivers, attitude, and awareness, sustainable business practices, barriers to implementation and benefits achieved). To test the questionnaire, a pretest was conducted with the professionals working in corporate sustainability and had knowledge about the textile industry and was then mailed to various stakeholders involved in textile production thereby covering firms top manufacturing officers, EHS managers, textile engineers, HR personnel and R&D managers. The results of the study showed that most of the textile firms were implementing some type of environmental management practice, even though the magnitude of firm’s involvement in environmental management practices varied. The results also show that textile firms with a higher level of involvement in environmental management were more involved in the process driven technical environmental practices. It also identified that firm’s top managers environmental attitudes were correlated with perceived advantages of environmental management as textile firm’s top managers are the ones who possess managerial discretion on formulating and deciding business policies such as environmental initiatives.Keywords: attitude and awareness, Environmental management, sustainability, textile industry
Procedia PDF Downloads 239The Growth Role of Natural Gas Consumption for Developing Countries
Authors: Tae Young Jin, Jin Soo Kim
Abstract:
Carbon emissions have emerged as global concerns. Intergovernmental Panel of Climate Change (IPCC) have published reports about Green House Gases (GHGs) emissions regularly. United Nations Framework Convention on Climate Change (UNFCCC) have held a conference yearly since 1995. Especially, COP21 held at December 2015 made the Paris agreement which have strong binding force differently from former COP. The Paris agreement was ratified as of 4 November 2016, they finally have legal binding. Participating countries set up their own Intended Nationally Determined Contributions (INDC), and will try to achieve this. Thus, carbon emissions must be reduced. The energy sector is one of most responsible for carbon emissions and fossil fuels particularly are. Thus, this paper attempted to examine the relationship between natural gas consumption and economic growth. To achieve this, we adopted the Cobb-Douglas production function that consists of natural gas consumption, economic growth, capital, and labor using dependent panel analysis. Data were preprocessed with Principal Component Analysis (PCA) to remove cross-sectional dependency which can disturb the panel results. After confirming the existence of time-trended component of each variable, we moved to cointegration test considering cross-sectional dependency and structural breaks to describe more realistic behavior of volatile international indicators. The cointegration test result indicates that there is long-run equilibrium relationship between selected variables. Long-run cointegrating vector and Granger causality test results show that while natural gas consumption can contribute economic growth in the short-run, adversely affect in the long-run. From these results, we made following policy implications. Since natural gas has positive economic effect in only short-run, the policy makers in developing countries must consider the gradual switching of major energy source, from natural gas to sustainable energy source. Second, the technology transfer and financing business suggested by COP must be accelerated. Acknowledgement—This work was supported by the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20152510101880) and by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-205S1A3A2046684).Keywords: developing countries, economic growth, natural gas consumption, panel data analysis
Procedia PDF Downloads 239An Ethnographic Study of Commercial Surrogacy Industry in India
Authors: Dalia Bhattacharjee
Abstract:
Motherhood as an institution is considered as sacred. Reproduction and motherhood have always been a concern of the private space of home. However, with the emergence of technologies like the Assisted Reproductive Technologies (ARTs), this intimate area has moved into the public. A woman can now become a mother with artificial insemination done by expert medical professionals in a hospital. With this development, the meanings of motherhood and childrearing have altered. Mothers have been divided into ‘ovarian mothers’ (those who provide the eggs), ‘uterine mothers’ (those who carry out the pregnancy and give birth), and ‘social mothers’ (those who raise the child). Thus, the ART business deconstructs motherhood by defining who the biological mother is and who the social mother is and who – despite contributing parts or processes of her body to the life of the child is not a mother, but merely the donor of a product, be it the egg or the womb, which is owned by those who are favoured by the contract. The industry of commercial surrogacy in India has been estimated to be of $2.3 billion as of 2012. There are many women who work as surrogate mothers in this industry for the exchange of money. It runs like a full-fledged business guided by a highly profit oriented capitalist market. The reproductive labourers are identified as mere womb renters or victims and not as active agents in such arrangements. Such a discourse undercuts the agency exercised by the women. The present study is an ethnography into the commercial surrogacy industry in India. This journey furthers the understanding of the dilemmas faced by the reproductive labourers. The paper emphasizes on the experiences of reproduction and motherhood outside the private space of the home in the commercial surrogacy industry in India, and, argues that this multiplicity of experiences need much focus and attention, where, the consumer becomes ‘the’ citizen and the women workers continue to be victims. The study draws on the narratives of the reproductive labourers, who remain at the center, and yet, at the periphery of such arrangements. This feminist ethnography is informed by the feminist standpoint theory to account for and analyse these varied experiences which further the understanding of the dilemmas faced by the reproductive labourers.Keywords: commercial surrogacy, ethnography, motherhood, standpoint theory
Procedia PDF Downloads 244Study of the Impact of Synthesis Method and Chemical Composition on Photocatalytic Properties of Cobalt Ferrite Catalysts
Authors: Katerina Zaharieva, Vicente Rives, Martin Tsvetkov, Raquel Trujillano, Boris Kunev, Ivan Mitov, Maria Milanova, Zara Cherkezova-Zheleva
Abstract:
The nanostructured cobalt ferrite-type materials Sample A - Co0.25Fe2.75O4, Sample B - Co0.5Fe2.5O4, and Sample C - CoFe2O4 were prepared by co-precipitation in our previous investigations. The co-precipitated Sample B and Sample C were mechanochemically activated in order to produce Sample D - Co0.5Fe2.5O4 and Sample E- CoFe2O4. The PXRD, Moessbauer and FTIR spectroscopies, specific surface area determination by the BET method, thermal analysis, element chemical analysis and temperature-programmed reduction were used to investigate the prepared nano-sized samples. The changes of the Malachite green dye concentration during reaction of the photocatalytic decolorization using nanostructured cobalt ferrite-type catalysts with different chemical composition are included. The photocatalytic results show that the increase in the degree of incorporation of cobalt ions in the magnetite host structure for co-precipitated cobalt ferrite-type samples results in an increase of the photocatalytic activity: Sample A (4 х10-3 min-1) < Sample B (5 х10-3 min-1) < Sample C (7 х10-3 min-1). Mechanochemically activated photocatalysts showed a higher activity than the co-precipitated ferrite materials: Sample D (16 х10-3 min-1) > Sample E (14 х10-3 min-1) > Sample C (7 х10-3 min-1) > Sample B (5 х10-3 min-1) > Sample A (4 х10-3 min-1). On decreasing the degree of substitution of iron ions by cobalt ones a higher sorption ability of the dye after the dark period for the co-precipitated cobalt ferrite materials was observed: Sample C (72 %) < Sample B (78 %) < Sample A (80 %). Mechanochemically treated ferrite catalysts and co-precipitated Sample B possess similar sorption capacities, Sample D (78 %) ~ Sample E (78 %) ~ Sample B (78 %). The prepared nano-sized cobalt ferrite-type materials demonstrate good photocatalytic and sorption properties. Mechanochemically activated Sample D - Co0.5Fe2.5O4 (16х10-3 min-1) and Sample E-CoFe2O4 (14х10-3 min-1) possess higher photocatalytic activity than that of the most common used UV-light catalyst Degussa P25 (12х10-3 min-1). The dependence of the photo-catalytic activity and sorption properties on the preparation method and different degree of substitution of iron ions by cobalt ions in synthesized cobalt ferrite samples is established. The mechanochemical activation leads to formation of nano-structured cobalt ferrite-type catalysts (Sample D and Sample E) with higher rate constants than those of the ferrite materials (Sample A, Sample B, and Sample C) prepared by the co-precipitation procedure. The increase in the degree of substitution of iron ions by cobalt ones leads to improved photocatalytic properties and lower sorption capacities of the co-precipitated ferrite samples. The good sorption properties between 72 and 80% of the prepared ferrite-type materials show that they could be used as potential cheap absorbents for purification of polluted waters.Keywords: nanodimensional cobalt ferrites, photocatalyst, synthesis, mechanochemical activation
Procedia PDF Downloads 269A Simple Chemical Precipitation Method of Titanium Dioxide Nanoparticles Using Polyvinyl Pyrrolidone as a Capping Agent and Their Characterization
Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar
Abstract:
In this paper, a simple chemical precipitation route for the preparation of titanium dioxide nanoparticles, synthesized by using titanium tetra isopropoxide as a precursor and polyvinyl pyrrolidone (PVP) as a capping agent, is reported. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) of the samples were recorded and the phase transformation temperature of titanium hydroxide, Ti(OH)4 to titanium oxide, TiO2 was investigated. The as-prepared Ti(OH)4 precipitate was annealed at 800°C to obtain TiO2 nanoparticles. The thermal, structural, morphological and textural characterizations of the TiO2 nanoparticle samples were carried out by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM) techniques. The as-prepared precipitate was characterized using DSC-TGA and confirmed the mass loss of around 30%. XRD results exhibited no diffraction peaks attributable to anatase phase, for the reaction products, after the solvent removal. The results indicate that the product is purely rutile. The vibrational frequencies of two main absorption bands of prepared samples are discussed from the results of the FTIR analysis. The formation of nanosphere of diameter of the order of 10 nm, has been confirmed by FESEM. The optical band gap was found by using UV-Visible spectrum. From photoluminescence spectra, a strong emission was observed. The obtained results suggest that this method provides a simple, efficient and versatile technique for preparing TiO2 nanoparticles and it has the potential to be applied to other systems for photocatalytic activity.Keywords: TiO2 nanoparticles, chemical precipitation route, phase transition, Fourier Transform Infra-Red spectroscopy (FTIR), micro-Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence Spectroscopy (PL) and Field Effect Scanning electron microscopy (FESEM)
Procedia PDF Downloads 327Systematic Review of Digital Interventions to Reduce the Carbon Footprint of Primary Care
Authors: Anastasia Constantinou, Panayiotis Laouris, Stephen Morris
Abstract:
Background: Climate change has been reported as one of the worst threats to healthcare. The healthcare sector is a significant contributor to greenhouse gas emissions with primary care being responsible for 23% of the NHS’ total carbon footprint. Digital interventions, primarily focusing on telemedicine, offer a route to change. This systematic review aims to quantify and characterize the carbon footprint savings associated with the implementation of digital interventions in the setting of primary care. Methods: A systematic review of published literature was conducted according to PRISMA (Preferred Reporting Item for Systematic Reviews and Meta-Analyses) guidelines. MEDLINE, PubMed, and Scopus databases as well as Google scholar were searched using key terms relating to “carbon footprint,” “environmental impact,” “sustainability”, “green care”, “primary care,”, and “general practice,” using citation tracking to identify additional articles. Data was extracted and analyzed in Microsoft Excel. Results: Eight studies were identified conducted in four different countries between 2010 and 2023. Four studies used interventions to address primary care services, three studies focused on the interface between primary and specialist care, and one study addressed both. Digital interventions included the use of mobile applications, online portals, access to electronic medical records, electronic referrals, electronic prescribing, video-consultations and use of autonomous artificial intelligence. Only one study carried out a complete life cycle assessment to determine the carbon footprint of the intervention. It estimate that digital interventions reduced the carbon footprint at primary care level by 5.1 kgCO2/visit, and at the interface with specialist care by 13.4 kg CO₂/visit. When assessing the relationship between travel-distance saved and savings in emissions, we identified a strong correlation, suggesting that most of the carbon footprint reduction is attributed to reduced travel. However, two studies also commented on environmental savings associated with reduced use of paper. Patient savings in the form of reduced fuel cost and reduced travel time were also identified. Conclusion: All studies identified significant reductions in carbon footprint following implementation of digital interventions. In the future, controlled, prospective studies incorporating complete life cycle assessments and accounting for double-consulting effects, use of additional resources, technical failures, quality of care and cost-effectiveness are needed to fully appreciate the sustainable benefit of these interventionsKeywords: carbon footprint, environmental impact, primary care, sustainable healthcare
Procedia PDF Downloads 67Phytomining for Rare Earth Elements: A Comparative Life Cycle Assessment
Authors: Mohsen Rabbani, Trista McLaughlin, Ehsan Vahidi
Abstract:
the remediation of polluted sites with heavy metals, such as rare earth elements (REEs), has been a primary concern of researchers to decontaminate the soil. Among all developed methods to address this concern, phytoremediation has been established as efficient, cost-effective, easy-to-use, and environmentally friendly way, providing a long-term solution for addressing this global concern. Furthermore, this technology has another great potential application in the metals production sector through returning metals buried in soil via metals cropping. Considering the significant metal concentration in hyper-accumulators, the utilization of bioaccumulated metals to extract metals from plant matter has been proposed as a sub-economic area called phytomining. As a recent, more advanced technology to eliminate such pollutants from the soil and produce critical metals, bioharvesting (phytomining/agromining) has been considered another compromising way to produce metals and meet the global demand for critical/target metals. The bio-ore obtained from phytomining can be safely disposed of or introduced to metal production pathways to obtain the most demanded metals, such as REEs. It is well-known that some hyperaccumulators, e.g., fern Dicranopteris linearis, can be used to absorb REE metals from the polluted soils and accumulate them in plant organs, such as leaves and stems. After soil remediation, the plant species can be harvested and introduced to the downstream steps, namely crushing/grinding, leaching, and purification processes, to extract REEs from plant matter. This novel interdisciplinary field can fill the gap between agriculture, mining, metallurgy, and the environment. Despite the advantages of agromining for the REEs production industry, key issues related to the environmental sustainability of the entire life cycle of this new concept have not been assessed yet. Hence, a comparative life cycle assessment (LCA) study was conducted to quantify the environmental footprints of REEs phytomining. The current LCA study aims to estimate and calculate environmental effects associated with phytomining by considering critical factors, such as climate change, land use, and ozone depletion. The results revealed that phytomining is an easy-to-use and environmentally sustainable approach to either eliminate REEs from polluted sites or produce REEs, offering a new source of such metals production. This LCA research provides guidelines for researchers active in developing a reliable relationship between agriculture, mining, metallurgy, and the environment to encounter soil pollution and keep the earth green and clean.Keywords: phytoremediation, phytomining, life cycle assessment, environmental impacts, rare earth elements, hyperaccumulator
Procedia PDF Downloads 72Improving Fluid Catalytic Cracking Unit Performance through Low Cost Debottlenecking
Authors: Saidulu Gadari, Manoj Kumar Yadav, V. K. Satheesh, Debasis Bhattacharyya, S. S. V. Ramakumar, Subhajit Sarkar
Abstract:
Most Fluid Catalytic Cracking Units (FCCUs) are big profit makers and hence, always operated with several constraints. It is the primary source for production of gasoline, light olefins as petrochemical feedstocks, feedstock for alkylate & oxygenates, LPG, etc. in a refinery. Increasing unit capacity and improving product yields as well as qualities such as gasoline RON have dramatic impact on the refinery economics. FCCUs are often debottlenecked significantly beyond their original design capacities. Depending upon the unit configuration, operating conditions, and feedstock quality, the FCC unit can have a variety of bottlenecks. While some of these are aimed to increase the feed rate, improve the conversion, etc., the others are aimed to improve the reliability of the equipment or overall unit. Apart from investment cost, the other factors considered generally while evaluating the debottlenecking options are shutdown days, faster payback, risk on investment, etc. A low-cost solution such as replacement of feed injectors, air distributor, steam distributors, spent catalyst distributor, efficient cyclone system, etc. are the preferred way of upgrading FCCU. It also has lower lead time from idea inception to implementation. This paper discusses various bottlenecks generally encountered in FCCU and presents a case study on improvement of performance of one of the FCCUs in IndianOil through implementation of cost-effective technical solution including use of improved internals in Reactor-Regeneration (R-R) section. After implementation reduction in regenerator air, gas superficial velocity in regenerator and cyclone velocities by about 10% and improvement of CLO yield from 10 to 6 wt% have been achieved. By ensuring proper pressure balance and optimum immersion of cyclone dipleg in the standpipe, frequent formation of perforations in regenerator cyclones could be addressed which in turn improved the unit on-stream factor.Keywords: FCC, low-cost, revamp, debottleneck, internals, distributors, cyclone, dipleg
Procedia PDF Downloads 217Energy Efficiency Approach to Reduce Costs of Ownership of Air Jet Weaving
Authors: Corrado Grassi, Achim Schröter, Yves Gloy, Thomas Gries
Abstract:
Air jet weaving is the most productive, but also the most energy consuming weaving method. Increasing energy costs and environmental impact are constantly a challenge for the manufacturers of weaving machines. Current technological developments concern with low energy costs, low environmental impact, high productivity, and constant product quality. The high degree of energy consumption of the method can be ascribed to the high need of compressed air. An energy efficiency method is applied to the air jet weaving technology. Such method identifies and classifies the main relevant energy consumers and processes from the exergy point of view and it leads to the identification of energy efficiency potentials during the weft insertion process. Starting from the design phase, energy efficiency is considered as the central requirement to be satisfied. The initial phase of the method consists of an analysis of the state of the art of the main weft insertion components in order to point out a prioritization of the high demanding energy components and processes. The identified major components are investigated to reduce the high demand of energy of the weft insertion process. During the interaction of the flow field coming from the relay nozzles within the profiled reed, only a minor part of the stream is really accelerating the weft yarn, hence resulting in large energy inefficiency. Different tools such as FEM analysis, CFD simulation models and experimental analysis are used in order to design a more energy efficient design of the involved components in the filling insertion. A different concept for the metal strip of the profiled reed is developed. The developed metal strip allows a reduction of the machine energy consumption. Based on a parametric and aerodynamic study, the designed reed transmits higher values of the flow power to the filling yarn. The innovative reed fulfills both the requirement of raising energy efficiency and the compliance with the weaving constraints.Keywords: air jet weaving, aerodynamic simulation, energy efficiency, experimental validation, weft insertion
Procedia PDF Downloads 199Image Processing-Based Maize Disease Detection Using Mobile Application
Authors: Nathenal Thomas
Abstract:
In the food chain and in many other agricultural products, corn, also known as maize, which goes by the scientific name Zea mays subsp, is a widely produced agricultural product. Corn has the highest adaptability. It comes in many different types, is employed in many different industrial processes, and is more adaptable to different agro-climatic situations. In Ethiopia, maize is among the most widely grown crop. Small-scale corn farming may be a household's only source of food in developing nations like Ethiopia. The aforementioned data demonstrates that the country's requirement for this crop is excessively high, and conversely, the crop's productivity is very low for a variety of reasons. The most damaging disease that greatly contributes to this imbalance between the crop's supply and demand is the corn disease. The failure to diagnose diseases in maize plant until they are too late is one of the most important factors influencing crop output in Ethiopia. This study will aid in the early detection of such diseases and support farmers during the cultivation process, directly affecting the amount of maize produced. The diseases in maize plants, such as northern leaf blight and cercospora leaf spot, have distinct symptoms that are visible. This study aims to detect the most frequent and degrading maize diseases using the most efficiently used subset of machine learning technology, deep learning so, called Image Processing. Deep learning uses networks that can be trained from unlabeled data without supervision (unsupervised). It is a feature that simulates the exercises the human brain goes through when digesting data. Its applications include speech recognition, language translation, object classification, and decision-making. Convolutional Neural Network (CNN) for Image Processing, also known as convent, is a deep learning class that is widely used for image classification, image detection, face recognition, and other problems. it will also use this algorithm as the state-of-the-art for my research to detect maize diseases by photographing maize leaves using a mobile phone.Keywords: CNN, zea mays subsp, leaf blight, cercospora leaf spot
Procedia PDF Downloads 78Technico-Economical Study of a Rapeseed Based Biorefinery Using High Voltage Electrical Discharges and Ultrasounds as Pretreatment Technologies
Authors: Marwa Brahim, Nicolas Brosse, Nadia Boussetta, Nabil Grimi, Eugene Vorobiev
Abstract:
Rapeseed plant is an established product in France which is mainly dedicated to oil production. However, the economic potential of residues from this industry (rapeseed hulls, rapeseed cake, rapeseed straw etc.), has not been fully exploited. Currently, only low-grade applications are found in the market. As a consequence, it was deemed of interest to develop a technological platform aiming to convert rapeseed residues into value- added products. Specifically, a focus is given on the conversion of rapeseed straw into valuable molecules (e.g. lignin, glucose). Existing pretreatment technologies have many drawbacks mainly the production of sugar degradation products that limit the effectiveness of saccharification and fermentation steps in the overall scheme of the lignocellulosic biorefinery. In addition, the viability of fractionation strategies is a challenge in an environmental context increasingly standardized. Hence, the need to find cleaner alternatives with comparable efficiency by implementing physical phenomena that could destabilize the structural integrity of biomass without necessarily using chemical solvents. To meet environmental standards increasingly stringent, the present work aims to study the new pretreatment strategies involving lower consumption of chemicals with an attenuation of the severity of the treatment. These strategies consist on coupling physical treatments either high voltage electrical discharges or ultrasounds to conventional chemical pretreatments (soda and organosolv). Ultrasounds treatment is based on the cavitation phenomenon, and high voltage electrical discharges cause an electrical breakdown accompanied by many secondary phenomena. The choice of process was based on a technological feasibility study taking into account the economic profitability of the whole chain after products valorization. Priority was given to sugars valorization into bioethanol and lignin sale.Keywords: high voltage electrical discharges, organosolv, pretreatment strategies, rapeseed straw, soda, ultrasounds
Procedia PDF Downloads 365Bioinformatic Strategies for the Production of Glycoproteins in Algae
Authors: Fadi Saleh, Çığdem Sezer Zhmurov
Abstract:
Biopharmaceuticals represent one of the wildest developing fields within biotechnology, and the biological macromolecules being produced inside cells have a variety of applications for therapies. In the past, mammalian cells, especially CHO cells, have been employed in the production of biopharmaceuticals. This is because these cells can achieve human-like completion of PTM. These systems, however, carry apparent disadvantages like high production costs, vulnerability to contamination, and limitations in scalability. This research is focused on the utilization of microalgae as a bioreactor system for the synthesis of biopharmaceutical glycoproteins in relation to PTMs, particularly N-glycosylation. The research points to a growing interest in microalgae as a potential substitute for more conventional expression systems. A number of advantages exist in the use of microalgae, including rapid growth rates, the lack of common human pathogens, controlled scalability in bioreactors, and the ability of some PTMs to take place. Thus, the potential of microalgae to produce recombinant proteins with favorable characteristics makes this a promising platform in order to produce biopharmaceuticals. The study focuses on the examination of the N-glycosylation pathways across different species of microalgae. This investigation is important as N-glycosylation—the process by which carbohydrate groups are linked to proteins—profoundly influences the stability, activity, and general performance of glycoproteins. Additionally, bioinformatics methodologies are employed to explain the genetic pathways implicated in N-glycosylation within microalgae, with the intention of modifying these organisms to produce glycoproteins suitable for human consumption. In this way, the present comparative analysis of the N-glycosylation pathway in humans and microalgae can be used to bridge both systems in order to produce biopharmaceuticals with humanized glycosylation profiles within the microalgal organisms. The results of the research underline microalgae's potential to help improve some of the limitations associated with traditional biopharmaceutical production systems. The study may help in the creation of a cost-effective and scale-up means of producing quality biopharmaceuticals by modifying microalgae genetically to produce glycoproteins with N-glycosylation that is compatible with humans. Improvements in effectiveness will benefit biopharmaceutical production and the biopharmaceutical sector with this novel, green, and efficient expression platform. This thesis, therefore, is thorough research into the viability of microalgae as an efficient platform for producing biopharmaceutical glycoproteins. Based on the in-depth bioinformatic analysis of microalgal N-glycosylation pathways, a platform for their engineering to produce human-compatible glycoproteins is set out in this work. The findings obtained in this research will have significant implications for the biopharmaceutical industry by opening up a new way of developing safer, more efficient, and economically more feasible biopharmaceutical manufacturing platforms.Keywords: microalgae, glycoproteins, post-translational modification, genome
Procedia PDF Downloads 33The Role of Group Dynamics in Creativity: A Study Case from Italy
Authors: Sofya Komarova, Frashia Ndungu, Alessia Gavazzoli, Roberta Mineo
Abstract:
Modern society requires people to be flexible and to develop innovative solutions to unexpected situations. Creativity refers to the “interaction among aptitude, process, and the environment by which an individual or group produces a perceptible product that is both novel and useful as defined within a social context”. It allows humans to produce novel ideas, generate new solutions, and express themselves uniquely. Only a few scientific studies have examined group dynamics' influence on individuals' creativity. There exist some gaps in the research on creative thinking, such as the fact that collaborative effort frequently results in the enhanced production of new information and knowledge. Therefore, it is critical to evaluate creativity via social settings. The study aimed at exploring the group dynamics of young adults in small group settings and the influence of these dynamics on their creativity. The study included 30 participants aged 20 to 25 who were attending university after completing a bachelor's degree. The participants were divided into groups of three, in gender homogenous and heterogeneous groups. The groups’ creative task was tied to the Lego mosaic created for the Scintillae laboratory at the Reggio Children Foundation. Group dynamics were operationalized into patterns of behaviors classified into three major categories: 1) Social Interactions, 2) Play, and 3) Distraction. Data were collected through audio and video recording and observation. The qualitative data were converted into quantitative data using the observational coding system; then, they were analyzed, revealing correlations between behaviors using median points and averages. For each participant and group, the percentages of represented behavior signals were computed. The findings revealed a link between social interaction, creative thinking, and creative activities. Other findings revealed that the more intense the social interaction, the lower the amount of creativity demonstrated. This study bridges the research gap between group dynamics and creativity. The approach calls for further research on the relationship between creativity and social interaction.Keywords: group dynamics, creative thinking, creative action, social interactions, group play
Procedia PDF Downloads 130Field Study of Chlorinated Aliphatic Hydrocarbons Degradation in Contaminated Groundwater via Micron Zero-Valent Iron Coupled with Biostimulation
Authors: Naijin Wu, Peizhong Li, Haijian Wang, Wenxia Wei, Yun Song
Abstract:
Chlorinated aliphatic hydrocarbons (CAHs) pollution poses a severe threat to human health and is persistent in groundwater. Although chemical reduction or bioremediation is effective, it is still hard to achieve their complete and rapid dechlorination. Recently, the combination of zero-valent iron and biostimulation has been considered to be one of the most promising strategies, but field studies of this technology are scarce. In a typical site contaminated by various types of CAHs, basic physicochemical parameters of groundwater, CAHs and their product concentrations, and microbial abundance and diversity were monitored after a remediation slurry containing both micron zero-valent iron (mZVI) and biostimulation components were directly injected into the aquifer. Results showed that groundwater could form and keep low oxidation-reduction potential (ORP), a neutral pH, and anoxic conditions after different degrees of fluctuations, which was benefit for the reductive dechlorination of CAHs. The injection also caused an obvious increase in the total organic carbon (TOC) concentration and sulfate reduction. After 253 days post-injection, the mean concentration of total chlorinated ethylene (CEE) from two monitoring wells decreased from 304 μg/L to 8 μg/L, and total chlorinated ethane (CEA) decreased from 548 μg/L to 108 μg/L. Occurrence of chloroethane (CA) suggested that hydrogenolysis dechlorination was one of the main degradation pathways for CEA, and also hints that biological dechlorination was activated. A significant increase of ethylene at day 67 post-injection indicated that dechlorination was complete. Additionally, the total bacterial counts increased by 2-3 orders of magnitude after 253 days post-injection. And the microbial species richness decreased and gradually changed to anaerobic/fermentative bacteria. The relative abundance of potential degradation bacteria increased corresponding to the degradation of CAHs. This work demonstrates that mZVI and biostimulation can be combined to achieve the efficient removal of various CAHs from contaminated groundwater sources.Keywords: chlorinated aliphatic hydrocarbons, groundwater, field study, zero-valent iron, biostimulation
Procedia PDF Downloads 175Challenges beyond the Singapore Future-Ready School ‘LEADER’ Qualities
Authors: Zoe Boon Suan Loy
Abstract:
An exploratory research undertaken in 2000 at the beginning of the COVID-19 pandemic examined the changing roles of Singapore school leaders as they lead teachers in developing future-ready learners. While it is evident that ‘LEADER’ qualities epitomize the knowledge, competencies, and skills required, recent events in an increasing VUCA and BANI world characterized by massively disruptive Ukraine -Russian war, unabating tense US-Sino relations, issues related to sustainability, and rapid ageing will have an impact on school leadership. As an increasingly complex endeavour, this requires a relook as they lead teachers in nurturing holistically-developed future-ready students. Digitalisation, new technology, and the push for a green economy will be the key driving forces that will have an impact on job availability. Similarly, the rapid growth of artificial intelligence (AI) capabilities, including ChatGPT, will aggravate and add tremendous stress to the work of school leaders. This paper seeks to explore the key school leadership shifts required beyond the ‘LEADER’ qualities as school leaders respond to the changes, challenges, and opportunities in the 21st C new normal. The research findings for this paper are based on an exploratory qualitative study on the perceptions of 26 school leaders (vice-principals) who were attending a milestone educational leadership course at the National Institute of Education, Nanyang Technological University, Singapore. A structured questionnaire is designed to collect the data, which is then analysed using coding methodology. Broad themes on key competencies and skills of future-ready leaders in the Singapore education system are then identified. Key Findings: In undertaking their leadership roles as leaders of future-ready learners, school leaders need to demonstrate the ‘LEADER’ qualities. They need to have a long-term view, understand the educational imperatives, have a good awareness of self and the dispositions of a leader, be effective in optimizing external leverages and are clear about their role expectations. These ‘LEADER’ qualities are necessary and relevant in the post-Covid era. Beyond this, school leaders with ‘LEADER’ qualities are well supported by the Ministry of Education, which takes cognizance of emerging trends and continually review education policies to address related issues. Concluding Statement: Discussions within the education ecosystem and among other stakeholders on the implications of the use of artificial intelligence and ChatGPT on the school curriculum, including content knowledge, pedagogy, and assessment, are ongoing. This augurs well for school leaders as they undertake their responsibilities as leaders of future-ready learners.Keywords: Singapore education system, ‘LEADER’ qualities, school leadership, future-ready leaders, future-ready learners
Procedia PDF Downloads 75A Concept for Flexible Battery Cell Manufacturing from Low to Medium Volumes
Authors: Tim Giesen, Raphael Adamietz, Pablo Mayer, Philipp Stiefel, Patrick Alle, Dirk Schlenker
Abstract:
The competitiveness and success of new electrical energy storages such as battery cells are significantly dependent on a short time-to-market. Producers who decide to supply new battery cells to the market need to be easily adaptable in manufacturing with respect to the early customers’ needs in terms of cell size, materials, delivery time and quantity. In the initial state, the required output rates do not yet allow the producers to have a fully automated manufacturing line nor to supply handmade battery cells. Yet there was no solution for manufacturing battery cells in low to medium volumes in a reproducible way. Thus, in terms of cell format and output quantity, a concept for the flexible assembly of battery cells was developed by the Fraunhofer-Institute for Manufacturing Engineering and Automation. Based on clustered processes, the modular system platform can be modified, enlarged or retrofitted in a short time frame according to the ordered product. The paper shows the analysis of the production steps from a conventional battery cell assembly line. Process solutions were found by using I/O-analysis, functional structures, and morphological boxes. The identified elementary functions were subsequently clustered by functional coherences for automation solutions and thus the single process cluster was generated. The result presented in this paper enables to manufacture different cell products on the same production system using seven process clusters. The paper shows the solution for a batch-wise flexible battery cell production using advanced process control. Further, the performed tests and benefits by using the process clusters as cyber-physical systems for an integrated production and value chain are discussed. The solution lowers the hurdles for SMEs to launch innovative cell products on the global market.Keywords: automation, battery production, carrier, advanced process control, cyber-physical system
Procedia PDF Downloads 343Effect of Different Methods to Control the Parasitic Weed Phelipanche ramosa (L. Pomel) in Tomato Crop
Authors: Disciglio G., Lops F., Carlucci A., Gatta G., Tarantino A., Frabboni L, Tarantino E.
Abstract:
The Phelipanche ramosa is considered the most damaging obligate flowering parasitic weed on a wide species of cultivated plants. The semiarid regions of the world are considered the main center of this parasitic weed, where heavy infestation are due to the ability to produce high numbers of seeds (up to 200,000), that remain viable for extended period (more than 19 years). In this paper 13 treatments of parasitic weed control, as physical, chemical, biological and agronomic methods, including the use of the resistant plants, have been carried out. In 2014 a trial was performed on processing tomato (cv Docet), grown in pots filled with soil taken from a plot heavily infested by Phelipanche ramosa, at the Department of Agriculture, Food and Environment, University of Foggia (southern Italy). Tomato seedlings were transplanted on August 8, 2014 on a clay soil (USDA) 100 kg ha-1 of N; 60 kg ha-1 of P2O5 and 20 kg ha-1 of S. Afterwards, top dressing was performed with 70 kg ha-1 of N. The randomized block design with 3 replicates was adopted. During the growing cycle of the tomato, at 70-75-81 and 88 days after transplantation the number of parasitic shoots emerged in each pot was detected. Also values of leaf chlorophyll Meter SPAD of tomato plants were measured. All data were subjected to analysis of variance (ANOVA) using the JMP software (SAS Institute Inc., Cary, NC, USA), and for comparison of means was used Tukey's test. The results show lower values of the color index SPAD in tomato plants parasitized compared to those healthy. In addition, each treatment studied did not provide complete control against Phelipanche ramosa. However the virulence of the attacks was mitigated by some treatments: radicon product, compost activated with Fusarium, mineral fertilizer nitrogen, sulfur, enzone and resistant tomato genotype. It is assumed that these effects can be improved by combining some of these treatments each other, especially for a gradual and continuing reduction of the “seed bank” of the parasite in the soil.Keywords: control methods, Phelipanche ramose, tomato crop
Procedia PDF Downloads 615Phenotypic Characterization of Desi Naked Neck Chicken and Its Association with Insulin-Like Growth Factor-I (IGF-I) Gene Polymorphism in Pakistan
Authors: Akbar Nawaz Khan, Abdul Ghaffar, Muhammad Naeem Riaz
Abstract:
The study was conducted to investigate the phenotypic features, morphometry and production potentialities of indigenous naked neck chicken (NN) of Pakistan under intensive management condition. A total of 35 NN chicks were randomly selected, and the experiment was performed at Poultry and wildlife research section NARC Islamabad for a period of 22 weeks. The predominant plumage color was black and golden while skin color was observed white. The average shank length, leg length, thigh length, keel length, chest breadth, head width, wing space, wing length, body length, body girth, body height and pubic bone width in adult males and females were 69.19 ± 3.34mm, 117.93 ± 4.42mm, 117.93 ± 4.42mm, 90.87 ± 6.53mm, 95.03 ± 4.56mm, 49.77 ± 2.53mm, 30.63 ± 1.50cm, 27.24 ± 2.71cm, 18.88 ± 0.65cm, 17.77 ± 1.01cm, 25.96 ± 0.56cm, 47.81 ± 1.41cm and 35.69 ± 4.09mm respectively. The average age and live body weight of NN chicken at sexual maturity were recorded as 165.85 days and 1269.38 g. While hen-day egg production of NN was recorded as 45%. The present study was aimed to investigate the existence of polymorphism at IGF-I gene in indigenous naked neck chicken through PCR based Restriction Fragment Length Polymorphism. Based on restriction analysis using Hinf I restriction enzyme, three genotypes were detected designated as AA, AC, and CC. Restriction analysis of PCR amplified product showed the presence of DNA fragments of 622, 378, 244 and 191, (genotypes). The PCR-RFLP analysis is easy, cost effective method which permits the easy characterization of IGF-I gene. This showed the investigated IGF-I genes can serve as good molecular markers for marker assisted selection (MAS) concerning growth related traits in chicken.Keywords: Desi chicken, naked neck, morphology, morphometry, production potential, egg traits, egg geometry, IGF-I, growth, PCR- RFLP, chicken
Procedia PDF Downloads 392Factors Contributing to Farmers’ Attitude Towards Climate Adaptation Farming Practices: A Farm Level Study in Bangladesh
Authors: Md Rezaul Karim, Farha Taznin
Abstract:
The purpose of this study was to assess and describe the individual and household characteristics of farmers, to measure the attitude of farmers towards climate adaptation farming practices and to explore the individual and household factors contributing in predicting their attitude towards climate adaptation farming practices. Data were collected through personal interviews using a pre-tested interview schedule. The data collection was done at Biral Upazila under Dinajpur district in Bangladesh from 1st November to 15 December 2018. Besides descriptive statistical parameters, Pearson’s Product Moment Correlation Coefficient (r), multiple regression and step-wise multiple regression analysis were used for the statistical analysis. Findings indicated that the highest proportion (77.6 percent) of the farmers had moderately favorable attitudes, followed by only 11.2 percent with highly favorable attitudes and 11.2 percent with slightly favorable attitudes towards climate adaptation farming practices. According to the computed correlation coefficients (r), among the 10 selected factors, five of them, such as education of household head, farm size, annual household income, organizational participation, and information access by extension services, had a significant relationship with the attitude of farmers towards climate-smart practices. The step-wise multiple regression results showed that two characteristics as education of household head and information access by extension services, contributed 26.2% and 5.1%, respectively, in predicting farmers' attitudes towards climate adaptation farming practices. In addition, more than two-thirds of farmers cited their opinion to the problems in response to ‘price of vermi species is high and it is not easily available’ as 1st ranked problem, followed by ‘lack of information for innovative climate-smart technologies’. This study suggests that policy implications are necessary to promote extension education and information services and overcome the obstacles to climate adaptation farming practices. It further recommends that research study should be conducted in diverse contexts of nationally or globally.Keywords: factors, attitude, climate adaptation, farming practices, Bangladesh
Procedia PDF Downloads 91Healthy Beverages Made from Grape Juice: Antioxidant, Energetic, and Isotonic Components
Authors: Yasmina Bendaali, Cristian Vaquero, Carlos Escott, Carmen González, Antonio Morata
Abstract:
Consumer tendencies to healthy eating habits and request for organic beverages led to the production of new drinks from fruit juices as a source of nutrients and bioactive compounds. Grape juice is a rich source of sugars, organic acids, and phenolic compounds, which define its beneficial effect on health and the attractive sensory profile for consumers' choices (color, taste, flavor). Thus, grape juice was used as a source of sugars, avoiding the addition of sweeteners by diluting it with mineral water to obtain the sugar concentration recommended for isotonic drinks (6% to 8%) to provide energy during physical activities. In addition, phenolic compounds of grape juice are associated with many human health benefits, mainly antioxidant activity, which helps to prevent different diseases associated with oxidative stress, including cancers and cardiovascular and neurodegenerative diseases. Furthermore, physical exercise has been shown to increase the production of free radicals and other reactive oxygen species. Thus, athletes need to improve their antioxidant defense systems to prevent oxidative damage. Different studies have demonstrated the positive effect of grape juice consumption during physical activities, which improves antioxidant activity and performance, protects against oxidative damage, and reduces inflammation. Thus, the use of grape juice to develop isotonic drinks can provide isotonic drinks with antioxidant and biological activities in addition to their principal role of rehydration and replacement of minerals and carbohydrates during physical exercises. Moreover, attractive sensory characteristics, mainly color, which is provided by anthocyanin content, have a great contribution to making the drinks more natural and help to dispense the use of synthetic dyes in addition to the health benefits which will be a novel product in the field of healthy beverages responding on the demand of consumers for new, innovative, and healthy products.Keywords: grape juice, isotonic, antioxidants, anthocyanins, natural, sport
Procedia PDF Downloads 81On Cloud Computing: A Review of the Features
Authors: Assem Abdel Hamed Mousa
Abstract:
The Internet of Things probably already influences your life. And if it doesn’t, it soon will, say computer scientists; Ubiquitous computing names the third wave in computing, just now beginning. First were mainframes, each shared by lots of people. Now we are in the personal computing era, person and machine staring uneasily at each other across the desktop. Next comes ubiquitous computing, or the age of calm technology, when technology recedes into the background of our lives. Alan Kay of Apple calls this "Third Paradigm" computing. Ubiquitous computing is essentially the term for human interaction with computers in virtually everything. Ubiquitous computing is roughly the opposite of virtual reality. Where virtual reality puts people inside a computer-generated world, ubiquitous computing forces the computer to live out here in the world with people. Virtual reality is primarily a horse power problem; ubiquitous computing is a very difficult integration of human factors, computer science, engineering, and social sciences. The approach: Activate the world. Provide hundreds of wireless computing devices per person per office, of all scales (from 1" displays to wall sized). This has required new work in operating systems, user interfaces, networks, wireless, displays, and many other areas. We call our work "ubiquitous computing". This is different from PDA's, dynabooks, or information at your fingertips. It is invisible; everywhere computing that does not live on a personal device of any sort, but is in the woodwork everywhere. The initial incarnation of ubiquitous computing was in the form of "tabs", "pads", and "boards" built at Xerox PARC, 1988-1994. Several papers describe this work, and there are web pages for the Tabs and for the Boards (which are a commercial product now): Ubiquitous computing will drastically reduce the cost of digital devices and tasks for the average consumer. With labor intensive components such as processors and hard drives stored in the remote data centers powering the cloud , and with pooled resources giving individual consumers the benefits of economies of scale, monthly fees similar to a cable bill for services that feed into a consumer’s phone.Keywords: internet, cloud computing, ubiquitous computing, big data
Procedia PDF Downloads 387Effects of Machining Parameters on the Surface Roughness and Vibration of the Milling Tool
Authors: Yung C. Lin, Kung D. Wu, Wei C. Shih, Jui P. Hung
Abstract:
High speed and high precision machining have become the most important technology in manufacturing industry. The surface roughness of high precision components is regarded as the important characteristics of the product quality. However, machining chatter could damage the machined surface and restricts the process efficiency. Therefore, selection of the appropriate cutting conditions is of importance to prevent the occurrence of chatter. In addition, vibration of the spindle tool also affects the surface quality, which implies the surface precision can be controlled by monitoring the vibration of the spindle tool. Based on this concept, this study was aimed to investigate the influence of the machining conditions on the surface roughness and the vibration of the spindle tool. To this end, a series of machining tests were conducted on aluminum alloy. In tests, the vibration of the spindle tool was measured by using the acceleration sensors. The surface roughness of the machined parts was examined using white light interferometer. The response surface methodology (RSM) was employed to establish the mathematical models for predicting surface finish and tool vibration, respectively. The correlation between the surface roughness and spindle tool vibration was also analyzed by ANOVA analysis. According to the machining tests, machined surface with or without chattering was marked on the lobes diagram as the verification of the machining conditions. Using multivariable regression analysis, the mathematical models for predicting the surface roughness and tool vibrations were developed based on the machining parameters, cutting depth (a), feed rate (f) and spindle speed (s). The predicted roughness is shown to agree well with the measured roughness, an average percentage of errors of 10%. The average percentage of errors of the tool vibrations between the measurements and the predictions of mathematical model is about 7.39%. In addition, the tool vibration under various machining conditions has been found to have a positive influence on the surface roughness (r=0.78). As a conclusion from current results, the mathematical models were successfully developed for the predictions of the surface roughness and vibration level of the spindle tool under different cutting condition, which can help to select appropriate cutting parameters and to monitor the machining conditions to achieve high surface quality in milling operation.Keywords: machining parameters, machining stability, regression analysis, surface roughness
Procedia PDF Downloads 235Automated, Short Cycle Production of Polymer Composite Applications with Special Regards to the Complexity and Recyclability of Composite Elements
Authors: Peter Pomlenyi, Orsolya Semperger, Gergely Hegedus
Abstract:
The purpose of the project is to develop a complex composite component with visible class ‘A’ surface. It is going to integrate more functions, including continuous fiber reinforcement, foam core, injection molded ribs, and metal inserts. Therefore we are going to produce recyclable structural composite part from thermoplastic polymer in serial production with short cycle time for automotive applications. Our design of the process line is determined by the principles of Industry 4.0. Accordingly, our goal is to map in details the properties of the final product including the mechanical properties in order to replace metal elements used in automotive industry, with special regard to the effect of each manufacturing process step on the afore mentioned properties. Period of the project is 3 years, which lasts from the 1st of December 2016 to the 30th November 2019. There are four consortium members in the R&D project evopro systems engineering Ltd., Department of Polymer Engineering of the Budapest University of Technology and Economics, Research Centre for Natural Sciences of Hungarian Academy of Sciences and eCon Engineering Ltd. One of the most important result that we can obtain short cycle time (up to 2-3 min) with in-situ polymerization method, which is an innovation in the field of thermoplastic composite production. Because of the mentioned method, our fully automated production line is able to manufacture complex thermoplastic composite parts and satisfies the short cycle time required by the automotive industry. In addition to the innovative technology, we are able to design, analyze complex composite parts with finite element method, and validate our results. We are continuously collecting all the information, knowledge and experience to improve our technology and obtain even more accurate results with respect to the quality and complexity of the composite parts, the cycle time of the production, and the design and analyzing method of the composite parts.Keywords: T-RTM technology, composite, automotive, class A surface
Procedia PDF Downloads 143Winter Wheat Yield Forecasting Using Sentinel-2 Imagery at the Early Stages
Authors: Chunhua Liao, Jinfei Wang, Bo Shan, Yang Song, Yongjun He, Taifeng Dong
Abstract:
Winter wheat is one of the main crops in Canada. Forecasting of within-field variability of yield in winter wheat at the early stages is essential for precision farming. However, the crop yield modelling based on high spatial resolution satellite data is generally affected by the lack of continuous satellite observations, resulting in reducing the generalization ability of the models and increasing the difficulty of crop yield forecasting at the early stages. In this study, the correlations between Sentinel-2 data (vegetation indices and reflectance) and yield data collected by combine harvester were investigated and a generalized multivariate linear regression (MLR) model was built and tested with data acquired in different years. It was found that the four-band reflectance (blue, green, red, near-infrared) performed better than their vegetation indices (NDVI, EVI, WDRVI and OSAVI) in wheat yield prediction. The optimum phenological stage for wheat yield prediction with highest accuracy was at the growing stages from the end of the flowering to the beginning of the filling stage. The best MLR model was therefore built to predict wheat yield before harvest using Sentinel-2 data acquired at the end of the flowering stage. Further, to improve the ability of the yield prediction at the early stages, three simple unsupervised domain adaptation (DA) methods were adopted to transform the reflectance data at the early stages to the optimum phenological stage. The winter wheat yield prediction using multiple vegetation indices showed higher accuracy than using single vegetation index. The optimum stage for winter wheat yield forecasting varied with different fields when using vegetation indices, while it was consistent when using multispectral reflectance and the optimum stage for winter wheat yield prediction was at the end of flowering stage. The average testing RMSE of the MLR model at the end of the flowering stage was 604.48 kg/ha. Near the booting stage, the average testing RMSE of yield prediction using the best MLR was reduced to 799.18 kg/ha when applying the mean matching domain adaptation approach to transform the data to the target domain (at the end of the flowering) compared to that using the original data based on the models developed at the booting stage directly (“MLR at the early stage”) (RMSE =1140.64 kg/ha). This study demonstrated that the simple mean matching (MM) performed better than other DA methods and it was found that “DA then MLR at the optimum stage” performed better than “MLR directly at the early stages” for winter wheat yield forecasting at the early stages. The results indicated that the DA had a great potential in near real-time crop yield forecasting at the early stages. This study indicated that the simple domain adaptation methods had a great potential in crop yield prediction at the early stages using remote sensing data.Keywords: wheat yield prediction, domain adaptation, Sentinel-2, within-field scale
Procedia PDF Downloads 68