Search results for: data driven decision making
25701 Automated Prepaid Billing Subscription System
Authors: Adekunle K. O, Adeniyi A. E, Kolawole E
Abstract:
One of the most dramatic trends in the communications market in recent years has been the growth of prepaid services. Today, prepaid no longer constitutes the low-revenue, basic-service segment. It is driven by a high margin, value-add service customers who view it as a convenient way of retaining control over their usage and communication spending while expecting high service levels. To service providers, prepaid services offer the advantage of reducing bad accounts while allowing them to predict usage and plan network resources. Yet, the real-time demands of prepaid services require a scalable, real-time platform to manage customers through their entire life cycle. It delivers integrated real-time rating, voucher management, recharge management, customer care and service provisioning for the generation of new prepaid services. It carries high scalability that can handle millions of prepaid customers in real-time through their entire life cycle.Keywords: prepaid billing, voucher management, customers, automated, security
Procedia PDF Downloads 12025700 Vulnerability of Groundwater to Pollution in Akwa Ibom State, Southern Nigeria, using the DRASTIC Model and Geographic Information System (GIS)
Authors: Aniedi A. Udo, Magnus U. Igboekwe, Rasaaq Bello, Francis D. Eyenaka, Michael C. Ohakwere-Eze
Abstract:
Groundwater vulnerability to pollution was assessed in Akwa Ibom State, Southern Nigeria, with the aim of locating areas with high potentials for resource contamination, especially due to anthropogenic influence. The electrical resistivity method was utilized in the collection of the initial field data. Additional data input, which included depth to static water level, drilled well log data, aquifer recharge data, percentage slope, as well as soil information, were sourced from secondary sources. The initial field data were interpreted both manually and with computer modeling to provide information on the geoelectric properties of the subsurface. Interpreted results together with the secondary data were used to develop the DRASTIC thematic maps. A vulnerability assessment was performed using the DRASTIC model in a GIS environment and areas with high vulnerability which needed immediate attention was clearly mapped out and presented using an aquifer vulnerability map. The model was subjected to validation and the rate of validity was 73% within the area of study.Keywords: groundwater, vulnerability, DRASTIC model, pollution
Procedia PDF Downloads 21125699 Implications about the Impact of COVID-19 on Business
Authors: Anwar Kashgari
Abstract:
COVID-19 has severe impacts on business all over the world. The great lockdown of many business owners requires a sage deal with this pandemic. This paper seeks to support business leaders with a standpoint about the COVID-19 situation and provides implications for the (Small and Medium Enterprises) SMEs and companies. The paper reflects the author's view about the impact of COVID-19 on business activities. We discussed the impact of COVID-19 upon three aspects, namely, startups, SMEs, and e-commerce. The KSA is an example of the developing countries about which we present the current situation. Finally, recommendations to policy and decision-makers are given.Keywords: COVID 19, business networking, globalization
Procedia PDF Downloads 22025698 A Review Paper on Data Security in Precision Agriculture Using Internet of Things
Authors: Tonderai Muchenje, Xolani Mkhwanazi
Abstract:
Precision agriculture uses a number of technologies, devices, protocols, and computing paradigms to optimize agricultural processes. Big data, artificial intelligence, cloud computing, and edge computing are all used to handle the huge amounts of data generated by precision agriculture. However, precision agriculture is still emerging and has a low level of security features. Furthermore, future solutions will demand data availability and accuracy as key points to help farmers, and security is important to build robust and efficient systems. Since precision agriculture comprises a wide variety and quantity of resources, security addresses issues such as compatibility, constrained resources, and massive data. Moreover, conventional protection schemes used in the traditional internet may not be useful for agricultural systems, creating extra demands and opportunities. Therefore, this paper aims at reviewing state of the art of precision agriculture security, particularly in open field agriculture, discussing its architecture, describing security issues, and presenting the major challenges and future directions.Keywords: precision agriculture, security, IoT, EIDE
Procedia PDF Downloads 9325697 Local People’s Livelihoods and Coping Strategies in the Wake of a Co-management System in the Campo Ma'an National Park, Cameroon
Authors: Nchanji Yvonne Kiki, Mala William Armand, Nchanji Eileen Bogweh, Ramcilovik-Suominen Sabaheta, Kotilainen Juha
Abstract:
The Campo Ma'an National Park was created as part of an environmental and biodiversity compensation for the Chad-Cameroon Oil Pipeline Project, which was meant to help alleviate poverty and boost the livelihood of rural communities around the area. This paper examines different strategies and coping mechanisms employed by the indigenous people and local communities to deal with the national and internationally driven conservation policies and initiatives in the case of the Campo Ma'an National Park. While most literature on park management/co-management/nature conservation has focused on the negative implications for local peoples’ livelihoods, fewer studies have investigated the strategies of local people to respond to these policies and renegotiate their position in a way that enables them to continue their traditional livelihoods using the existing local knowledge systems. This study contributes to the current literature by zooming into not only the impacts of nature conservation policies but also the local individual and collective strategies and responses to such policies and initiatives. We employ a qualitative research approach using ethnomethodology and a convivial lens to analyze data collected from October to November 2018. We find that conservation policies have worsened some existing livelihoods on the one hand and constrained livelihood improvement of indigenous people and local communities (IPLC) on the other hand. Nonetheless, the IPLC has devised individual and collective coping mechanisms to deal with these conservation interventions and the negative effects they have caused. Upon exploring these mechanisms and their effectiveness, this study proposes a management approach to conservation centered on both people and nature, based on indigenous and local people's knowledge and practices, promoting nature for and by humans and strengthening both livelihood and conservation. We take inspiration from the convivial conservation approach and thinking by Bucher and Fletcher.Keywords: conservation policies, national park management, indigenous and local people’s experiences, livelihoods, local knowledge, coping strategies, conviviality
Procedia PDF Downloads 18625696 Assessment of the Frontline Services of the National Museum of the Philippines: Basis for an Improved Client-Oriented Service Package
Authors: Geneva Oaferina
Abstract:
The Philippines is striving to deliver professional and improved public services. The country is committed to making more effective use of its resources to fulfill its sectoral and development goals. Within the heritage field, the museum needs to have a strong focus on seeking excellence in its services to its many publics. The National Museum of the Philippines is mandated as an educational, scientific, and cultural institution. It is important that the museum is more accessible, understandable, and relevant to the public, and at the same time, it provides a quality experience for an improved client-oriented service package. This study assessed the service delivery of the National Museum using the modified HISTOQUAL model. The HISTOQUAL dimensions (Responsiveness, Tangibles, Communications, Consumables, and Empathy) were adapted that identify the service quality features in the museum sector from the poorest to the most outstanding factor that will be subject to improvement, as well as those factors that represent strong points of the museum’s services and which are important to the museum visitors. This also identified the gaps encountered by the respondents that caused such inconvenience and default on achieving the sectoral and organizational goals of the museum. As an output of the study, the researcher formulated the service package and adapted the HISTOQUAL dimensions and statements from the assessment through documentary analysis and data analysis/interpretation.Keywords: museum, frontline, inclusivity, HISTOQUAL
Procedia PDF Downloads 10525695 Erosion Influencing Factors Analysis: Case of Isser Watershed (North-West Algeria)
Authors: Chahrazed Salhi, Ayoub Zeroual, Yasmina Hamitouche
Abstract:
Soil water erosion poses a significant threat to the watersheds in Algeria today. The degradation of storage capacity in large dams over the past two decades, primarily due to erosion, necessitates a comprehensive understanding of the factors that contribute to soil erosion. The Isser watershed, located in the Northwestern region of Algeria, faces additional challenges such as recurrent droughts and the presence of delicate marl and clay outcrops, which amplify its susceptibility to water erosion. This study aims to employ advanced techniques such as Geographic Information Systems (GIS) and Remote Sensing (RS), in conjunction with the Canonical Correlation Analysis (CCA) method and Soil Water Assessment Tool (SWAT) model, to predict specific erosion patterns and analyze the key factors influencing erosion in the Isser basin. To accomplish this, an array of data sources including rainfall, climatic, hydrometric, land use, soil, digital elevation, and satellite data were utilized. The application of the SWAT model to the Isser basin yielded an average annual soil loss of approximately 16 t/ha/year. Particularly high erosion rates, exceeding 12 T/ha/year, were observed in the central and southern parts of the basin, encompassing 41% of the total basin area. Through Canonical Correlation Analysis, it was determined that vegetation cover and topography exerted the most substantial influence on erosion. Consequently, the study identified significant and spatially heterogeneous erosion throughout the study area. The impact of land topography on soil loss was found to be directly proportional, while vegetation cover exhibited an inverse proportional relationship. Modeling specific erosion for the Ladrat dam sub-basin estimated a rate of around 39 T/ha/year, thus accounting for the recorded capacity loss of 17.80% compared to the bathymetric survey conducted in 2019. The findings of this research provide valuable decision-support tools for soil conservation managers, empowering them to make informed decisions regarding soil conservation measures.Keywords: Isser watershed, RS, CCA, SWAT, vegetation cover, topography
Procedia PDF Downloads 7625694 Commercial Automobile Insurance: A Practical Approach of the Generalized Additive Model
Authors: Nicolas Plamondon, Stuart Atkinson, Shuzi Zhou
Abstract:
The insurance industry is usually not the first topic one has in mind when thinking about applications of data science. However, the use of data science in the finance and insurance industry is growing quickly for several reasons, including an abundance of reliable customer data, ferocious competition requiring more accurate pricing, etc. Among the top use cases of data science, we find pricing optimization, customer segmentation, customer risk assessment, fraud detection, marketing, and triage analytics. The objective of this paper is to present an application of the generalized additive model (GAM) on a commercial automobile insurance product: an individually rated commercial automobile. These are vehicles used for commercial purposes, but for which there is not enough volume to apply pricing to several vehicles at the same time. The GAM model was selected as an improvement over GLM for its ease of use and its wide range of applications. The model was trained using the largest split of the data to determine model parameters. The remaining part of the data was used as testing data to verify the quality of the modeling activity. We used the Gini coefficient to evaluate the performance of the model. For long-term monitoring, commonly used metrics such as RMSE and MAE will be used. Another topic of interest in the insurance industry is to process of producing the model. We will discuss at a high level the interactions between the different teams with an insurance company that needs to work together to produce a model and then monitor the performance of the model over time. Moreover, we will discuss the regulations in place in the insurance industry. Finally, we will discuss the maintenance of the model and the fact that new data does not come constantly and that some metrics can take a long time to become meaningful.Keywords: insurance, data science, modeling, monitoring, regulation, processes
Procedia PDF Downloads 7925693 Comparison of Web Development Using Framework over Library
Authors: Syamsul Syafiq, Maslina Daud, Hafizah Hasan, Ahmad Zairi, Shazil Imri, Ezaini Akmar, Norbazilah Rahim
Abstract:
Over recent years, web development has changed significantly. Driven largely by the rise of trends like mobiles, the world of development is rapidly evolving. The rise of the Internet makes web applications crucial nowadays. The web application has been an interface for a company and one of the ways they present their portfolio to the client. On the other hand, the web has become part of the file management system which takes over the role of paper. Due to high demand in web applications, developers are required to develop a web application that are cost-effective, secure and well coded. A framework has been proposed to develop an application rather than using library style development. The framework is helping the developer in creating the structure of a web automatically. This paper will compare the advantages and disadvantages of web development using framework against library-style development. This comparison is based on a previous research paper focusing on two main indicators, which are the impact to management and impact to the developer.Keywords: framework, library style development, web application development, traditional web, static web, dynamic web
Procedia PDF Downloads 22925692 Modeling Pan Evaporation Using Intelligent Methods of ANN, LSSVM and Tree Model M5 (Case Study: Shahroud and Mayamey Stations)
Authors: Hamidreza Ghazvinian, Khosro Ghazvinian, Touba Khodaiean
Abstract:
The importance of evaporation estimation in water resources and agricultural studies is undeniable. Pan evaporation are used as an indicator to determine the evaporation of lakes and reservoirs around the world due to the ease of interpreting its data. In this research, intelligent models were investigated in estimating pan evaporation on a daily basis. Shahroud and Mayamey were considered as the studied cities. These two cities are located in Semnan province in Iran. The mentioned cities have dry weather conditions that are susceptible to high evaporation potential. Meteorological data of 11 years of synoptic stations of Shahrood and Mayamey cities were used. The intelligent models used in this study are Artificial Neural Network (ANN), Least Squares Support Vector Machine (LSSVM), and M5 tree models. Meteorological parameters of minimum and maximum air temperature (Tmax, Tmin), wind speed (WS), sunshine hours (SH), air pressure (PA), relative humidity (RH) as selected input data and evaporation data from pan (EP) to The output data was considered. 70% of data is used at the education level, and 30 % of the data is used at the test level. Models used with explanation coefficient evaluation (R2) Root of Mean Squares Error (RMSE) and Mean Absolute Error (MAE). The results for the two Shahroud and Mayamey stations showed that the above three models' operations are rather appropriate.Keywords: pan evaporation, intelligent methods, shahroud, mayamey
Procedia PDF Downloads 8025691 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment
Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang
Abstract:
2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.Keywords: artificial intelligence, machine learning, deep learning, convolutional neural networks
Procedia PDF Downloads 21525690 Performance Analysis of Domotics System as Real-Time Non-Intrusive Load Monitoring
Authors: Dauda A. Oladosu, Kamorudeen A Olaiya, Abdurahman Bello
Abstract:
The deployment of smart meters by utility providers to gather fine grained spatiotemporal consumption data has grossly influenced the consumers’ emotion and behavior towards energy utilization. The quest for reduction in power consumption is now a subject of concern and one the methods adopted by the consumers to achieve this is Non-intrusive Load (appliance) Monitoring. Hence, this work presents performance Analysis of Domotics System as a tool for load monitoring when integrated with Consumer Control Unit of residential building. The system was developed with basic elements which enhance remote sensing, DTMF (Dual Tone Multi-frequency) recognition and cryptic messaging when specific task was performed. To demonstrate its applicability and suitability, this prototype was used consistently for six months at different load demands and the utilities consumed were documented. The results obtained shows good response when phone dialed, and the packet delivery of feedback SMS was quite satisfactory, making the implemented system to be of good quality with affordable cost and performs the desired functions. Besides, comparative analysis showed notable reduction in energy consumption and invariably lessened electrical bill of the consumer.Keywords: automation, domotics, energy, load, remote, schedule
Procedia PDF Downloads 32225689 Health Sector Budgetary Allocations and Their Implications on Health Service Delivery and Universal Health Coverage in Uganda
Authors: Richard Ssempala, Francis Kintu, Christine K. Tashobya
Abstract:
Funding for health remains a key constraint facing many developing countries, Uganda inclusive. Uganda’s health sector budget to the national budgetary allocation has stagnated between 8.2% to 10% over the years. Using data collected from different government documents, we sought to establish the implications of the budget allocation over the period (FY2010/11-2018/19) on health services delivery in Uganda to inform policymakers specifically Members of Parliament who are critical in making sectorial allocation on the steps they can adapt to change the terrain of health financing in Uganda. Findings revealed that the contribution of public funding to the health sector is low (15.7%) with private sources (42.6%) and donors contributing much more, with the bulk of private funds, are out of pocket. The study further revealed that low budget allocation had been manifested in inadequate and poorly motivated health workers, essential drug stock-outs that ultimately contribute to poor access to services, catastrophic health expenditures, and high morbidity rates. We recommend for a substantial and sustained increase in the government health budget, optimizing the available resources by addressing wastages, prioritizing health promotion, prevention and finally, institutionalizing the National Health Insurance Scheme.Keywords: budget allocations, universal health coverage, health service delivery, Uganda
Procedia PDF Downloads 19725688 Awareness and Willingness of Signing 'Consent Form in Palliative Care' in Elderly Patients with End Stage Renal Disease
Authors: Hsueh Ping Peng
Abstract:
End-stage renal disease most commonly occurs in the elderly population. Elderly people are approaching the end of their lives, and when facing major life-threatening situations, apart from aggressive medical treatment, they can also choose treatment methods such as hospice care to improve their quality of life. The purpose of this study was to investigate factors associated with the awareness and willingness to sign hospice and palliative care consent forms in elderly with end-stage renal disease. This study used both quantitative, cross-sectional study designs. In the quantitative section, 110 elderly patients (aged 65 or above) with end-stage renal disease receiving conventional hemodialysis were recruited as study participants from a medical center in Taipei City. Data were collected using structured questionnaires. Study tools included basic demographic data, questionnaires on the awareness and perception of hospice and palliative care, etc. After collecting the data, data analysis was conducted using SPSS 20.0 statistical software, including descriptive statistics, chi-square test, logistic regression, and other inferential statistics. The results showed that the average age of participants was 71.6 years old, more males than females, average years of dialysis was 6.1 years and most subjects rated their self-perceived health status as fair. Results of the study are summarized as follows: Elderly people with end-stage renal disease did not have sufficient knowledge and awareness about hospice and palliative care. Influencing factors included level of education, marital status, years of dialysis and age, etc. Demographic factors influencing the signing of consent forms included gender, marital status, and age, which all showed significant impacts. Factors taken into consideration when signing consent forms included awareness of hospice care, understanding the relevant definitions of hospice care, and understanding that consent may be modified or cancelled at any time; it was predicted that people who knew more about ways to receive hospice care or more related definitions were more willing to sign the consent forms. In the qualitative study section, 10 participants who signed the consent form, five male, and 5 female, between the ages of 65-90, have completed the semi-structured interviews. Analysis of the interviews revealed six themes: (1) passing away peacefully, (2) autonomy on arrangements of life and death, (3) unwillingness to increase family and social burden, (4) friends and relatives’ experience influencing the decision to give consent, (5) sharing information to facilitate the giving of consent, (6) facing each day with ease, to reflect the experience and factors of consideration for elderly with end-stage renal disease when signing consent forms. The results of this study provides the awareness, thoughts and feelings of elderly with end-stage renal disease on signing consent forms, and serve as a future reference for the dialysis unit to enhance the promotion of hospice and palliative care and related caregiving measures, thereby improving the quality of life and care for elderly people with end-stage renal disease.Keywords: end-stage renal disease, hemodialysis, hospice and palliative care, awareness, willingness
Procedia PDF Downloads 17125687 Positive-Negative Asymmetry in the Evaluations of Political Candidates: The Mediating Role of Affect in the Relationship between Cognitive Evaluation and Voting Intention
Authors: Magdalena Jablonska, Andrzej Falkowski
Abstract:
The negativity effect is one of the most intriguing and well-studied psychological phenomena that can be observed in many areas of human life. The aim of the following study is to investigate how valence framing and positive and negative information about political candidates affect judgments about similarity to an ideal and bad politician. Based on the theoretical framework of features of similarity, it is hypothesized that negative features have a stronger effect on similarity judgments than positive features of comparable value. Furthermore, the mediating role of affect is tested. Method: One hundred sixty-one people took part in an experimental study. Participants were divided into 6 research conditions that differed in the reference point (positive vs negative framing) and the number of favourable and unfavourable information items about political candidates (a positive, neutral and negative candidate profile). In positive framing condition, the concept of an ideal politician was primed; in the negative condition, participants were to think about a bad politician. The effect of independent variables on similarity judgments, affective evaluation, and voting intention was tested. Results: In the positive condition, the analysis showed that the negative effect of additional unfavourable features was greater than the positive effect of additional favourable features in judgements about similarity to the ideal candidate. In negative framing condition, ANOVA was insignificant, showing that neither the addition of positive features nor additional negative information had a significant impact on the similarity to a bad political candidate. To explain this asymmetry, two mediational analyses were conducted that tested the mediating role of affect in the relationship between similarity judgments and voting intention. In both situations the mediating effect was significant, but the comparison of two models showed that the mediation was stronger for a negative framing. Discussion: The research supports the negativity effect and attempts to explain the psychological mechanism behind the positive-negative asymmetry. The results of mediation analyses point to a stronger mediating role of affect in the relationship between cognitive evaluation and voting intention. Such a result suggests that negative comparisons, leading to the activation of negative features, give rise to stronger emotions than positive features of comparable strength. The findings are in line with positive-negative asymmetry, however, by adopting Tversky’s framework of features of similarity, the study integrates the cognitive mechanism of the negativity effect delineated in the contrast model of similarity with its emotional component resulting from the asymmetrical effect of positive and negative emotions on decision-making.Keywords: affect, framing, negativity effect, positive-negative asymmetry, similarity judgements
Procedia PDF Downloads 20225686 Generating Insights from Data Using a Hybrid Approach
Authors: Allmin Susaiyah, Aki Härmä, Milan Petković
Abstract:
Automatic generation of insights from data using insight mining systems (IMS) is useful in many applications, such as personal health tracking, patient monitoring, and business process management. Existing IMS face challenges in controlling insight extraction, scaling to large databases, and generalising to unseen domains. In this work, we propose a hybrid approach consisting of rule-based and neural components for generating insights from data while overcoming the aforementioned challenges. Firstly, a rule-based data 2CNL component is used to extract statistically significant insights from data and represent them in a controlled natural language (CNL). Secondly, a BERTSum-based CNL2NL component is used to convert these CNLs into natural language texts. We improve the model using task-specific and domain-specific fine-tuning. Our approach has been evaluated using statistical techniques and standard evaluation metrics. We overcame the aforementioned challenges and observed significant improvement with domain-specific fine-tuning.Keywords: data mining, insight mining, natural language generation, pre-trained language models
Procedia PDF Downloads 12625685 Review of K0-Factors and Related Nuclear Data of the Selected Radionuclides for Use in K0-NAA
Authors: Manh-Dung Ho, Van-Giap Pham, Van-Doanh Ho, Quang-Thien Tran, Tuan-Anh Tran
Abstract:
The k0-factors and related nuclear data, i.e. the Q0-factors and effective resonance energies (Ēr) of the selected radionuclides which are used in the k0-based neutron activation analysis (k0-NAA), were critically reviewed to be integrated in the “k0-DALAT” software. The k0- and Q0-factors of some short-lived radionuclides: 46mSc, 110Ag, 116m2In, 165mDy, and 183mW, were experimentally determined at the Dalat research reactor. The other radionuclides selected are: 20F, 36S, 49Ca, 60mCo, 60Co, 75Se, 77mSe, 86mRb, 115Cd, 115mIn, 131Ba, 134mCs, 134Cs, 153Gd, 153Sm, 159Gd, 170Tm, 177mYb, 192Ir, 197mHg, 239U and 239Np. The reviewed data as compared with the literature data were biased within 5.6-7.3% in which the experimental re-determined factors were within 6.1 and 7.3%. The NIST standard reference materials: Oyster Tissue (1566b), Montana II Soil (2711a) and Coal Fly Ash (1633b) were used to validate the new reviewed data showing that the new data gave an improved k0-NAA using the “k0-DALAT” software with a factor of 4.5-6.8% for the investigated radionuclides.Keywords: neutron activation analysis, k0-based method, k0 factor, Q0 factor, effective resonance energy
Procedia PDF Downloads 13025684 Weapon Collection Initiatives and the Threat of Small Arms and Light Weapons Proliferation in Volatile Areas of North-Eastern Nigeria as a Way Forward for National Security and Development
Authors: Halilu Babaji, Adamu Buba
Abstract:
The proliferation of small arms and light weapons (SALW) and its illicit trafficking in West Africa and Nigeria in particular, pose a major threat to peace, security and development in the Sub-region. The high circulation of these weapons in the region is a product of the interplay of several factors, which derives principally from the internal socio-economic and political dynamics compounded by globalization. The process of globalization has congealed both time and space making it easier for ideas, goods, persons, services, information, products and money to move across borders with fewer restrictions. And this has a negative effect in the entire region making it easier for arms, ammunition, insurgents, criminal and drugs to flow within national boundaries. The failure of public security in most parts of Nigeria has lead communities to indulge in different forms of ‘self-help ‘security measures, ranging from vigilante groups to community-owned arms stockpiling. Having lost confidence in the Nigerian state, parties to some of these conflicts have become entangled in a security dilemma. The quest to procure more arms to guarantee personal and community protection from perceived and real enemies is fuelling the ‘domestic arms race ‘. Therefore, as small arms remain-and proliferate – development is impeded. The impact of SALW on economic well being and national development in Nigeria is of vast significant. Therefore the need to collect these arms in circulation in Nigeria particularly the volatile area of North-east is of very important. This will hopefully contribute to government effort in building a free, secured and peaceful society.Keywords: arms, development, proliferation, security
Procedia PDF Downloads 33025683 Quantum Localization of Vibrational Mirror in Cavity Optomechanics
Authors: Madiha Tariq, Hena Rabbani
Abstract:
Recently, cavity-optomechanics becomes an extensive research field that has manipulated the mechanical effects of light for coupling of the optical field with other physical objects specifically with regards to dynamical localization. We investigate the dynamical localization (both in momentum and position space) for a vibrational mirror in a Fabry-Pérot cavity driven by a single mode optical field and a transverse probe field. The weak probe field phenomenon results in classical chaos in phase space and spatio temporal dynamics in position |ψ(x)²| and momentum space |ψ(p)²| versus time show quantum localization in both momentum and position space. Also, we discuss the parametric dependencies of dynamical localization for a designated set of parameters to be experimentally feasible. Our work opens an avenue to manipulate the other optical phenomena and applicability of proposed work can be prolonged to turn-able laser sources in the future.Keywords: dynamical localization, cavity optomechanics, Hamiltonian chaos, probe field
Procedia PDF Downloads 15325682 The Effect of Political Characteristics on the Budget Balance of Local Governments: A Dynamic System Generalized Method of Moments Data Approach
Authors: Stefanie M. Vanneste, Stijn Goeminne
Abstract:
This paper studies the effect of political characteristics of 308 Flemish municipalities on their budget balance in the period 1995-2011. All local governments experience the same economic and financial setting, however some governments have high budget balances, while others have low budget balances. The aim of this paper is to explain the differences in municipal budget balances by a number of economic, socio-demographic and political variables. The economic and socio-demographic variables will be used as control variables, while the focus of this paper will be on the political variables. We test four hypotheses resulting from the literature, namely (i) the partisan hypothesis tests if left wing governments have lower budget balances, (ii) the fragmentation hypothesis stating that more fragmented governments have lower budget balances, (iii) the hypothesis regarding the power of the government, higher powered governments would resolve in higher budget balances, and (iv) the opportunistic budget cycle to test whether politicians manipulate the economic situation before elections in order to maximize their reelection possibilities and therefore have lower budget balances before elections. The contributions of our paper to the existing literature are multiple. First, we use the whole array of political variables and not just a selection of them. Second, we are dealing with a homogeneous database with the same budget and election rules, making it easier to focus on the political factors without having to control for the impact of differences in the political systems. Third, our research extends the existing literature on Flemish municipalities as this is the first dynamic research on local budget balances. We use a dynamic panel data model. Because of the two lagged dependent variables as explanatory variables, we employ the system GMM (Generalized Method of Moments) estimator. This is the best possible estimator as we are dealing with political panel data that is rather persistent. Our empirical results show that the effect of the ideological position and the power of the coalition are of less importance to explain the budget balance. The political fragmentation of the government on the other hand has a negative and significant effect on the budget balance. The more parties in a coalition the worse the budget balance is ceteris paribus. Our results also provide evidence of an opportunistic budget cycle, the budget balances are lower in pre-election years relative to the other years to try and increase the incumbents reelection possibilities. An additional finding is that the incremental effect of the budget balance is very important and should not be ignored like is being done in a lot of empirical research. The coefficients of the lagged dependent variables are always positive and very significant. This proves that the budget balance is subject to incrementalism. It is not possible to change the entire policy from one year to another so the actions taken in recent past years still have an impact on the current budget balance. Only a relatively small amount of research concerning the budget balance takes this considerable incremental effect into account. Our findings survive several robustness checks.Keywords: budget balance, fragmentation, ideology, incrementalism, municipalities, opportunistic budget cycle, panel data, political characteristics, power, system GMM
Procedia PDF Downloads 30225681 Quality of Life of Elderly People in Urban West Bengal, India
Authors: Debalina Datta, Pratyaypratim Datta, Kunal Kanti Majumdar
Abstract:
Introduction: In India 8.1% of total population is elderly. The standard of living and meaningfulness of life are indirectly measured by assessing quality of life of elderly. So, it is important to improve quality of life. Quality of life is an individual’s understanding of his/ her life situation with respect to his/ her values and cultural context as well as in relation to his/her goals, expectations and concerns. The present study was planned to assess the quality of life of geriatric people in urban West Bengal, India. Materials and methods: It was a community based cross sectional observational study conducted among people aged 60 years and above in Kolkata and Sonarpur region of West Bengal, India. Data collection was done by house to house visit using Quality of Life- BREF questionnaire (WHOQOL-BERF) developed by WHO. Analysis of quality of life of physical, psychological, social relationship and environmental domain was done using SPSS (version 16.0). Results: Transformed score (0-100 scale) was used for each domain. Mean of physical, psychological, social relationship and environmental domain were found to be 42.25, 40.84, 39.62 and 48.36 respectively. There was no significant difference in score between Kolkata and Sonarpur people in any domain except social relationship domain, where people living at Sonarpur scored significantly better. Conclusion: Rehabilitation of old age people can be done by improving their quality of life. Social interaction with people of all ages, allowing them to take important family decision, engaging them in different social activities can help a lot.Keywords: quality of life, elderly, Urban West Bengal, India
Procedia PDF Downloads 61025680 Evaluating Radiative Feedback Mechanisms in Coastal West Africa Using Regional Climate Models
Authors: Akinnubi Rufus Temidayo
Abstract:
Coastal West Africa is highly sensitive to climate variability, driven by complex ocean-atmosphere interactions that shape temperature, precipitation, and extreme weather. Radiative feedback mechanisms—such as water vapor feedback, cloud-radiation interactions, and surface albedo—play a critical role in modulating these patterns. Yet, limited research addresses these feedbacks in climate models specific to West Africa’s coastal zones, creating challenges for accurate climate projections and adaptive planning. This study aims to evaluate the influence of radiative feedbacks on the coastal climate of West Africa by quantifying the effects of water vapor, cloud cover, and sea surface temperature (SST) on the region’s radiative balance. The study uses a regional climate model (RCM) to simulate feedbacks over a 20-year period (2005-2025) with high-resolution data from CORDEX and satellite observations. Key mechanisms investigated include (1) Water Vapor Feedback—the amplifying effect of humidity on warming, (2) Cloud-Radiation Interactions—the impact of cloud cover on radiation balance, especially during the West African Monsoon, and (3) Surface Albedo and Land-Use Changes—effects of urbanization and vegetation on the radiation budget. Preliminary results indicate that radiative feedbacks strongly influence seasonal climate variability in coastal West Africa. Water vapor feedback amplifies dry-season warming, cloud-radiation interactions moderate surface temperatures during monsoon seasons, and SST variations in the Atlantic affect the frequency and intensity of extreme rainfall events. The findings suggest that incorporating these feedbacks into climate planning can strengthen resilience to climate impacts in West African coastal communities. Further research should refine regional models to capture anthropogenic influences like greenhouse gas emissions, guiding sustainable urban and resource planning to mitigate climate risks.Keywords: west africa, radiative, climate, resilence, anthropogenic
Procedia PDF Downloads 1825679 Integrated Model for Enhancing Data Security Processing Time in Cloud Computing
Authors: Amani A. Saad, Ahmed A. El-Farag, El-Sayed A. Helali
Abstract:
Cloud computing is an important and promising field in the recent decade. Cloud computing allows sharing resources, services and information among the people of the whole world. Although the advantages of using clouds are great, but there are many risks in a cloud. The data security is the most important and critical problem of cloud computing. In this research a new security model for cloud computing is proposed for ensuring secure communication system, hiding information from other users and saving the user's times. In this proposed model Blowfish encryption algorithm is used for exchanging information or data, and SHA-2 cryptographic hash algorithm is used for data integrity. For user authentication process a simple user-name and password is used, the password uses SHA-2 for one way encryption. The proposed system shows an improvement of the processing time of uploading and downloading files on the cloud in secure form.Keywords: cloud computing, data security, SAAS, PAAS, IAAS, Blowfish
Procedia PDF Downloads 36125678 Comparison of Statistical Methods for Estimating Missing Precipitation Data in the River Subbasin Lenguazaque, Colombia
Authors: Miguel Cañon, Darwin Mena, Ivan Cabeza
Abstract:
In this work was compared and evaluated the applicability of statistical methods for the estimation of missing precipitations data in the basin of the river Lenguazaque located in the departments of Cundinamarca and Boyacá, Colombia. The methods used were the method of simple linear regression, distance rate, local averages, mean rates, correlation with nearly stations and multiple regression method. The analysis used to determine the effectiveness of the methods is performed by using three statistical tools, the correlation coefficient (r2), standard error of estimation and the test of agreement of Bland and Altmant. The analysis was performed using real rainfall values removed randomly in each of the seasons and then estimated using the methodologies mentioned to complete the missing data values. So it was determined that the methods with the highest performance and accuracy in the estimation of data according to conditions that were counted are the method of multiple regressions with three nearby stations and a random application scheme supported in the precipitation behavior of related data sets.Keywords: statistical comparison, precipitation data, river subbasin, Bland and Altmant
Procedia PDF Downloads 47025677 Investigation and Analysis on Pore Pressure Variation by Sonic Impedance under Influence of Compressional, Shear, and Stonely Waves in High Pressure Zones
Authors: Nouri, K., Ghassem Alaskari, M., K., Amiri Hazaveh, A., Nabi Bidhendi, M.
Abstract:
Pore pressure is one on the key Petrophysical parameter in exploration discussion and survey on hydrocarbon reservoir. Determination of pore pressure in various levels of drilling and integrity of drilling mud and high pressure zones in order to restrict blow-out and following damages are significant. The pore pressure is obtained by seismic and well logging data. In this study the pore pressure and over burden pressure through the matrix stress and Tarzaqi equation and other related formulas are calculated. By making a comparison on variation of density log in over normal pressure zones with change of sonic impedance under influence of compressional, shear, and Stonely waves, the correlation level of sonic impedance with density log is studied. The level of correlation and variation trend is recorded in sonic impedance under influence Stonely wave with density log that key factor in recording of over burden pressure and pore pressure in Tarzaqi equation is high. The transition time is in divert relation with porosity and fluid type in the formation and as a consequence to the pore pressure. The density log is a key factor in determination of pore pressure therefore sonic impedance under Stonley wave is denotes well the identification of high pressure besides other used factors.Keywords: pore pressure, stonely wave, density log, sonic impedance, high pressure zone
Procedia PDF Downloads 40125676 Kannada HandWritten Character Recognition by Edge Hinge and Edge Distribution Techniques Using Manhatan and Minimum Distance Classifiers
Authors: C. V. Aravinda, H. N. Prakash
Abstract:
In this paper, we tried to convey fusion and state of art pertaining to SIL character recognition systems. In the first step, the text is preprocessed and normalized to perform the text identification correctly. The second step involves extracting relevant and informative features. The third step implements the classification decision. The three stages which involved are Data acquisition and preprocessing, Feature extraction, and Classification. Here we concentrated on two techniques to obtain features, Feature Extraction & Feature Selection. Edge-hinge distribution is a feature that characterizes the changes in direction of a script stroke in handwritten text. The edge-hinge distribution is extracted by means of a windowpane that is slid over an edge-detected binary handwriting image. Whenever the mid pixel of the window is on, the two edge fragments (i.e. connected sequences of pixels) emerging from this mid pixel are measured. Their directions are measured and stored as pairs. A joint probability distribution is obtained from a large sample of such pairs. Despite continuous effort, handwriting identification remains a challenging issue, due to different approaches use different varieties of features, having different. Therefore, our study will focus on handwriting recognition based on feature selection to simplify features extracting task, optimize classification system complexity, reduce running time and improve the classification accuracy.Keywords: word segmentation and recognition, character recognition, optical character recognition, hand written character recognition, South Indian languages
Procedia PDF Downloads 50025675 Structural and Functional Comparison of Untagged and Tagged EmrE Protein
Authors: S. Junaid S. Qazi, Denice C. Bay, Raymond Chew, Raymond J. Turner
Abstract:
EmrE, a member of the small multidrug resistance protein family in bacteria is considered to be the archetypical member of its family. It confers host resistance to a wide variety of quaternary cation compounds (QCCs) driven by proton motive force. Generally, purification yield is a challenge in all membrane proteins because of the difficulties in their expression, isolation and solubilization. EmrE is extremely hydrophobic which make the purification yield challenging. We have purified EmrE protein using two different approaches: organic solvent membrane extraction and hexahistidine (his6) tagged Ni-affinity chromatographic methods. We have characterized changes present between ligand affinity of untagged and his6-tagged EmrE proteins in similar membrane mimetic environments using biophysical experimental techniques. Purified proteins were solubilized in a buffer containing n-dodecyl-β-D-maltopyranoside (DDM) and the conformations in the proteins were explored in the presence of four QCCs, methyl viologen (MV), ethidium bromide (EB), cetylpyridinium chloride (CTP) and tetraphenyl phosphonium (TPP). SDS-Tricine PAGE and dynamic light scattering (DLS) analysis revealed that the addition of QCCs did not induce higher multimeric forms of either proteins at all QCC:EmrE molar ratios examined under the solubilization conditions applied. QCC binding curves obtained from the Trp fluorescence quenching spectra, gave the values of dissociation constant (Kd) and maximum specific one-site binding (Bmax). Lower Bmax values to QCCs for his6-tagged EmrE shows that the binding sites remained unoccupied. This lower saturation suggests that the his6-tagged versions provide a conformation that prevents saturated binding. Our data demonstrate that tagging an integral membrane protein can significantly influence the protein.Keywords: small multidrug resistance (SMR) protein, EmrE, integral membrane protein folding, quaternary ammonium compounds (QAC), quaternary cation compounds (QCC), nickel affinity chromatography, hexahistidine (His6) tag
Procedia PDF Downloads 38425674 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network
Authors: Li Qingjian, Li Ke, He Chun, Huang Yong
Abstract:
In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.Keywords: DBN, SOM, pattern classification, hyperspectral, data compression
Procedia PDF Downloads 34425673 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities
Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun
Abstract:
As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning
Procedia PDF Downloads 6225672 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images
Authors: Masood Varshosaz, Kamyar Hasanpour
Abstract:
In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.Keywords: human recognition, deep learning, drones, disaster mitigation
Procedia PDF Downloads 101