Search results for: history study
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 49881

Search results for: history study

1341 Balanced Score Card a Tool to Improve Naac Accreditation – a Case Study in Indian Higher Education

Authors: CA Kishore S. Peshori

Abstract:

Introduction: India, a country with vast diversity and huge population is going to have largest young population by 2020. Higher education has and will always be the basic requirement for making a developing nation to a developed nation. To improve any system it needs to be bench-marked. There have been various tools for bench-marking the systems. Education is delivered in India by universities which are mainly funded by government. This universities for delivering the education sets up colleges which are again funded mainly by government. Recently however there has also been autonomy given to universities and colleges. Moreover foreign universities are waiting to enter Indian boundaries. With a large number of universities and colleges it has become more and more necessary to measure this institutes for bench-marking. There have been various tools for measuring the institute. In India college assessments have been made compulsory by UGC. Naac has been offically recognised as the accrediation criteria. The Naac criteria has been based on seven criterias namely: 1. Curricular assessments, 2. Teaching learning and evaluation, 3. Research Consultancy and Extension, 4. Infrastructure and learning resources, 5. Student support and progression, 6. Governance leadership and management, 7. Innovation and best practices. The Naac tries to bench mark the institution for identification, sustainability, dissemination and adaption of best practices. It grades the institution according to this seven criteria and the funding of institution is based on these grades. Many of the colleges are struggling to get best of grades but they have not come across a systematic tool to achieve the results. Balanced Scorecard developed by Kaplan has been a successful tool for corporates to develop best of practices so as to increase their financial performance and also retain and increase their customers so as to grow the organization to next level.It is time to test this tool for an educational institute. Methodology: The paper tries to develop a prototype for college based on the secondary data. Once a prototype is developed the researcher based on questionnaire will try to test this tool for successful implementation. The success of this research will depend on its implementation of BSC on an institute and its grading improved due to this successful implementation. Limitation of time is a major constraint in this research as Naac cycle takes minimum 4 years for accreditation and reaccreditation the methodology will limit itself to secondary data and questionnaire to be circulated to colleges along with the prototype model of BSC. Conclusion: BSC is a successful tool for enhancing growth of an organization. Educational institutes are no exception to these. BSC will only have to be realigned to suit the Naac criteria. Once this prototype is developed the success will be tested only on its implementation but this research paper will be the first step towards developing this tool and will also initiate the success by developing a questionnaire and getting and evaluating the responses for moving to the next level of actual implementation

Keywords: balanced scorecard, bench marking, Naac, UGC

Procedia PDF Downloads 254
1340 Generation and Migration of CO₂ in the Bahi Sandstone Reservoir within the Ennaga Sub Basin, Sirte Basin, Libya

Authors: Moaawia Abdulgader Gdara

Abstract:

This work presents a study of Carbone dioxide generation and migration in the Bahi sandstone reservoir over the EPSA 120/136 (conc 72). En Naga Sub Basin, Sirte Basin Libya. The Lower Cretaceous Bahi Sandstone is the result of deposition that occurred between the start of the Cretaceous rifting that formed the area's Horsts, Grabens and Cenomanian marine transgression. Bahi sediments were derived mainly from those Nubian sediments exposed on the structurally higher blocks, transported short distances into newly forming depocenters such as the En Naga Sub-basin and were deposited by continental processes over the Sirte Unconformity (pre-Late Cretaceous surface) Bahi Sandstone facies are recognized in the En Naga Sub-basin within different lithofacies distribution over this sub-base. One of the two lithofacies recognized in the Bahi is a very fine to very coarse, subangular to angular, pebbly and occasionally conglomeratic quartz sandstone, which is commonly described as being compacted but friable. This sandstone may contain pyrite and minor kaolinite. This facies was encountered at 11,042 feet in F1-72 well, and at 9,233 feet in L1-72. Good, reservoir quality sandstones are associated with paleotopographic highs within the sub-basin and around its margins where winnowing and/or deflationary processes occurred. The second Bahi Lithofacies is a thinly bedded sequence dominated by shales and siltstones with subordinate sandstones and carbonates. The sandstones become more abundant with depth. This facies was encountered at 12,580 feet in P1 -72 and at 11,850 feet in G1a -72. This argillaceous sequence is likely the Bahi sandstone's lateral facies equivalent deposited in paleotopographic lows, which received finer-grained material. The Bahi sandstones are generally described as a good reservoir rock, which after prolific production tests for the drilled wells makes Bahi sandstones the principal reservoir rocks for CO₂ where large volumes of CO₂ gas have been discovered in the Bahi Formation on and near EPSA 120/136, (conc 72). CO₂ occurs in this area as a result of the igneous activity of the Al Harouge Al Aswad complex. Igneous extrusive have been pierced in the subsurface and are exposed at the surface. Bahi CO₂ prospectivity is thought to be excellent in the central to western areas of EPSA 120/136 (CONC 72) where there are better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO₂ productivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves, although there are positive indications that they are very large. Three main structures (Barrut I, En Naga A and En Naga O) are thought to be prospective for the lower Cretaceous Bahi sandstone development. These leads are the most attractive on EPSA 120/136 for the deep potential.

Keywords: En Naga Sub Basin, Al Harouge Al Aswad's Igneous complex, carbon dioxide generation, migration in the Bahi sandstone reservoir, lower cretaceous Bahi Sandstone

Procedia PDF Downloads 87
1339 Generation and Migration of CO₂ in the Bahi Sandstone Reservoir within the Ennaga Sub Basin, Sirte Basin, Libya

Authors: Moaawia Abdulgader Gdara

Abstract:

This work presents a study of carbon dioxide generation and migration in the Bahi sandstone reservoir over the EPSA 120/136 (conc 72), En Naga Sub Basin, Sirte Basin, Libya. The Lower Cretaceous Bahi Sandstone is the result of deposition that occurred between the start of the Cretaceous rifting that formed the area's Horsts, Grabens, and Cenomanian marine transgression. Bahi sediments were derived mainly from those Nubian sediments exposed on the structurally higher blocks, transported short distances into newly forming depocenters such as the En Naga Sub-basin, and were deposited by continental processes over the Sirte Unconformity (pre-Late Cretaceous surface). Bahi Sandstone facies are recognized in the En Naga Sub-basin within different lithofacies distributed over this sub-base. One of the two lithofacies recognized in the Bahi is a very fine to very coarse, subangular to angular, pebbly, and occasionally conglomeratic quartz sandstone, which is commonly described as being compacted but friable. This sandstone may contain pyrite, minor kaolinite. This facies was encountered at 11,042 feet in F1-72 well and at 9,233 feet in L1-72. Good, reservoir quality sandstones are associated with paleotopographic highs within the sub-basin and around its margins where winnowing and/or deflationary processes occurred. The second Bahi Lithofacies is a thinly bedded sequence dominated by shales and siltstones with subordinate sandstones and carbonates. The sandstones become more abundant with depth. This facies was encountered at 12,580 feet in P1 -72 and at 11,850 feet in G1a -72. This argillaceous sequence is likely the Bahi sandstone's lateral facies equivalent deposited in paleotopographic lows, which received finer grained material. The Bahi sandstones are generally described as a good reservoir rock, which after prolific production tests for the drilled wells that makes Bahi sandstones the principal reservoir rocks for CO₂ where large volumes of CO₂ gas have been discovered in the Bahi Formation on and near EPSA 120/136, (conc 72). CO₂ occurs in this area as a result of the igneous activity of the Al Harouge Al Aswad complex. Igneous extrusive have been pierced in the subsurface and are exposed at the surface. Bahi CO₂ prospectivity is thought to be excellent in the central to western areas of EPSA 120/136 (CONC 72), where there are better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO₂ prospectivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves, although there are positive indications that they are very large. Three main structures (Barrut I, En Naga A, and En Naga O) are thought to be prospective for the lower Cretaceous Bahi sandstone development. These leads are the most attractive on EPSA 120/136 for the deep potential.

Keywords: En Naga Sub Basin, Al Harouge Al Aswad’s Igneous Complex, carbon dioxide generation and migration in the Bahi sandstone reservoir, lower cretaceous Bahi sandstone

Procedia PDF Downloads 89
1338 Investigation of Residual Stress Relief by in-situ Rolling Deposited Bead in Directed Laser Deposition

Authors: Ravi Raj, Louis Chiu, Deepak Marla, Aijun Huang

Abstract:

Hybridization of the directed laser deposition (DLD) process using an in-situ micro-roller to impart a vertical compressive load on the deposited bead at elevated temperatures can relieve tensile residual stresses incurred in the process. To investigate this stress relief mechanism and its relationship with the in-situ rolling parameters, a fully coupled dynamic thermo-mechanical model is presented in this study. A single bead deposition of Ti-6Al-4V alloy with an in-situ roller made of mild steel moving at a constant speed with a fixed nominal bead reduction is simulated using the explicit solver of the finite element software, Abaqus. The thermal model includes laser heating during the deposition process and the heat transfer between the roller and the deposited bead. The laser heating is modeled using a moving heat source with a Gaussian distribution, applied along the pre-formed bead’s surface using the VDFLUX Fortran subroutine. The bead’s cross-section is assumed to be semi-elliptical. The interfacial heat transfer between the roller and the bead is considered in the model. Besides, the roller is cooled internally using axial water flow, considered in the model using convective heat transfer. The mechanical model for the bead and substrate includes the effects of rolling along with the deposition process, and their elastoplastic material behavior is captured using the J2 plasticity theory. The model accounts for strain, strain rate, and temperature effects on the yield stress based on Johnson-Cook’s theory. Various aspects of this material behavior are captured in the FE software using the subroutines -VUMAT for elastoplastic behavior, VUHARD for yield stress, and VUEXPAN for thermal strain. The roller is assumed to be elastic and does not undergo any plastic deformation. Also, contact friction at the roller-bead interface is considered in the model. Based on the thermal results of the bead, the distance between the roller and the deposition nozzle (roller o set) can be determined to ensure rolling occurs around the beta-transus temperature for the Ti-6Al-4V alloy. It is identified that roller offset and the nominal bead height reduction are crucial parameters that influence the residual stresses in the hybrid process. The results obtained from a simulation at roller offset of 20 mm and nominal bead height reduction of 7% reveal that the tensile residual stresses decrease to about 52% due to in-situ rolling throughout the deposited bead. This model can be used to optimize the rolling parameters to minimize the residual stresses in the hybrid DLD process with in-situ micro-rolling.

Keywords: directed laser deposition, finite element analysis, hybrid in-situ rolling, thermo-mechanical model

Procedia PDF Downloads 97
1337 Serological IgG Testing to Diagnose Alimentary Induced Diseases and Monitoring Efficacy of an Individual Defined Diet in Dogs

Authors: Anne-Margré C. Vink

Abstract:

Background: Food-related allergies and intolerances are frequently occurring in dogs. Diagnosis and monitoring according to ‘Golden Standard’ of elimination efficiency are time-consuming, expensive, and requires expert clinical setting. In order to facilitate rapid and robust, quantitative testing of intolerance, and determining the individual offending foods, a serological test is implicated. Method: As we developed Medisynx IgG Human Screening Test ELISA before and the dog’s immune system is most similar to humans, we were able to develop Medisynx IgG Dog Screening Test ELISA as well. In this study, 47 dogs suffering from Canine Atopic Dermatitis (CAD) and several secondary induced reactions were included to participate in serological Medisynx IgG Dog Screening Test ELISA (within < 0,02 % SD). Results were expressed as titers relative to the standard OD readings to diagnose alimentary induced diseases and monitoring the efficacy of an individual eliminating diet in dogs. Split sample analysis was performed by independently sending 2 times 3 ml serum under two unique codes. Results: The veterinarian monitored these dogs to check dog’ results at least at 3, 7, 21, 49, 70 days and after period of 6 and 12 months on an individual negative diet and a positive challenge (retrospectively) at 6 months. Data of each dog were recorded in a screening form and reported that a complete recovery of all clinical manifestations was observed at or less than 70 days (between 50 and 70 days) in the majority of dogs(44 out of 47 dogs =93.6%). Conclusion: Challenge results showed a significant result of 100% in specificity as well as 100% positive predicted value. On the other hand, sensitivity was 95,7% and negative predictive value was 95,7%. In conclusion, an individual diet based on IgG ELISA in dogs provides a significant improvement of atopic dermatitis and pruritus including all other non-specific defined allergic skin reactions as erythema, itching, biting and gnawing at toes, as well as to several secondary manifestations like chronic diarrhoea, chronic constipation, otitis media, obesity, laziness or inactive behaviour, pain and muscular stiffness causing a movement disorders, excessive lacrimation, hyper behaviour, nervous behaviour and not possible to stay alone at home, anxiety, biting and aggressive behaviour and disobedience behaviour. Furthermore, we conclude that a relatively more severe systemic candidiasis, as shown by relatively higher titer (class 3 and 4 IgG reactions to Candida albicans), influence the duration of recovery from clinical manifestations in affected dogs. These findings are consistent with our preliminary human clinical studies.

Keywords: allergy, canine atopic dermatitis, CAD, food allergens, IgG-ELISA, food-incompatibility

Procedia PDF Downloads 299
1336 Assessing Prescribed Burn Severity in the Wetlands of the Paraná River -Argentina

Authors: Virginia Venturini, Elisabet Walker, Aylen Carrasco-Millan

Abstract:

Latin America stands at the front of climate change impacts, with forecasts projecting accelerated temperature and sea level rises compared to the global average. These changes are set to trigger a cascade of effects, including coastal retreat, intensified droughts in some nations, and heightened flood risks in others. In Argentina, wildfires historically affected forests, but since 2004, wetland fires have emerged as a pressing concern. By 2021, the wetlands of the Paraná River faced a dangerous situation. In fact, during the year 2021, a high-risk scenario was naturally formed in the wetlands of the Paraná River, in Argentina. Very low water levels in the rivers, and excessive standing dead plant material (fuel), triggered most of the fires recorded in the vast wetland region of the Paraná during 2020-2021. During 2008 fire events devastated nearly 15% of the Paraná Delta, and by late 2021 new fires burned more than 300,000 ha of these same wetlands. Therefore, the goal of this work is to explore remote sensing tools to monitor environmental conditions and the severity of prescribed burns in the Paraná River wetlands. Thus, two prescribed burning experiments were carried out in the study area (31°40’ 05’’ S, 60° 34’ 40’’ W) during September 2023. The first experiment was carried out on Sept. 13th, in a plot of 0.5 ha which dominant vegetation were Echinochloa sp., and Thalia, while the second trial was done on Sept 29th in a plot of 0.7 ha, next to the first burned parcel; here the dominant vegetation species were Echinochloa sp. and Solanum glaucophyllum. Field campaigns were conducted between September 8th and November 8th to assess the severity of the prescribed burns. Flight surveys were conducted utilizing a DJI® Inspire II drone equipped with a Sentera® NDVI camera. Then, burn severity was quantified by analyzing images captured by the Sentera camera along with data from the Sentinel 2 satellite mission. This involved subtracting the NDVI images obtained before and after the burn experiments. The results from both data sources demonstrate a highly heterogeneous impact of fire within the patch. Mean severity values obtained with drone NDVI images of the first experience were about 0.16 and 0.18 with Sentinel images. For the second experiment, mean values obtained with the drone were approximately 0.17 and 0.16 with Sentinel images. Thus, most of the pixels showed low fire severity and only a few pixels presented moderated burn severity, based on the wildfire scale. The undisturbed plots maintained consistent mean NDVI values throughout the experiments. Moreover, the severity assessment of each experiment revealed that the vegetation was not completely dry, despite experiencing extreme drought conditions.

Keywords: prescribed-burn, severity, NDVI, wetlands

Procedia PDF Downloads 40
1335 Development and Validation of a Turbidimetric Bioassay to Determine the Potency of Ertapenem Sodium

Authors: Tahisa M. Pedroso, Hérida R. N. Salgado

Abstract:

The microbiological turbidimetric assay allows the determination of potency of the drug, by measuring the turbidity (absorbance), caused by inhibition of microorganisms by ertapenem sodium. Ertapenem sodium (ERTM), a synthetic antimicrobial agent of the class of carbapenems, shows action against Gram-negative, Gram-positive, aerobic and anaerobic microorganisms. Turbidimetric assays are described in the literature for some antibiotics, but this method is not described for ertapenem. The objective of the present study was to develop and validate a simple, sensitive, precise and accurate microbiological assay by turbidimetry to quantify ertapenem sodium injectable as an alternative to the physicochemical methods described in the literature. Several preliminary tests were performed to choose the following parameters: Staphylococcus aureus ATCC 25923, IAL 1851, 8 % of inoculum, BHI culture medium, and aqueous solution of ertapenem sodium. 10.0 mL of sterile BHI culture medium were distributed in 20 tubes. 0.2 mL of solutions (standard and test), were added in tube, respectively S1, S2 and S3, and T1, T2 and T3, 0.8 mL of culture medium inoculated were transferred to each tube, according parallel lines 3 x 3 test. The tubes were incubated in shaker Marconi MA 420 at a temperature of 35.0 °C ± 2.0 °C for 4 hours. After this period, the growth of microorganisms was inhibited by addition of 0.5 mL of 12% formaldehyde solution in each tube. The absorbance was determined in Quimis Q-798DRM spectrophotometer at a wavelength of 530 nm. An analytical curve was constructed to obtain the equation of the line by the least-squares method and the linearity and parallelism was detected by ANOVA. The specificity of the method was proven by comparing the response obtained for the standard and the finished product. The precision was checked by testing the determination of ertapenem sodium in three days. The accuracy was determined by recovery test. The robustness was determined by comparing the results obtained by varying wavelength, brand of culture medium and volume of culture medium in the tubes. Statistical analysis showed that there is no deviation from linearity in the analytical curves of standard and test samples. The correlation coefficients were 0.9996 and 0.9998 for the standard and test samples, respectively. The specificity was confirmed by comparing the absorbance of the reference substance and test samples. The values obtained for intraday, interday and between analyst precision were 1.25%; 0.26%, 0.15% respectively. The amount of ertapenem sodium present in the samples analyzed, 99.87%, is consistent. The accuracy was proven by the recovery test, with value of 98.20%. The parameters varied did not affect the analysis of ertapenem sodium, confirming the robustness of this method. The turbidimetric assay is more versatile, faster and easier to apply than agar diffusion assay. The method is simple, rapid and accurate and can be used in routine analysis of quality control of formulations containing ertapenem sodium.

Keywords: ertapenem sodium, turbidimetric assay, quality control, validation

Procedia PDF Downloads 381
1334 Overcoming Adversity: Women with Disabled Children and Microfinance Solutions

Authors: Aarif Hussain, Afnan Tariq

Abstract:

In recent years, microfinance has emerged as a critical tool for promoting financial inclusion and empowering marginalized communities, particularly women. In India, where poverty and lack of access to financial services continue to be significant challenges for many, microfinance has the potential to provide much-needed support to women with disabled children. These women face unique challenges, including discrimination, lack of access to education and employment, and limited support systems, making it even more difficult for them to break out of poverty and provide for their families. Microfinance, by providing small loans, savings products, and other financial services, can help these women to start or grow businesses, build assets, and achieve financial independence. India has adhered to an SHG-bank linkage model of microfinance since 1980, and programs like IRDP and SGSY were initiatives in the same direction. In the year 2011, India launched DAY-NRLM, a restructured version of SGSY. DAY-NRLM is an SHG-based microfinance program targeting the rural women of India. It aims to organise these poor women into SHGs and link them to banking institutions for creating sustainable livelihoods. The program has a reservation for disabled women but has no special status for mothers with disabled children. The impact of microfinance on women with disabilities and their families has been well documented. Studies have shown that women participating in microfinance programs are more likely to start businesses, increase their income, and improve their standard of living. Furthermore, these women are more likely to invest in their children's education and health, which can have long-term positive effects on their family’s well-being. In the Union territory of Jammu and Kashmir, the programme started in 2013 and is running smoothly to date. Women with children having a disability have not been documented as a category within the programme. The core aspect of this study is to delve into these women’s lives and analyse the impact of SHG membership on their lives and their children. The participants were selected purposively. For data collection, in-depth interviews were conducted. The findings of the paper show that microfinance has the potential to play a significant role in promoting financial inclusion and empowering women with children having disabilities in Kashmir. By providing access to small loans, savings products, and other financial services, microfinance can help these women to start or grow businesses, build assets, and achieve financial independence. However, more work is needed to ensure that these women have equal access to financial services and opportunities and that microfinance institutions are equipped to effectively serve this population. Working together to address these challenges can create a brighter future for women with children having disabilities and their families in India.

Keywords: DAY-NRLM, microfinance, SHGs, women, disabled children

Procedia PDF Downloads 57
1333 Correlation Between Different Radiological Findings and Histopathological diagnosis of Breast Diseases: Retrospective Review Conducted Over Sixth Years in King Fahad University Hospital in Eastern Province, Saudi Arabia

Authors: Sadeem Aljamaan, Reem Hariri, Rahaf Alghamdi, Batool Alotaibi, Batool Alsenan, Lama Althunayyan, Areej Alnemer

Abstract:

The aim of this study is to correlate between radiological findings and histopathological results in regard to the breast imaging-reporting and data system scores, size of breast masses, molecular subtypes and suspicious radiological features, as well as to assess the concordance rate in histological grade between core biopsy and surgical excision among breast cancer patients, followed by analyzing the change of concordance rate in relation to neoadjuvant chemotherapy in a Saudi population. A retrospective review was conducted over 6-year period (2017-2022) on all breast core biopsies of women preceded by radiological investigation. Chi-squared test (χ2) was performed on qualitative data, the Mann-Whitney test for quantitative non-parametric variables, and the Kappa test for grade agreement. A total of 641 cases were included. Ultrasound, mammography, and magnetic resonance imaging demonstrated diagnostic accuracies of 85%, 77.9% and 86.9%; respectively. magnetic resonance imaging manifested the highest sensitivity (72.2%), and the lowest was for ultrasound (61%). Concordance in tumor size with final excisions was best in magnetic resonance imaging, while mammography demonstrated a higher tendency of overestimation (41.9%), and ultrasound showed the highest underestimation (67.7%). The association between basal-like molecular subtypes and the breast imaging-reporting and data system score 5 classifications was statistically significant only for magnetic resonance imaging (p=0.04). Luminal subtypes demonstrated a significantly higher percentage of speculation in mammography. Breast imaging-reporting and data system score 4 manifested a substantial number of benign pathologies in all the 3 modalities. A fair concordance rate (k= 0.212 & 0.379) was demonstrated between excision and the preceding core biopsy grading with and without neoadjuvant therapy, respectively. The results demonstrated a down-grading in cases post-neoadjuvant therapy. In cases who did not receive neoadjuvant therapy, underestimation of tumor grade in biopsy was evident. In summary, magnetic resonance imaging had the highest sensitivity, specificity, positive predictive value and accuracy of both diagnosis and estimation of tumor size. Mammography demonstrated better sensitivity than ultrasound and had the highest negative predictive value, but ultrasound had better specificity, positive predictive value and accuracy. Therefore, the combination of different modalities is advantageous. The concordance rate of core biopsy grading with excision was not impacted by neoadjuvant therapy.

Keywords: breast cancer, mammography, MRI, neoadjuvant, pathology, US

Procedia PDF Downloads 69
1332 Molecular Defects Underlying Genital Ambiguity in Egyptian Patients: A Systematic Review

Authors: Y. Z. Gad

Abstract:

Disorders of Sex Development (DSD) are defined as congenital conditions in which development of chromosomal, gonadal or anatomical sex is atypical. The DSD are relatively prevalent in Egypt. In spite of that, the relative rarity of the individual disease types or their molecular pathologies frequently resulted in reporting on single or few cases. This augmented the challenging nature of phenotype-genotype correlation in this disease group and its utilization in the management of such medical emergency. Through critical assessment of the published DSD reports, the current review aims at analyzing the clinical characteristics of the various DSD forms in relation to the underlying molecular pathologies. A systematic literature search was done in Pubmed, using relevant keywords (Egypt versus DSD, genital ambiguity or ambiguous genitalia, the old terms of 'intersex, hermaphroditism and pseudohermaphroditism', and a list of the DSD entities and their related genes). The search yielded 24 reports of molecular data in Egyptian patients presenting with ambiguous genitalia. However, only 21 publications fulfilled the criteria of inclusion of detailed clinical descriptions and definitive molecular diagnoses of individual patients. Curation of the data yielded a total of 53 cases that were ascertained from 40 families. Fifty-one patients present with ambiguous genitalia only while 2 had multiple congenital anomalies. Parental consanguinity was noted in 60% of cases. Sex of rearing at initial presentation was female in 75% and 60% in 46,XY and 46,XX DSD cases, respectively. The external genital phenotype in 2/3 of the 46,XY DSD cases showed moderate undermasculinization [Quigley scores 3 & 4] and 1/3 had severe presentations [scores 5 & 6]. For 46,XX subjects, 1 had severe virilization of the external genitalia while 8 had moderate phenotype. Hormonal data were inconclusive or contradictory to final diagnosis in a forth of cases. Collectively, 31 families [31/40, 77.5%] with 46,XY DSD had molecular defects in the genes, 5 alpha reductase 2 (SRD5A2) [12/31], 17 beta-hydroxysteroid dehydrogenase 3 [8/31], androgen receptor [7/31], Steroidogenic factor 1 [2/31], luteinizing hormone receptor [1/31], and fibroblast growth factor receptor 1 [1/31]. In a multiethnic study, 9 families afflicted with 46,XX DSD due to 11 beta hydroxylase (CYP11B1) deficiency were documented. Two recurrent mutations, G34R and N160D, in SRD5A2 were present, respectively, in 42 and 17% of cases. Similarly, 4 recurrent mutations resulted in 89% of the CYP11B1 presentations. In conclusion, this analysis highlights the importance of autosomal recessive inheritance and inbreeding among DSD presentations, the importance of founder effect in at least 2 disorders, the difficulties in relating the genotype with the indeterminate genital phenotype, the under-reporting of some DSD subtypes, and the notion that the reported mutational profiles among Egyptian DSD cases are relatively different from those reported in other ethnic groups.

Keywords: disorders of sex development, genital ambiguity, mutation, molecular diagnosis, Egypt

Procedia PDF Downloads 123
1331 Temporal and Spatio-Temporal Stability Analyses in Mixed Convection of a Viscoelastic Fluid in a Porous Medium

Authors: P. Naderi, M. N. Ouarzazi, S. C. Hirata, H. Ben Hamed, H. Beji

Abstract:

The stability of mixed convection in a Newtonian fluid medium heated from below and cooled from above, also known as the Poiseuille-Rayleigh-Bénard problem, has been extensively investigated in the past decades. To our knowledge, mixed convection in porous media has received much less attention in the published literature. The present paper extends the mixed convection problem in porous media for the case of a viscoelastic fluid flow owing to its numerous environmental and industrial applications such as the extrusion of polymer fluids, solidification of liquid crystals, suspension solutions and petroleum activities. Without a superimposed through-flow, the natural convection problem of a viscoelastic fluid in a saturated porous medium has already been treated. The effects of the viscoelastic properties of the fluid on the linear and nonlinear dynamics of the thermoconvective instabilities have also been treated in this work. Consequently, the elasticity of the fluid can lead either to a Hopf bifurcation, giving rise to oscillatory structures in the strongly elastic regime, or to a stationary bifurcation in the weakly elastic regime. The objective of this work is to examine the influence of the main horizontal flow on the linear and characteristics of these two types of instabilities. Under the Boussinesq approximation and Darcy's law extended to a viscoelastic fluid, a temporal stability approach shows that the conditions for the appearance of longitudinal rolls are identical to those found in the absence of through-flow. For the general three-dimensional (3D) perturbations, a Squire transformation allows the deduction of the complex frequencies associated with the 3D problem using those obtained by solving the two-dimensional one. The numerical resolution of the eigenvalue problem concludes that the through-flow has a destabilizing effect and selects a convective configuration organized in purely transversal rolls which oscillate in time and propagate in the direction of the main flow. In addition, by using the mathematical formalism of absolute and convective instabilities, we study the nature of unstable three-dimensional disturbances. It is shown that for a non-vanishing through-flow, general three-dimensional instabilities are convectively unstable which means that in the absence of a continuous noise source these instabilities are drifted outside the porous medium, and no long-term pattern is observed. In contrast, purely transversal rolls may exhibit a transition to absolute instability regime and therefore affect the porous medium everywhere including in the absence of a noise source. The absolute instability threshold, the frequency and the wave number associated with purely transversal rolls are determined as a function of the Péclet number and the viscoelastic parameters. Results are discussed and compared to those obtained from laboratory experiments in the case of Newtonian fluids.

Keywords: instability, mixed convection, porous media, and viscoelastic fluid

Procedia PDF Downloads 326
1330 Exploring the Motivations That Drive Paper Use in Clinical Practice Post-Electronic Health Record Adoption: A Nursing Perspective

Authors: Sinead Impey, Gaye Stephens, Lucy Hederman, Declan O'Sullivan

Abstract:

Continued paper use in the clinical area post-Electronic Health Record (EHR) adoption is regularly linked to hardware and software usability challenges. Although paper is used as a workaround to circumvent challenges, including limited availability of a computer, this perspective does not consider the important role paper, such as the nurses’ handover sheet, play in practice. The purpose of this study is to confirm the hypothesis that paper use post-EHR adoption continues as paper provides both a cognitive tool (that assists with workflow) and a compensation tool (to circumvent usability challenges). Distinguishing the different motivations for continued paper-use could assist future evaluations of electronic record systems. Methods: Qualitative data were collected from three clinical care environments (ICU, general ward and specialist day-care) who used an electronic record for at least 12 months. Data were collected through semi-structured interviews with 22 nurses. Data were transcribed, themes extracted using an inductive bottom-up coding approach and a thematic index constructed. Findings: All nurses interviewed continued to use paper post-EHR adoption. While two distinct motivations for paper use post-EHR adoption were confirmed by the data - paper as a cognitive tool and paper as a compensation tool - further finding was that there was an overlap between the two uses. That is, paper used as a compensation tool could also be adapted to function as a cognitive aid due to its nature (easy to access and annotate) or vice versa. Rather than present paper persistence as having two distinctive motivations, it is more useful to describe it as presenting on a continuum with compensation tool and cognitive tool at either pole. Paper as a cognitive tool referred to pages such as nurses’ handover sheet. These did not form part of the patient’s record, although information could be transcribed from one to the other. Findings suggest that although the patient record was digitised, handover sheets did not fall within this remit. These personal pages continued to be useful post-EHR adoption for capturing personal notes or patient information and so continued to be incorporated into the nurses’ work. Comparatively, the paper used as a compensation tool, such as pre-printed care plans which were stored in the patient's record, appears to have been instigated in reaction to usability challenges. In these instances, it is expected that paper use could reduce or cease when the underlying problem is addressed. There is a danger that as paper affords nurses a temporary information platform that is mobile, easy to access and annotate, its use could become embedded in clinical practice. Conclusion: Paper presents a utility to nursing, either as a cognitive or compensation tool or combination of both. By fully understanding its utility and nuances, organisations can avoid evaluating all incidences of paper use (post-EHR adoption) as arising from usability challenges. Instead, suitable remedies for paper-persistence can be targeted at the root cause.

Keywords: cognitive tool, compensation tool, electronic record, handover sheet, nurse, paper persistence

Procedia PDF Downloads 417
1329 AI-Based Information System for Hygiene and Safety Management of Shared Kitchens

Authors: Jongtae Rhee, Sangkwon Han, Seungbin Ji, Junhyeong Park, Byeonghun Kim, Taekyung Kim, Byeonghyeon Jeon, Jiwoo Yang

Abstract:

The shared kitchen is a concept that transfers the value of the sharing economy to the kitchen. It is a type of kitchen equipped with cooking facilities that allows multiple companies or chefs to share time and space and use it jointly. These shared kitchens provide economic benefits and convenience, such as reduced investment costs and rent, but also increase the risk of safety management, such as cross-contamination of food ingredients. Therefore, to manage the safety of food ingredients and finished products in a shared kitchen where several entities jointly use the kitchen and handle various types of food ingredients, it is critical to manage followings: the freshness of food ingredients, user hygiene and safety and cross-contamination of cooking equipment and facilities. In this study, it propose a machine learning-based system for hygiene safety and cross-contamination management, which are highly difficult to manage. User clothing management and user access management, which are most relevant to the hygiene and safety of shared kitchens, are solved through machine learning-based methodology, and cutting board usage management, which is most relevant to cross-contamination management, is implemented as an integrated safety management system based on artificial intelligence. First, to prevent cross-contamination of food ingredients, we use images collected through a real-time camera to determine whether the food ingredients match a given cutting board based on a real-time object detection model, YOLO v7. To manage the hygiene of user clothing, we use a camera-based facial recognition model to recognize the user, and real-time object detection model to determine whether a sanitary hat and mask are worn. In addition, to manage access for users qualified to enter the shared kitchen, we utilize machine learning based signature recognition module. By comparing the pairwise distance between the contract signature and the signature at the time of entrance to the shared kitchen, access permission is determined through a pre-trained signature verification model. These machine learning-based safety management tasks are integrated into a single information system, and each result is managed in an integrated database. Through this, users are warned of safety dangers through the tablet PC installed in the shared kitchen, and managers can track the cause of the sanitary and safety accidents. As a result of system integration analysis, real-time safety management services can be continuously provided by artificial intelligence, and machine learning-based methodologies are used for integrated safety management of shared kitchens that allows dynamic contracts among various users. By solving this problem, we were able to secure the feasibility and safety of the shared kitchen business.

Keywords: artificial intelligence, food safety, information system, safety management, shared kitchen

Procedia PDF Downloads 48
1328 Assessing Acute Toxicity and Endocrine Disruption Potential of Selected Packages Internal Layers Extracts

Authors: N. Szczepanska, B. Kudlak, G. Yotova, S. Tsakovski, J. Namiesnik

Abstract:

In the scientific literature related to the widely understood issue of packaging materials designed to have contact with food (food contact materials), there is much information on raw materials used for their production, as well as their physiochemical properties, types, and parameters. However, not much attention is given to the issues concerning migration of toxic substances from packaging and its actual influence on the health of the final consumer, even though health protection and food safety are the priority tasks. The goal of this study was to estimate the impact of particular foodstuff packaging type, food production, and storage conditions on the degree of leaching of potentially toxic compounds and endocrine disruptors to foodstuffs using the acute toxicity test Microtox and XenoScreen YES YAS assay. The selected foodstuff packaging materials were metal cans used for fish storage and tetrapak. Five stimulants respectful to specific kinds of food were chosen in order to assess global migration: distilled water for aqueous foods with a pH above 4.5; acetic acid at 3% in distilled water for acidic aqueous food with pH below 4.5; ethanol at 5% for any food that may contain alcohol; dimethyl sulfoxide (DMSO) and artificial saliva were used in regard to the possibility of using it as an simulation medium. For each packaging three independent variables (temperature and contact time) factorial design simulant was performed. Xenobiotics migration from epoxy resins was studied at three different temperatures (25°C, 65°C, and 121°C) and extraction time of 12h, 48h and 2 weeks. Such experimental design leads to 9 experiments for each food simulant as conditions for each experiment are obtained by combination of temperature and contact time levels. Each experiment was run in triplicate for acute toxicity and in duplicate for estrogen disruption potential determination. Multi-factor analysis of variation (MANOVA) was used to evaluate the effects of the three main factors solvent, temperature (temperature regime for cup), contact time and their interactions on the respected dependent variable (acute toxicity or estrogen disruption potential). From all stimulants studied the most toxic were can and tetrapak lining acetic acid extracts that are indication for significant migration of toxic compounds. This migration increased with increase of contact time and temperature and justified the hypothesis that food products with low pH values cause significant damage internal resin filling. Can lining extracts of all simulation medias excluding distilled water and artificial saliva proved to contain androgen agonists even at 25°C and extraction time of 12h. For tetrapak extracts significant endocrine potential for acetic acid, DMSO and saliva were detected.

Keywords: food packaging, extraction, migration, toxicity, biotest

Procedia PDF Downloads 165
1327 Predicting Long-Term Performance of Concrete under Sulfate Attack

Authors: Elakneswaran Yogarajah, Toyoharu Nawa, Eiji Owaki

Abstract:

Cement-based materials have been using in various reinforced concrete structural components as well as in nuclear waste repositories. The sulfate attack has been an environmental issue for cement-based materials exposed to sulfate bearing groundwater or soils, and it plays an important role in the durability of concrete structures. The reaction between penetrating sulfate ions and cement hydrates can result in swelling, spalling and cracking of cement matrix in concrete. These processes induce a reduction of mechanical properties and a decrease of service life of an affected structure. It has been identified that the precipitation of secondary sulfate bearing phases such as ettringite, gypsum, and thaumasite can cause the damage. Furthermore, crystallization of soluble salts such as sodium sulfate crystals induces degradation due to formation and phase changes. Crystallization of mirabilite (Na₂SO₄:10H₂O) and thenardite (Na₂SO₄) or their phase changes (mirabilite to thenardite or vice versa) due to temperature or sodium sulfate concentration do not involve any chemical interaction with cement hydrates. Over the past couple of decades, an intensive work has been carried out on sulfate attack in cement-based materials. However, there are several uncertainties still exist regarding the mechanism for the damage of concrete in sulfate environments. In this study, modelling work has been conducted to investigate the chemical degradation of cementitious materials in various sulfate environments. Both internal and external sulfate attack are considered for the simulation. In the internal sulfate attack, hydrate assemblage and pore solution chemistry of co-hydrating Portland cement (PC) and slag mixing with sodium sulfate solution are calculated to determine the degradation of the PC and slag-blended cementitious materials. Pitzer interactions coefficients were used to calculate the activity coefficients of solution chemistry at high ionic strength. The deterioration mechanism of co-hydrating cementitious materials with 25% of Na₂SO₄ by weight is the formation of mirabilite crystals and ettringite. Their formation strongly depends on sodium sulfate concentration and temperature. For the external sulfate attack, the deterioration of various types of cementitious materials under external sulfate ingress is simulated through reactive transport model. The reactive transport model is verified with experimental data in terms of phase assemblage of various cementitious materials with spatial distribution for different sulfate solution. Finally, the reactive transport model is used to predict the long-term performance of cementitious materials exposed to 10% of Na₂SO₄ for 1000 years. The dissolution of cement hydrates and secondary formation of sulfate-bearing products mainly ettringite are the dominant degradation mechanisms, but not the sodium sulfate crystallization.

Keywords: thermodynamic calculations, reactive transport, radioactive waste disposal, PHREEQC

Procedia PDF Downloads 145
1326 Risk Factors Associated with Ectoprotozoa Infestation of Wild and Farmed Cyprinids

Authors: M. A. Peribanez, G. Illan, I. De Blas, A. Muniesa, I. Ruiz-Zarzuela

Abstract:

Intensive aquaculture is commonly associated with increased incidence of parasites. However, in Spain, the recent intensification of cyprinid production has not led to knowledge of the parasites that develop in the aquaculture facilities, the factors that affect their development and spread and the transmission between wild and cultivated fish species. The present study focuses on the knowledge of environmental factors, as well as host dependent factors, and their possible influence as risk factors in the incidence and intensity of parasitic infections. This work was conducted in the Duero River Basin, NW Spain. A total of 114 tenches (Tinca tinca) were caught in a fish farm and 667 specimens belonging to six species of cyprinid, not tench, in five rivers. An exhaustive search and microscopic identification of protozoa on skin and gills were carried out. Physical, chemical, and biological parameters of water samples from the capture points were determined. Only two ectoprotozoa were identified, Ichthyophthirius multifiliis and Tripartiella sp. In I. multifiliis, a high intensity of infection (more than 40 parasites on the body surface and more than 80 on gills) was determined in farmed tench (14%) and in Iberian barbel (Luciobarbus bocagei) (91%) and Duero nase (Pseudochondrostoma duriense) (71%) of middle stretches of rivers. The prevalence was similar between farmed tenches and cyprinids of middle courses. Tripartiella sp. was only found in barbels (prevalence in middle stretches, 0.7%) and in farmed tenches (63%), this species resulting in a high risk factor (odds ratio, OR= 1143) in the presence of the ciliate. There were no differences between the two species relative to the intensity of parasitization. Some of the physical, chemical and microbiological water quality parameters appear to be risk factors in the presence of I. multifiliis, with maximum OR of 8. Nevertheless, in Tripartiella sp., the risk is multiplied by 720 when the pH value exceeds 8.4, if we consider the total of the data, and it is increased more than 500 times if we only consider the values recorded in the fish farm (529 by nitrates > 3 mg/l; 530 by total coliforms > 100 CFU/100 ml). However, the high prevalence and risk of infection by I. multifiliis and Tripartiella sp. in fish farms should be related to environmental factors that dependent upon sampling point rather than in direct influence of the physical-chemical and biological parameters of the water. The high pH value recorded in the fish farm (9.62 ± 0.76) is the only parameter that we consider may have a substantial direct influence. Chronic exposure to alkaline pH levels can be a chronic stress generator, predisposing to parasitization by Tripartiella sp. In conclusion, often minor changes in ecosystem conditions, both natural and man-made, can modify the host-parasite relationship, resulting in an increase in the prevalence and intensity of parasitic infections in populations of cyprinids, sometimes causing disease outbreaks.

Keywords: cyprinids, fish, parasites, protozoa, risk factors

Procedia PDF Downloads 92
1325 Seismic Data Analysis of Intensity, Orientation and Distribution of Fractures in Basement Rocks for Reservoir Characterization

Authors: Mohit Kumar

Abstract:

Natural fractures are classified in two broad categories of joints and faults on the basis of shear movement in the deposited strata. Natural fracture always has high structural relationship with extensional or non-extensional tectonics and sometimes the result is seen in the form of micro cracks. Geological evidences suggest that both large and small-scale fractures help in to analyze the seismic anisotropy which essentially contribute into characterization of petro physical properties behavior associated with directional migration of fluid. We generally question why basement study is much needed as historically it is being treated as non-productive and geoscientist had no interest in exploration of these basement rocks. Basement rock goes under high pressure and temperature, and seems to be highly fractured because of the tectonic stresses that are applied to the formation along with the other geological factors such as depositional trend, internal stress of the rock body, rock rheology, pore fluid and capillary pressure. Sometimes carbonate rocks also plays the role of basement and igneous body e.g basalt deposited over the carbonate rocks and fluid migrate from carbonate to igneous rock due to buoyancy force and adequate permeability generated by fracturing. So in order to analyze the complete petroleum system, FMC (Fluid Migration Characterization) is necessary through fractured media including fracture intensity, orientation and distribution both in basement rock and county rock. Thus good understanding of fractures can lead to project the correct wellbore trajectory or path which passes through potential permeable zone generated through intensified P-T and tectonic stress condition. This paper deals with the analysis of these fracture property such as intensity, orientation and distribution in basement rock as large scale fracture can be interpreted on seismic section, however, small scale fractures show ambiguity in interpretation because fracture in basement rock lies below the seismic wavelength and hence shows erroneous result in identification. Seismic attribute technique also helps us to delineate the seismic fracture and subtle changes in fracture zone and these can be inferred from azimuthal anisotropy in velocity and amplitude and spectral decomposition. Seismic azimuthal anisotropy derives fracture intensity and orientation from compressional wave and converted wave data and based on variation of amplitude or velocity with azimuth. Still detailed analysis of fractured basement required full isotropic and anisotropic analysis of fracture matrix and surrounding rock matrix in order to characterize the spatial variability of basement fracture which support the migration of fluid from basement to overlying rock.

Keywords: basement rock, natural fracture, reservoir characterization, seismic attribute

Procedia PDF Downloads 179
1324 Analysis of Digital Transformation in Banking: The Hungarian Case

Authors: Éva Pintér, Péter Bagó, Nikolett Deutsch, Miklós Hetényi

Abstract:

The process of digital transformation has a profound influence on all sectors of the worldwide economy and the business environment. The influence of blockchain technology can be observed in the digital economy and e-government, rendering it an essential element of a nation's growth strategy. The banking industry is experiencing significant expansion and development of financial technology firms. Utilizing developing technologies such as artificial intelligence (AI), machine learning (ML), and big data (BD), these entrants are offering more streamlined financial solutions, promptly addressing client demands, and presenting a challenge to incumbent institutions. The advantages of digital transformation are evident in the corporate realm, and firms that resist its adoption put their survival at risk. The advent of digital technologies has revolutionized the business environment, streamlining processes and creating opportunities for enhanced communication and collaboration. Thanks to the aid of digital technologies, businesses can now swiftly and effortlessly retrieve vast quantities of information, all the while accelerating the process of creating new and improved products and services. Big data analytics is generally recognized as a transformative force in business, considered the fourth paradigm of science, and seen as the next frontier for innovation, competition, and productivity. Big data, an emerging technology that is shaping the future of the banking sector, offers numerous advantages to banks. It enables them to effectively track consumer behavior and make informed decisions, thereby enhancing their operational efficiency. Banks may embrace big data technologies to promptly and efficiently identify fraud, as well as gain insights into client preferences, which can then be leveraged to create better-tailored products and services. Moreover, the utilization of big data technology empowers banks to develop more intelligent and streamlined models for accurately recognizing and focusing on the suitable clientele with pertinent offers. There is a scarcity of research on big data analytics in the banking industry, with the majority of existing studies only examining the advantages and prospects associated with big data. Although big data technologies are crucial, there is a dearth of empirical evidence about the role of big data analytics (BDA) capabilities in bank performance. This research addresses a gap in the existing literature by introducing a model that combines the resource-based view (RBV), the technical organization environment framework (TOE), and dynamic capability theory (DC). This study investigates the influence of Big Data Analytics (BDA) utilization on the performance of market and risk management. This is supported by a comparative examination of Hungarian mobile banking services.

Keywords: big data, digital transformation, dynamic capabilities, mobile banking

Procedia PDF Downloads 36
1323 Coupling Strategy for Multi-Scale Simulations in Micro-Channels

Authors: Dahia Chibouti, Benoit Trouette, Eric Chenier

Abstract:

With the development of micro-electro-mechanical systems (MEMS), understanding fluid flow and heat transfer at the micrometer scale is crucial. In the case where the flow characteristic length scale is narrowed to around ten times the mean free path of gas molecules, the classical fluid mechanics and energy equations are still valid in the bulk flow, but particular attention must be paid to the gas/solid interface boundary conditions. Indeed, in the vicinity of the wall, on a thickness of about the mean free path of the molecules, called the Knudsen layer, the gas molecules are no longer in local thermodynamic equilibrium. Therefore, macroscopic models based on the continuity of velocity, temperature and heat flux jump conditions must be applied at the fluid/solid interface to take this non-equilibrium into account. Although these macroscopic models are widely used, the assumptions on which they depend are not necessarily verified in realistic cases. In order to get rid of these assumptions, simulations at the molecular scale are carried out to study how molecule interaction with walls can change the fluid flow and heat transfers at the vicinity of the walls. The developed approach is based on a kind of heterogeneous multi-scale method: micro-domains overlap the continuous domain, and coupling is carried out through exchanges of information between both the molecular and the continuum approaches. In practice, molecular dynamics describes the fluid flow and heat transfers in micro-domains while the Navier-Stokes and energy equations are used at larger scales. In this framework, two kinds of micro-simulation are performed: i) in bulk, to obtain the thermo-physical properties (viscosity, conductivity, ...) as well as the equation of state of the fluid, ii) close to the walls to identify the relationships between the slip velocity and the shear stress or between the temperature jump and the normal temperature gradient. The coupling strategy relies on an implicit formulation of the quantities extracted from micro-domains. Indeed, using the results of the molecular simulations, a Bayesian regression is performed in order to build continuous laws giving both the behavior of the physical properties, the equation of state and the slip relationships, as well as their uncertainties. These latter allow to set up a learning strategy to optimize the number of micro simulations. In the present contribution, the first results regarding this coupling associated with the learning strategy are illustrated through parametric studies of convergence criteria, choice of basis functions and noise of input data. Anisothermic flows of a Lennard Jones fluid in micro-channels are finally presented.

Keywords: multi-scale, microfluidics, micro-channel, hybrid approach, coupling

Procedia PDF Downloads 153
1322 Use of Corporate Social Responsibility in Environmental Protection: Modern Mechanisms of Environmental Self-Regulation

Authors: Jakub Stelina, Janina Ciechanowicz-McLean

Abstract:

Fifty years of existence and development of international environmental law brought a deep disappointment with efficiency and effectiveness of traditional command and control mechanisms of environmental regulation. Agenda 21 agreed during the first Earth Summit in Rio de Janeiro 1992 was one of the first international documents, which explicitly underlined the importance of public participation in environmental protection. This participation includes also the initiatives undertaken by business corporations in the form of private environmental standards setting. Twenty years later during the Rio 20+ Earth Summit the private sector obligations undertaken during the negotiations have proven to be at least as important as the ones undertaken by the governments. The private sector has taken the leading role in environmental standard setting. Among the research methods used in the article two are crucial in the analysis. The comparative analysis of law is the instrument used in the article to analyse the practice of states and private business companies in the field of sustainable development. The article uses economic analysis of law to estimate the costs and benefits of Corporate Social Responsibility Projects in the field of environmental protection. The study is based on the four premises. First is the role of social dialogue, which is crucial for both Corporate Social Responsibility and modern environmental protection regulation. The Aarhus Convention creates a procedural environmental human right to participate in administrative procedures of law setting and environmental decisions making. The public participation in environmental impact assessment is nowadays a universal standard. Second argument is about the role of precaution as a principle of modern environmental regulation. This principle can be observed both in governmental regulatory undertakings and also private initiatives within the Corporate Social Responsibility environmental projects. Even in the jurisdictions which are relatively reluctant to use the principle of preventive action in environmental regulation, the companies often use this standard in their own private business standard setting initiatives. This is often due to the fact that soft law standards are used as the basis for private Corporate Social Responsibility regulatory initiatives. Third premise is about the role of ecological education in environmental protection. Many soft law instruments underline the importance of environmental education. Governments use environmental education only to the limited extent due to the costs of such projects and problems with effects assessment. Corporate Social Responsibility uses various means of ecological education as the basis of their actions in the field of environmental protection. Last but not least Sustainable development is a goal of both legal protection of the environment, and economic instruments of companies development. Modern environmental protection law uses to the increasing extent the Corporate Social Responsibility. This may be the consequence of the limits of hard law regulation. Corporate Social Responsibility is nowadays not only adapting to soft law regulation of environmental protection but also creates such standards by itself, showing new direction for development of international environmental law. Corporate Social Responsibility in environmental protection can be good investment in future development of the company.

Keywords: corporate social responsibility, environmental CSR, environmental justice, stakeholders dialogue

Procedia PDF Downloads 277
1321 Source-Detector Trajectory Optimization for Target-Based C-Arm Cone Beam Computed Tomography

Authors: S. Hatamikia, A. Biguri, H. Furtado, G. Kronreif, J. Kettenbach, W. Birkfellner

Abstract:

Nowadays, three dimensional Cone Beam CT (CBCT) has turned into a widespread clinical routine imaging modality for interventional radiology. In conventional CBCT, a circular sourcedetector trajectory is used to acquire a high number of 2D projections in order to reconstruct a 3D volume. However, the accumulated radiation dose due to the repetitive use of CBCT needed for the intraoperative procedure as well as daily pretreatment patient alignment for radiotherapy has become a concern. It is of great importance for both health care providers and patients to decrease the amount of radiation dose required for these interventional images. Thus, it is desirable to find some optimized source-detector trajectories with the reduced number of projections which could therefore lead to dose reduction. In this study we investigate some source-detector trajectories with the optimal arbitrary orientation in the way to maximize performance of the reconstructed image at particular regions of interest. To achieve this approach, we developed a box phantom consisting several small target polytetrafluoroethylene spheres at regular distances through the entire phantom. Each of these spheres serves as a target inside a particular region of interest. We use the 3D Point Spread Function (PSF) as a measure to evaluate the performance of the reconstructed image. We measured the spatial variance in terms of Full-Width-Half-Maximum (FWHM) of the local PSFs each related to a particular target. The lower value of FWHM shows the better spatial resolution of reconstruction results at the target area. One important feature of interventional radiology is that we have very well-known imaging targets as a prior knowledge of patient anatomy (e.g. preoperative CT) is usually available for interventional imaging. Therefore, we use a CT scan from the box phantom as the prior knowledge and consider that as the digital phantom in our simulations to find the optimal trajectory for a specific target. Based on the simulation phase we have the optimal trajectory which can be then applied on the device in real situation. We consider a Philips Allura FD20 Xper C-arm geometry to perform the simulations and real data acquisition. Our experimental results based on both simulation and real data show our proposed optimization scheme has the capacity to find optimized trajectories with minimal number of projections in order to localize the targets. Our results show the proposed optimized trajectories are able to localize the targets as good as a standard circular trajectory while using just 1/3 number of projections. Conclusion: We demonstrate that applying a minimal dedicated set of projections with optimized orientations is sufficient to localize targets, may minimize radiation.

Keywords: CBCT, C-arm, reconstruction, trajectory optimization

Procedia PDF Downloads 122
1320 Evaluation of Differential Interaction between Flavanols and Saliva Proteins by Diffusion and Precipitation Assays on Cellulose Membranes

Authors: E. Obreque-Slier, V. Contreras-Cortez, R. López-Solís

Abstract:

Astringency is a drying, roughing, and sometimes puckering sensation that is experienced on the various oral surfaces during or immediately after tasting foods. This sensation has been closely related to the interaction and precipitation between salivary proteins and polyphenols, specifically flavanols or proanthocyanidins. In addition, the type and concentration of proanthocyanidin influences significantly the intensity of the astringency and consequently the protein/proanthocyanidin interaction. However, most of the studies are based on the interaction between saliva and highly complex polyphenols, without considering the effect of monomeric proanthoancyanidins present in different foods. The aim of this study was to evaluate the effect of different monomeric proanthocyanidins on the diffusion and precipitation of salivary proteins. Thus, solutions of catechin, epicatechin, epigallocatechin and gallocatechin (0, 2.0, 4.0, 6.0, 8.0 and 10 mg/mL) were mixed with human saliva (1: 1 v/v). After incubation for 5 min at room temperature, 15 µL aliquots of each mix were dotted on a cellulose membrane and allowed to dry spontaneously at room temperature. The membrane was fixed, rinsed and stained for proteins with Coomassie blue. After exhaustive washing in 7% acetic acid, the membrane was rinsed once in distilled water and dried under a heat lamp. Both diffusion area and stain intensity of the protein spots were semiqualitative estimates for protein-tannin interaction (diffusion test). The rest of the whole saliva-phenol solution mixtures of the diffusion assay were centrifuged, and 15-μL aliquots from each of the supernatants were dotted on a cellulose membrane. The membrane was processed for protein staining as indicated above. The blue-stained area of protein distribution corresponding to each of the extract dilution-saliva mixtures was quantified by Image J 1.45 software. Each of the assays was performed at least three times. Initially, salivary proteins display a biphasic distribution on cellulose membranes, that is, when aliquots of saliva are placed on absorbing cellulose membranes, and free diffusion of saliva is allowed to occur, a non-diffusible protein fraction becomes surrounded by highly diffusible salivary proteins. In effect, once diffusion has ended, a protein-binding dye shows an intense blue-stained roughly circular area close to the spotting site (non-diffusible fraction) (NDF) which becomes surrounded by a weaker blue-stained outer band (diffusible fraction) (DF). Likewise, the diffusion test showed that epicatechin caused the complete disappearance of DF from saliva with 2 mg/mL. Also, epigallocatechin and gallocatechin caused a similar effect with 4 mg/mL, while catechin generated the same effect at 8 mg/mL. In the precipitation test, the use of epicatechin and gallocatechin generated evident precipitates at the bottom of the Eppendorf tubes. In summary, the flavanol type differentially affects the diffusion and precipitation of saliva, which would affect the sensation of astringency perceived by consumers.

Keywords: astringency, polyphenols, tannins, tannin-protein interaction

Procedia PDF Downloads 184
1319 Pibid and Experimentation: A High School Case Study

Authors: Chahad P. Alexandre

Abstract:

PIBID-Institutional Program of Scholarships to Encourage Teaching - is a Brazilian government program that counts today with 48.000 students. It's goal is to motivate the students to stay in the teaching undergraduate programs and to help fill the gap of 100.000 teachers that are needed today in the under graduated schools. The major lack of teachers today is in physics, chemistry, mathematics, and biology. At IFSP-Itapetininga we formatted our physics PIBID based on practical activities. Our students are divided in two São Paulo state government high schools in the same city. The project proposes class activities based on experimentation, observation and understanding of physical phenomena. The didactical experiments are always in relation with the content that the teacher is working, he is the supervisor of the program in the school. Always before an experiment is proposed a little questionnaire to learn about the students preconceptions and one is filled latter to evaluate if now concepts have been created. This procedure is made in order to compare their previous knowledge and how it changed after the experiment is developed. The primary goal of our project is to make the Physics class more attractive to the students and to develop in high school students the interest in learning physics and to show the relation of Physics to the day by day and to the technological world. The objective of the experimental activities is to facilitate the understanding of the concepts that are worked on classes because under experimentation the PIBID scholarship student stimulate the curiosity of the high school student and with this he can develop the capacity to understand and identify the physical phenomena with concrete examples. Knowing how to identify this phenomena and where they are present at the high school student life makes the learning process more significant and pleasant. This proposal make achievable to the students to practice science, to appropriate of complex, in the traditional classes, concepts and overcoming the common preconception that physics is something distant and that is present only on books. This preconception is extremely harmful in the process of scientific knowledge construction. This kind of learning – through experimentation – make the students not only accumulate knowledge but also appropriate it, also to appropriate experimental procedures and even the space that is provided by the school. The PIBID scholarship students, as future teachers also have the opportunity to try experimentation classes, to intervene in the classes and to have contact with their future career. This opportunity allows the students to make important reflection about the practices realized and consequently about the learning methods. Due to this project, we found out that the high school students stay more time focused in the experiment compared to the traditional explanation teachers´ class. As a result in a class, as a participative activity, the students got more involved and participative. We also found out that the physics under graduated students drop out percentage is smaller in our Institute than before the PIBID program started.

Keywords: innovation, projects, PIBID, physics, pre-service teacher experiences

Procedia PDF Downloads 329
1318 Recirculation Type Photocatalytic Reactor for Degradation of Monocrotophos Using TiO₂ and W-TiO₂ Coated Immobilized Clay Beads

Authors: Abhishek Sraw, Amit Sobti, Yamini Pandey, R. K. Wanchoo, Amrit Pal Toor

Abstract:

Monocrotophos (MCP) is a widely used pesticide in India, which belong to an extremely toxic organophosphorus family, is persistent in nature and its toxicity is widely reported in all environmental segments in the country. Advanced Oxidation Process (AOP) is a promising solution to the problem of water pollution. TiO₂ is being widely used as a photocatalyst because of its many advantages, but it has a large band gap, due to which it is modified using metal and nonmetal dopant to make it active under sunlight and visible light. The use of nanosized powdered catalysts makes the recovery process extremely complicated. Hence the aim is to use low cost, easily available, eco-friendly clay material in form of bead as the support for the immobilization of catalyst, to solve the problem of post-separation of suspended catalyst from treated water. A recirculation type photocatalytic reactor (RTPR), using ultraviolet light emitting source (blue black lamp) was designed which work effectively for both suspended catalysts and catalyst coated clay beads. The bare, TiO₂ and W-TiO₂ coated clay beads were characterized by scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS) and N₂ adsorption–desorption measurements techniques (BET) for their structural, textural and electronic properties. The study involved variation of different parameters like light conditions, recirculation rate, light intensity and initial MCP concentration under UV and sunlight for the degradation of MCP. The degradation and mineralization studies of the insecticide solution were performed using UV-Visible spectrophotometer, and COD vario-photometer and GC-MS analysis respectively. The main focus of the work lies in checking the recyclability of the immobilized TiO₂ over clay beads in the developed RTPR up to 30 continuous cycles without reactivation of catalyst. The results demonstrated the economic feasibility of the utilization of developed RTPR for the efficient purification of pesticide polluted water. The prepared TiO₂ clay beads delivered 75.78% degradation of MCP under UV light with negligible catalyst loss. Application of W-TiO₂ coated clay beads filled RTPR for the degradation of MCP under sunlight, however, shows 32% higher degradation of MCP than the same system based on undoped TiO₂. The COD measurements of TiO₂ coated beads led to 73.75% COD reduction while W-TiO₂ resulted in 87.89% COD reduction. The GC-MS analysis confirms the efficient breakdown of complex MCP molecules into simpler hydrocarbons. This supports the promising application of clay beads as a support for the photocatalyst and proves its eco-friendly nature, excellent recyclability, catalyst holding capacity, and economic viability.

Keywords: immobilized clay beads, monocrotophos, recirculation type photocatalytic reactor, TiO₂

Procedia PDF Downloads 163
1317 Legal Provisions on Child Pornography in Bangladesh: A Comparative Study on South Asian Landscape

Authors: Monira Nazmi Jahan, Nusrat Jahan Nishat

Abstract:

'Child Pornography' is a sex crime that portrays illegal images and videos of a minor over the Internet and now has become a social concern with the increase of commission of this crime. The major objective of this paper is to identify and examine the laws relating to child pornography in Bangladesh and to compare this with other South Asian countries. In Bangladesh to prosecute under child pornography, provisions have been made in ‘Digital Security Act, 2018’ where it has been defined as involving child in areas of child sexuality or in sexuality and whoever commits the crime will be punished for 10 years imprisonment or 10 lac taka fine. In India, the crime is dealt with ‘The Protection of Children from Sexual Offences Act, 2012’ (POSCO) where the offenders for commission of this crime has been divided separately and has provision for punishments starting from three years to rigorous life imprisonment and shall also be liable to fine. In the Maldives, there is ‘Special Provisions Act to Deal with Child Sex Abuse Offenders, Act number 12/2009’. In this act it has been provided that a person is guilty of such an act if intentionally runs child prostitution, involves child in the creation of pornography or displays child’s sexual organ in pornography then shall be punished between 20 to 25 years of imprisonment. Nepal prosecutes this crime through ‘Act Relating to Children, 2018’ and the conviction of using child in prostitution or sexual services is imprisonment up to fifteen years and fine up to one hundred fifty thousand rupees. In Pakistan, child pornography is prosecuted with ‘Pakistan Penal Code Child Abuse Amendment Act, 2016’. This provides that one is guilty of this offence if he involves child with or without consent in such activities. It provides punishment for two to seven years of imprisonment or fine from two hundred thousand to seven hundred thousand rupees. In Bhutan child pornography is not explicitly addressed under the municipal laws. The Penal Code of Bhutan penalizes all kinds of pornography including child pornography under the provisions of computer pornography and the offence shall be a misdemeanor. Child Pornography is also prohibited under the ‘Child Care and Protection Act’. In Sri Lanka, ‘The Penal Code’ de facto criminalizes child prohibition and has a penalty of two to ten years and may also be liable to fine. The most shocking scenario exists in Afghanistan. There is no specific law for the protection of children from pornography, whereas this serious crime is present there. This paper will be conducted through a qualitative research method that is, the primary sources will be laws, and secondary sources will be journal articles and newspapers. The conclusion that can be drawn is except Afghanistan all other South Asian countries have laws for controlling this crime but still have loopholes. India has the most amended provisions. Nepal has no provision for fine, and Bhutan does not mention any specific punishment. Bangladesh compared to these countries, has a good piece of law; however, it also has space to broaden the laws for controlling child pornography.

Keywords: child abuse, child pornography, life imprisonment, penal code, South Asian countries

Procedia PDF Downloads 205
1316 The Influence of Argumentation Strategy on Student’s Web-Based Argumentation in Different Scientific Concepts

Authors: Xinyue Jiao, Yu-Ren Lin

Abstract:

Argumentation is an essential aspect of scientific thinking which has been widely concerned in recent reform of science education. The purpose of the present studies was to explore the influences of two variables termed ‘the argumentation strategy’ and ‘the kind of science concept’ on student’s web-based argumentation. The first variable was divided into either monological (which refers to individual’s internal discourse and inner chain reasoning) or dialectical (which refers to dialogue interaction between/among people). The other one was also divided into either descriptive (i.e., macro-level concept, such as phenomenon can be observed and tested directly) or theoretical (i.e., micro-level concept which is abstract, and cannot be tested directly in nature). The present study applied the quasi-experimental design in which 138 7th grade students were invited and then assigned to either monological group (N=70) or dialectical group (N=68) randomly. An argumentation learning program called ‘the PWAL’ was developed to improve their scientific argumentation abilities, such as arguing from multiple perspectives and based on scientific evidence. There were two versions of PWAL created. For the individual version, students can propose argument only through knowledge recall and self-reflecting process. On the other hand, the students were allowed to construct arguments through peers’ communication in the collaborative version. The PWAL involved three descriptive science concept-based topics (unit 1, 3 and 5) and three theoretical concept-based topics (unit 2, 4 and 6). Three kinds of scaffoldings were embedded into the PWAL: a) argument template, which was used for constructing evidence-based argument; b) the model of the Toulmin’s TAP, which shows the structure and elements of a sound argument; c) the discussion block, which enabled the students to review what had been proposed during the argumentation. Both quantitative and qualitative data were collected and analyzed. An analytical framework for coding students’ arguments proposed in the PWAL was constructed. The results showed that the argumentation approach has a significant effect on argumentation only in theoretical topics (f(1, 136)=48.2, p < .001, η2=2.62). The post-hoc analysis showed the students in the collaborative group perform significantly better than the students in the individual group (mean difference=2.27). However, there is no significant difference between the two groups regarding their argumentation in descriptive topics. Secondly, the students made significant progress in the PWAL from the earlier descriptive or theoretical topic to the later one. The results enabled us to conclude that the PWAL was effective for students’ argumentation. And the students’ peers’ interaction was essential for students to argue scientifically especially for the theoretical topic. The follow-up qualitative analysis showed student tended to generate arguments through critical dialogue interactions in the theoretical topic which promoted them to use more critiques and to evaluate and co-construct each other’s arguments. More explanations regarding the students’ web-based argumentation and the suggestions for the development of web-based science learning were proposed in our discussions.

Keywords: argumentation, collaborative learning, scientific concepts, web-based learning

Procedia PDF Downloads 88
1315 Tailoring Quantum Oscillations of Excitonic Schrodinger’s Cats as Qubits

Authors: Amit Bhunia, Mohit Kumar Singh, Maryam Al Huwayz, Mohamed Henini, Shouvik Datta

Abstract:

We report [https://arxiv.org/abs/2107.13518] experimental detection and control of Schrodinger’s Cat like macroscopically large, quantum coherent state of a two-component Bose-Einstein condensate of spatially indirect electron-hole pairs or excitons using a resonant tunneling diode of III-V Semiconductors. This provides access to millions of excitons as qubits to allow efficient, fault-tolerant quantum computation. In this work, we measure phase-coherent periodic oscillations in photo-generated capacitance as a function of an applied voltage bias and light intensity over a macroscopically large area. Periodic presence and absence of splitting of excitonic peaks in the optical spectra measured by photocapacitance point towards tunneling induced variations in capacitive coupling between the quantum well and quantum dots. Observation of negative ‘quantum capacitance’ due to a screening of charge carriers by the quantum well indicates Coulomb correlations of interacting excitons in the plane of the sample. We also establish that coherent resonant tunneling in this well-dot heterostructure restricts the available momentum space of the charge carriers within this quantum well. Consequently, the electric polarization vector of the associated indirect excitons collective orients along the direction of applied bias and these excitons undergo Bose-Einstein condensation below ~100 K. Generation of interference beats in photocapacitance oscillation even with incoherent white light further confirm the presence of stable, long-range spatial correlation among these indirect excitons. We finally demonstrate collective Rabi oscillations of these macroscopically large, ‘multipartite’, two-level, coupled and uncoupled quantum states of excitonic condensate as qubits. Therefore, our study not only brings the physics and technology of Bose-Einstein condensation within the reaches of semiconductor chips but also opens up experimental investigations of the fundamentals of quantum physics using similar techniques. Operational temperatures of such two-component excitonic BEC can be raised further with a more densely packed, ordered array of QDs and/or using materials having larger excitonic binding energies. However, fabrications of single crystals of 0D-2D heterostructures using 2D materials (e.g. transition metal di-chalcogenides, oxides, perovskites etc.) having higher excitonic binding energies are still an open challenge for semiconductor optoelectronics. As of now, these 0D-2D heterostructures can already be scaled up for mass production of miniaturized, portable quantum optoelectronic devices using the existing III-V and/or Nitride based semiconductor fabrication technologies.

Keywords: exciton, Bose-Einstein condensation, quantum computation, heterostructures, semiconductor Physics, quantum fluids, Schrodinger's Cat

Procedia PDF Downloads 170
1314 Investigating the Urban Heat Island Phenomenon in A Desert City Aiming at Sustainable Buildings

Authors: Afifa Mohammed, Gloria Pignatta, Mattheos Santamouris, Evangelia Topriska

Abstract:

Climate change is one of the global challenges that is exacerbated by the rapid growth of urbanizations. Urban Heat Island (UHI) phenomenon can be considered as an effect of the urbanization and it is responsible together with the Climate change of the overheating of urban cities and downtowns. The purpose of this paper is to quantify and perform analysis of UHI Intensity in Dubai, United Arab Emirates (UAE), through checking the relationship between the UHI and different meteorological parameters (e.g., temperature, winds speed, winds direction). Climate data were collected from three meteorological stations in Dubai (e.g., Dubai Airport - Station 1, Al-Maktoum Airport - Station 2 and Saih Al-Salem - Station 3) for a period of five years (e.g., 2014 – 2018) based upon hourly rates, and following clustering technique as one of the methodology tools of measurements. The collected data of each station were divided into six clusters upon the winds directions, either from the seaside or from the desert side, or from the coastal side which is in between both aforementioned winds sources, to investigate the relationship between temperature degrees and winds speed values through UHI measurements for Dubai Airport - Station 1 compared with the same of Al-Maktoum Airport - Station 2. In this case, the UHI value is determined by the temperature difference of both stations, where Station 1 is considered as located in an urban area and Station 2 is considered as located in a suburban area. The same UHI calculations has been applied for Al-Maktoum Airport - Station 2 and Saih Salem - Station 3 where Station 2 is considered as located in an urban area and Station 3 is considered as located in a suburban area. The performed analysis aims to investigate the relation between the two environmental parameters (e.g., Temperature and Winds Speed) and the Urban Heat Island (UHI) intensity when the wind comes from the seaside, from the desert, and the remaining directions. The analysis shows that the correlation between the temperatures with both UHI intensity (e.g., temperature difference between Dubai Airport - Station 1 and Saih Al-Salem - Station 3 and between Al-Maktoum Airport - Station 2 and Saih Al-Salem - Station 3 (through station 1 & 2) is strong and has a negative relationship when the wind is coming from the seaside comparing between the two stations 1 and 2, while the relationship is almost zero (no relation) when the wind is coming from the desert side. The relation is independent between the two parameters, e.g., temperature and UHI, on Station 2, during the same procedures, the correlation between the urban heat island UHI phenomenon and wind speed is weak for both stations when wind direction is coming from the seaside comparing the station 1 and 2, while it was found that there’s no relationship between urban heat island phenomenon and wind speed when wind direction is coming from desert side. The conclusion could be summarized saying that the wind coming from the seaside or from the desert side have a different effect on UHI, which is strongly affected by meteorological parameters. The output of this study will enable more determination of UHI phenomenon under desert climate, which will help to inform about the UHI phenomenon and intensity and extract recommendations in two main categories such as planning of new cities and designing of buildings.

Keywords: meteorological data, subtropical desert climate, urban climate, urban heat island (UHI)

Procedia PDF Downloads 125
1313 Qualitative Characterization of Proteins in Common and Quality Protein Maize Corn by Mass Spectrometry

Authors: Benito Minjarez, Jesse Haramati, Yury Rodriguez-Yanez, Florencio Recendiz-Hurtado, Juan-Pedro Luna-Arias, Salvador Mena-Munguia

Abstract:

During the last decades, the world has experienced a rapid industrialization and an expanding economy favoring a demographic boom. As a consequence, countries around the world have focused on developing new strategies related to the production of different farm products in order to meet future demands. Consequently, different strategies have been developed seeking to improve the major food products for both humans and livestock. Corn, after wheat and rice, is the third most important crop globally and is the primary food source for both humans and livestock in many regions around the globe. In addition, maize (Zea mays) is an important source of protein accounting for up to 60% of the daily human protein supply. Generally, many of the cereal grains have proteins with relatively low nutritional value, when they are compared with proteins from meat. In the case of corn, much of the protein is found in the endosperm (75 to 85%) and is deficient in two essential amino acids, lysine, and tryptophan. This deficiency results in an imbalance of amino acids and low protein content; normal maize varieties have less than half of the recommended amino acids for human nutrition. In addition, studies have shown that this deficiency has been associated with symptoms of growth impairment, anemia, hypoproteinemia, and fatty liver. Due to the fact that most of the presently available maize varieties do not contain the quality and quantity of proteins necessary for a balanced diet, different countries have focused on the research of quality protein maize (QPM). Researchers have characterized QPM noting that these varieties may contain between 70 to 100% more residues of the amino acids essential for animal and human nutrition, lysine, and tryptophan, than common corn. Several countries in Africa, Latin America, as well as China, have incorporated QPM in their agricultural development plan. Large parts of these countries have chosen a specific QPM variety based on their local needs and climate. Reviews have described the breeding methods of maize and have revealed the lack of studies on genetic and proteomic diversity of proteins in QPM varieties, and their genetic relationships with normal maize varieties. Therefore, molecular marker identification using tools such as mass spectrometry may accelerate the selection of plants that carry the desired proteins with high lysine and tryptophan concentration. To date, QPM maize lines have played a very important role in alleviating the malnutrition, and better characterization of these lines would provide a valuable nutritional enhancement for use in the resource-poor regions of the world. Thus, the objectives of this study were to identify proteins in QPM maize in comparison with a common maize line as a control.

Keywords: corn, mass spectrometry, QPM, tryptophan

Procedia PDF Downloads 270
1312 The Influence of Thermal Radiation and Chemical Reaction on MHD Micropolar Fluid in The Presence of Heat Generation/Absorption

Authors: Binyam Teferi

Abstract:

Numerical and theoretical analysis of mixed convection flow of magneto- hydrodynamics micropolar fluid with stretching capillary in the presence of thermal radiation, chemical reaction, viscous dissipation, and heat generation/ absorption have been studied. The non-linear partial differential equations of momentum, angular velocity, energy, and concentration are converted into ordinary differential equations using similarity transformations which can be solved numerically. The dimensionless governing equations are solved by using Runge Kutta fourth and fifth order along with the shooting method. The effect of physical parameters viz., micropolar parameter, unsteadiness parameter, thermal buoyancy parameter, concentration buoyancy parameter, Hartmann number, spin gradient viscosity parameter, microinertial density parameter, thermal radiation parameter, Prandtl number, Eckert number, heat generation or absorption parameter, Schmidt number and chemical reaction parameter on flow variables viz., the velocity of the micropolar fluid, microrotation, temperature, and concentration has been analyzed and discussed graphically. MATLAB code is used to analyze numerical and theoretical facts. From the simulation study, it can be concluded that an increment of micropolar parameter, Hartmann number, unsteadiness parameter, thermal and concentration buoyancy parameter results in decrement of velocity flow of micropolar fluid; microrotation of micropolar fluid decreases with an increment of micropolar parameter, unsteadiness parameter, microinertial density parameter, and spin gradient viscosity parameter; temperature profile of micropolar fluid decreases with an increment of thermal radiation parameter, Prandtl number, micropolar parameter, unsteadiness parameter, heat absorption, and viscous dissipation parameter; concentration of micropolar fluid decreases as unsteadiness parameter, Schmidt number and chemical reaction parameter increases. Furthermore, computational values of local skin friction coefficient, local wall coupled coefficient, local Nusselt number, and local Sherwood number for different values of parameters have been investigated. In this paper, the following important results are obtained; An increment of micropolar parameter and Hartmann number results in a decrement of velocity flow of micropolar fluid. Microrotation decreases with an increment of the microinertial density parameter. Temperature decreases with an increasing value of the thermal radiation parameter and viscous dissipation parameter. Concentration decreases as the values of Schmidt number and chemical reaction parameter increases. The coefficient of local skin friction is enhanced with an increase in values of both the unsteadiness parameter and micropolar parameter. Increasing values of unsteadiness parameter and micropolar parameter results in an increment of the local couple stress. An increment of values of unsteadiness parameter and thermal radiation parameter results in an increment of the rate of heat transfer. As the values of Schmidt number and unsteadiness parameter increases, Sherwood number decreases.

Keywords: thermal radiation, chemical reaction, viscous dissipation, heat absorption/ generation, similarity transformation

Procedia PDF Downloads 108