Search results for: advanced networking and storage devices
1956 An Extensible Software Infrastructure for Computer Aided Custom Monitoring of Patients in Smart Homes
Authors: Ritwik Dutta, Marylin Wolf
Abstract:
This paper describes the trade-offs and the design from scratch of a self-contained, easy-to-use health dashboard software system that provides customizable data tracking for patients in smart homes. The system is made up of different software modules and comprises a front-end and a back-end component. Built with HTML, CSS, and JavaScript, the front-end allows adding users, logging into the system, selecting metrics, and specifying health goals. The back-end consists of a NoSQL Mongo database, a Python script, and a SimpleHTTPServer written in Python. The database stores user profiles and health data in JSON format. The Python script makes use of the PyMongo driver library to query the database and displays formatted data as a daily snapshot of user health metrics against target goals. Any number of standard and custom metrics can be added to the system, and corresponding health data can be fed automatically, via sensor APIs or manually, as text or picture data files. A real-time METAR request API permits correlating weather data with patient health, and an advanced query system is implemented to allow trend analysis of selected health metrics over custom time intervals. Available on the GitHub repository system, the project is free to use for academic purposes of learning and experimenting, or practical purposes by building on it.Keywords: flask, Java, JavaScript, health monitoring, long-term care, Mongo, Python, smart home, software engineering, webserver
Procedia PDF Downloads 3901955 Improving Traditional Methods of Handling Fish from Integrated Pond Culture Systems in Monai Village, New Bussa, Nigeria
Authors: Olokor O. Julius, Ngwu E. Onyebuchi, Ajani K. Emmanuel, Omitoyin O. Bamidele, Olokor O. Linda, Akomas Stella
Abstract:
The study assessed the quality changes of Clarias gariepenus obtained from integrated culture systems (rice, poultry and fish) which were displayed at 31-33oC average daily temperature on the traditional market table used by local fish farmers to sell fish harvested from their ponds and those on an improved table designed for this study. Unlike the conventional table, the improved table was screened against flies and indiscriminate touch by customers. The fishes were displayed on both tables for 9 hours and quality attributes were monitored hourly by trained panelists. For C. gariepinus, the gills, and intestine recorded faster deterioration starting from the fourth and fifth hours while those on the improved table were prolonged by one hour. Scores for skin brightness and texture did not indicate quality deterioration throughout the display period. However, at the end of the storage time, samples on the improved table recorded 1.5 x 104 cfu/g while samples in unscreened table recorded 3.7 x 10 7 cfu/g. The study shows how simple modifications of a traditional practice can help extend keeping qualities of farmed fish, reduce health hazards in local communities where there is no electricity to preserve fish in whatever form despite a boom in aquaculture. Monai community has a fish farm estate of over 200 small holder farmers with annual output capacity of over $10 million dollars. The simple improvement made to farmers practice in this study is to ensure Community hygiene and boost income of peasant fish farmers by improving the market quality of their products.Keywords: fish spoilage, improved handling, income generation, retail table
Procedia PDF Downloads 4481954 Interpretation and Prediction of Geotechnical Soil Parameters Using Ensemble Machine Learning
Authors: Goudjil kamel, Boukhatem Ghania, Jlailia Djihene
Abstract:
This paper delves into the development of a sophisticated desktop application designed to calculate soil bearing capacity and predict limit pressure. Drawing from an extensive review of existing methodologies, the study meticulously examines various approaches employed in soil bearing capacity calculations, elucidating their theoretical foundations and practical applications. Furthermore, the study explores the burgeoning intersection of artificial intelligence (AI) and geotechnical engineering, underscoring the transformative potential of AI- driven solutions in enhancing predictive accuracy and efficiency.Central to the research is the utilization of cutting-edge machine learning techniques, including Artificial Neural Networks (ANN), XGBoost, and Random Forest, for predictive modeling. Through comprehensive experimentation and rigorous analysis, the efficacy and performance of each method are rigorously evaluated, with XGBoost emerging as the preeminent algorithm, showcasing superior predictive capabilities compared to its counterparts. The study culminates in a nuanced understanding of the intricate dynamics at play in geotechnical analysis, offering valuable insights into optimizing soil bearing capacity calculations and limit pressure predictions. By harnessing the power of advanced computational techniques and AI-driven algorithms, the paper presents a paradigm shift in the realm of geotechnical engineering, promising enhanced precision and reliability in civil engineering projects.Keywords: limit pressure of soil, xgboost, random forest, bearing capacity
Procedia PDF Downloads 221953 CFD Simulation Approach for Developing New Powder Dispensing Device
Authors: Revanth Rallapalli
Abstract:
Manually dispensing powders can be difficult as it requires gradually pouring and checking the amount on the scale to be dispensed. Current systems are manual and non-continuous in nature and are user-dependent and difficult to control powder dispensation. Recurrent dosing of powdered medicines in precise amounts quickly and accurately has been an all-time challenge. Various new powder dispensing mechanisms are being designed to overcome these challenges. A battery-operated screw conveyor mechanism is being innovated to overcome the above problems faced. These inventions are numerically evaluated at the concept development level by employing Computational Fluid Dynamics (CFD) of gas-solids multiphase flow systems. CFD has been very helpful in the development of such devices saving time and money by reducing the number of prototypes and testing. This paper describes a simulation of powder dispensation from the trocar’s end by considering the powder as secondary flow in the air, is simulated by using the technique called Dense Discrete Phase Model incorporated with Kinetic Theory of Granular Flow (DDPM-KTGF). By considering the volume fraction of powder as 50%, the transportation of powder from the inlet side to the trocar’s end side is done by rotation of the screw conveyor. The performance is calculated for a 1-sec time frame in an unsteady computation manner. This methodology will help designers in developing design concepts to improve the dispensation and the effective area within a quick turnaround time frame.Keywords: multiphase flow, screw conveyor, transient, dense discrete phase model (DDPM), kinetic theory of granular flow (KTGF)
Procedia PDF Downloads 1461952 TimeTune: Personalized Study Plans Generation with Google Calendar Integration
Authors: Chevon Fernando, Banuka Athuraliya
Abstract:
The purpose of this research is to provide a solution to the students’ time management, which usually becomes an issue because students must study and manage their personal commitments. "TimeTune," an AI-based study planner that provides an opportunity to maneuver study timeframes by incorporating modern machine learning algorithms with calendar applications, is unveiled as the ideal solution. The research is focused on the development of LSTM models that connect to the Google Calendar API in the process of developing learning paths that would be fit for a unique student's daily life experience and study history. A key finding of this research is the success in building the LSTM model to predict optimal study times, which, integrating with the real-time data of Google Calendar, will generate the timetables automatically in a personalized and customized manner. The methodology encompasses Agile development practices and Object-Oriented Analysis and Design (OOAD) principles, focusing on user-centric design and iterative development. By adopting this method, students can significantly reduce the tension associated with poor study habits and time management. In conclusion, "TimeTune" displays an advanced step in personalized education technology. The fact that its application of ML algorithms and calendar integration is quite innovative is slowly and steadily revolutionizing the lives of students. The excellence of maintaining a balanced academic and personal life is stress reduction, which the applications promise to provide for students when it comes to managing their studies.Keywords: personalized learning, study planner, time management, calendar integration
Procedia PDF Downloads 491951 Size-Controlled Synthesis of Bismuth Nanoparticles by Temperature Assisted Pulsed Laser Deposition
Authors: Ranjit A. Patil, Yung Liou, Yuan-Ron Ma
Abstract:
It has been observed that when the size of metals such as, Au, Zn, Ag, Cu, Te, and metal oxides is reduced to several nano-meters, it starts to show further interesting properties. These new properties boost the use of nano-structures to produce attractive functional materials or used as promising building blocks in electronic devices. Present work describes the synthesis of bismuth (Bi) nanoparticles (NP’s) having uniform morphology, high crystallinity, and single phase purity by the temperature assisted pulsed laser deposition (TAPLD). Pulsed Laser deposition (PLD) technique is one of the promising methods to synthesize nano-structures. It can provide the stable nucleation sites in orders of magnitudes higher than for MBE and sputtering deposition. The desired size of purely metallic Bi NP’s of can be easily controlled by adjusting the temperature of the substrate varying from 1000 C to 250 0C. When the temperatures of the substrate raised step wise the average size of Bi NP’s appeared to be increased by maintaining the uniform distribution of NP’s on the Si surfaces. The diameter range of NP’s is ~33-84 nm shows size distribution constrained in the limited range. The EDS results show that the 0D Bi NP’s synthesized at high temperature (250 0C) at a high vacuum still remained in a metallic phase. Moreover, XRD, TEM and SAED results showed that these Bi NP’s are hexagonal in crystalline in a space group R -3 m and no traces of bismuth oxide, confirming that Bi NP’s synthesized at wide range of temperatures persisted of the pure Bi-metallic phase.Keywords: metal nano particles, bismuth, pulsed laser deposition (PLD), nano particles, temperature assisted growth
Procedia PDF Downloads 3481950 Oxidative Stability of Methyl and Ethyl Microalgae Biodiesel with Synthetic Antioxidants
Authors: Willian L. G. Silva, Fabio R. M. Batista, Matthieu Tubino
Abstract:
Microalgae can be considered a potential source of oil for biodiesel synthesis since this microorganism can grow rapidly in either fresh or salty water, not competing with food production. There are several favorable conditions in Brazil for this type of culture due to the country’s great amount of water. Another very positive aspect of this type of culture is its ability to fix atmospheric CO2, contributing to the reduction of greenhouse gases and their effects on global warming. Despite this biodiesel environmental advantages it degrades resulting in changes in its physical and chemical properties. In this work, the methyl and ethyl microalgae biodiesel oxidative stability was studied in the absence and presence of a synthetic antioxidant. The synthetic antioxidants used were propyl gallate (PG) and tert-butylhydroquinone (TBHQ), at a 0,12% (w/w) concentration. The biodiesel mixture was kept in a sealed glass flask, sheltered from light, and at room temperature (about 25 ºC) for 180 days. During this period, aliquots from this biodiesel were subjected to induced degradation by the Rancimat method, which determines an important quality parameter, provided in the current methods, and is used to monitor the degradation processes that occur in the biodiesel over time. The induction period (IP) expresses the biodiesel oxidative stability. It was stablished that the minimum accepted IP value for biodiesel is 8 hours. The results show that ethylic biodiesel increased its IP value from 7,6 hours to 31 hours when using PG, and to 67 hours when using TBHQ, exceeding the minimum accepted IP value. When the antioxidants were added to the methylic biodiesel samples, the IP was raised to 28 hours when using PG, and to 62 hours when using TBHQ. These values were maintained throughout the entire period of study (180 days). On the other hand, the biodiesel samples without additives maintained an IP above the allowed value for only 30 days. Therefore, in order to preserve microalgae biodiesel for longer periods of time, it is necessary to add antioxidants to both derivatives, i.e., the ethylic and methylic.Keywords: biodiesel, microalgae, oxidative stability, storage, synthetic antioxidants
Procedia PDF Downloads 4621949 Photocatalytic Degradation of Nd₂O₃@SiO₂ Core-Shell Nanocomposites Under UV Irradiation Against Methylene Blue and Rhodamine B Dyes
Abstract:
Over the past years, industrial dyes have emerged as a significant threat to aquatic life, extensively detected in drinking water and groundwater, thus contributing to water pollution due to their improper and excessive use. To address this issue, the utilization of core-shell structures has been prioritized as it demonstrates remarkable efficiency in utilizing light energy for catalytic reactions and exhibiting excellent photocatalytic activity despite the availability of various photocatalysts. This work focuses on the photocatalytic degradation of Nd₂O₃@SiO₂ CSNs under UV light irradiation against MB and RhB dyes. Different characterization techniques, including XRD, FTIR, and TEM analyses, were employed to reveal the material's structure, functional groups, and morphological features. VSM and XPS analyses confirmed the soft, paramagnetic nature and chemical states with respective atomic percentages, respectively. Optical band gaps, determined using the Tauc plot model, indicated 4.24 eV and 4.13 eV for Nd₂O₃ NPs and Nd₂O₃@SiO₂ CSNs, respectively. The reduced bandgap energy of Nd₂O₃@SiO₂ CSNs enhances light absorption in the UV range, potentially leading to improved photocatalytic efficiency. The Nd₂O₃@SiO₂ CSNs exhibited greater degradation efficiency, reaching 95% and 96% against MB and RhB dyes, while Nd₂O₃ NPs showed 90% and 92%, respectively. The enhanced efficiency of Nd₂O₃@SiO₂ CSNs can be attributed to the larger specific surface area provided by the SiO₂ shell, as confirmed by surface area analysis using the BET surface area analyzer through N₂ adsorption-desorption.Keywords: core shell nanocomposites, rare earth oxides, photocatalysis, advanced oxidation process
Procedia PDF Downloads 701948 The Pricing-Out Phenomenon in the U.S. Housing Market
Authors: Francesco Berald, Yunhui Zhao
Abstract:
The COVID-19 pandemic further extended the multi-year housing boom in advanced economies and emerging markets alike against massive monetary easing during the pandemic. In this paper, we analyze the pricing-out phenomenon in the U.S. residential housing market due to higher house prices associated with monetary easing. We first set up a stylized general equilibrium model and show that although monetary easing decreases the mortgage payment burden, it would raise house prices and lower housing affordability for first-time homebuyers (through the initial housing wealth channel and the liquidity constraint channel that increases repeat buyers’ housing demand), and increase housing wealth inequality between first-time and repeat homebuyers. We then use the U.S. household-level data to quantify the effect of the house price change on housing affordability relative to that of the interest rate change. We find evidence of the pricing-out effect for all homebuyers; moreover, we find that the pricing-out effect is stronger for first-time homebuyers than for repeat homebuyers. The paper highlights the importance of accounting for general equilibrium effects and distributional implications of monetary policy while assessing housing affordability. It also calls for complementing monetary easing with well-targeted policy measures that can boost housing affordability, particularly for first-time and lower-income households. Such measures are also needed during aggressive monetary tightening, given that the fall in house prices may be insufficient or too slow to fully offset the immediate adverse impact of higher rates on housing affordability.Keywords: pricing-out, U.S. housing market, housing affordability, distributional effects, monetary policy
Procedia PDF Downloads 341947 Low-Surface Roughness and High Optical Quality CdS Thin Film Grown by Modified Chemical Surface Deposition Method
Authors: A. Elsayed, M. H. Dewaidar, M. Ghali
Abstract:
We report on deposition of smooth, pinhole-free, low-surface roughness ( < 4nm) and high optical quality cadmium sulfide (CdS) thin films on glass substrates using our new method based on chemical surface deposition principle. In this method, cadmium acetate and thiourea are used as reactants under special growth conditions for deposition of CdS films. X-ray diffraction (XRD) measurements were used to examine the crystal structure properties of the deposited CdS films. In addition, UV-vis transmittance and low-temperature (4K) photoluminescence (PL) measurements were performed for quantifying optical properties of the deposited films. Interestingly, we found that XRD pattern of the deposited films has dramatically changed when the growth temperature was raised during the reaction. Namely, the XRD measurements reveal a structural change of CdS film from Cubic to Hexagonal phase upon increase in the growth temperature from 75 °C to 200 °C. Furthermore, the deposited films show high optical quality as confirmed from observation of both sharp edge in the transmittance spectra and strong PL intensity at room temperature. Also, we found a strong effect of the growth conditions on the optical band gap of the deposited films; where remarkable red-shift in the absorption edge with temperature is clearly seen in both transmission and PL spectra. Such tuning of both optical band gap and crystal structure of the deposited CdS films; can be utilized for tuning the electronic bands alignments between CdS and other light harvesting materials, like CuInGaSe or CdTe, for potential improvement in the efficiency of all-solution processed solar cells devices based on these heterostructures.Keywords: thin film, CdS, new method, optical properties
Procedia PDF Downloads 2601946 Physical-Mechanical Characteristics of Monocrystalline Si1-xGex(X 0,02) Solid Solutions
Authors: I. Kurashvili, A. Sichinava, G. Bokuchava, G. Darsavelidze
Abstract:
Si-Ge solid solutions (bulk poly- and monocrystalline samples, thin films) are characterized by high perspectives for application in semiconductor devices, in particular, optoelectronics and microelectronics. In this light complex studying of structural state of the defects and structural-sensitive physical properties of Si-Ge solid solutions depending on the contents of Si and Ge components is very important. Present work deals with the investigations of microstructure, electrophysical characteristics, microhardness, internal friction and shear modulus of Si1-xGex(x≤0,02) bulk monocrystals conducted at a room temperatures. Si-Ge bulk crystals were obtained by Czochralski method in [111] crystallographic direction. Investigated monocrystalline Si-Ge samples are characterized by p-type conductivity and carriers concentration 5.1014-1.1015cm-3, dislocation density 5.103-1.104cm-2, microhardness according to Vickers method 900-1200 Kg/mm2. Investigate samples are characterized with 0,5x0,5x(10-15) mm3 sizes, oriented along [111] direction at torsion oscillations ≈1Hz, multistage changing of internal friction and shear modulus has been revealed in an interval of strain amplitude of 10-5-5.10-3. Critical values of strain amplitude have been determined at which hysteretic changes of inelastic characteristics and microplasticity are observed. The critical strain amplitude and elasticity limit values are also determined. Tendency to decrease of dynamic mechanical characteristics is shown with increasing Ge content in Si-Ge solid solutions. Observed changes are discussed from the point of view of interaction of various dislocations with point defects and their complexes in a real structure of Si-Ge solid solutions.Keywords: Microhardness, internal friction, shear modulus, Monocrystalline
Procedia PDF Downloads 3521945 Predictive Analytics Algorithms: Mitigating Elementary School Drop Out Rates
Authors: Bongs Lainjo
Abstract:
Educational institutions and authorities that are mandated to run education systems in various countries need to implement a curriculum that considers the possibility and existence of elementary school dropouts. This research focuses on elementary school dropout rates and the ability to replicate various predictive models carried out globally on selected Elementary Schools. The study was carried out by comparing the classical case studies in Africa, North America, South America, Asia and Europe. Some of the reasons put forward for children dropping out include the notion of being successful in life without necessarily going through the education process. Such mentality is coupled with a tough curriculum that does not take care of all students. The system has completely led to poor school attendance - truancy which continuously leads to dropouts. In this study, the focus is on developing a model that can systematically be implemented by school administrations to prevent possible dropout scenarios. At the elementary level, especially the lower grades, a child's perception of education can be easily changed so that they focus on the better future that their parents desire. To deal effectively with the elementary school dropout problem, strategies that are put in place need to be studied and predictive models are installed in every educational system with a view to helping prevent an imminent school dropout just before it happens. In a competency-based curriculum that most advanced nations are trying to implement, the education systems have wholesome ideas of learning that reduce the rate of dropout.Keywords: elementary school, predictive models, machine learning, risk factors, data mining, classifiers, dropout rates, education system, competency-based curriculum
Procedia PDF Downloads 1751944 Uniqueness of Fingerprint Biometrics to Human Dynasty: A Review
Authors: Siddharatha Sharma
Abstract:
With the advent of technology and machines, the role of biometrics in society is taking an important place for secured living. Security issues are the major concern in today’s world and continue to grow in intensity and complexity. Biometrics based recognition, which involves precise measurement of the characteristics of living beings, is not a new method. Fingerprints are being used for several years by law enforcement and forensic agencies to identify the culprits and apprehend them. Biometrics is based on four basic principles i.e. (i) uniqueness, (ii) accuracy, (iii) permanency and (iv) peculiarity. In today’s world fingerprints are the most popular and unique biometrics method claiming a social benefit in the government sponsored programs. A remarkable example of the same is UIDAI (Unique Identification Authority of India) in India. In case of fingerprint biometrics the matching accuracy is very high. It has been observed empirically that even the identical twins also do not have similar prints. With the passage of time there has been an immense progress in the techniques of sensing computational speed, operating environment and the storage capabilities and it has become more user convenient. Only a small fraction of the population may be unsuitable for automatic identification because of genetic factors, aging, environmental or occupational reasons for example workers who have cuts and bruises on their hands which keep fingerprints changing. Fingerprints are limited to human beings only because of the presence of volar skin with corrugated ridges which are unique to this species. Fingerprint biometrics has proved to be a high level authentication system for identification of the human beings. Though it has limitations, for example it may be inefficient and ineffective if ridges of finger(s) or palm are moist authentication becomes difficult. This paper would focus on uniqueness of fingerprints to the human beings in comparison to other living beings and review the advancement in emerging technologies and their limitations.Keywords: fingerprinting, biometrics, human beings, authentication
Procedia PDF Downloads 3251943 Human Immune Response to Surgery: The Surrogate Prediction of Postoperative Outcomes
Authors: Husham Bayazed
Abstract:
Immune responses following surgical trauma play a pivotal role in predicting postoperative outcomes from healing and recovery to postoperative complications. Postoperative complications, including infections and protracted recovery, occur in a significant number of about 300 million surgeries performed annually worldwide. Complications cause personal suffering along with a significant economic burden on the healthcare system in any community. The accurate prediction of postoperative complications and patient-targeted interventions for their prevention remain major clinical provocations. Recent Findings: Recent studies are focusing on immune dysregulation mechanisms that occur in response to surgical trauma as a key determinant of postoperative complications. Antecedent studies mainly were plunging into the detection of inflammatory plasma markers, which facilitate in providing important clues regarding their pathogenesis. However, recent Single-cell technologies, such as mass cytometry or single-cell RNA sequencing, have markedly enhanced our ability to understand the immunological basis of postoperative immunological trauma complications and to identify their prognostic biological signatures. Summary: The advent of proteomic technologies has significantly advanced our ability to predict the risk of postoperative complications. Multiomic modeling of patients' immune states holds promise for the discovery of preoperative predictive biomarkers and providing patients and surgeons with information to improve surgical outcomes. However, more studies are required to accurately predict the risk of postoperative complications in individual patients.Keywords: immune dysregulation, postoperative complications, surgical trauma, flow cytometry
Procedia PDF Downloads 861942 Influences of Separation of the Boundary Layer in the Reservoir Pressure in the Shock Tube
Authors: Bruno Coelho Lima, Joao F.A. Martos, Paulo G. P. Toro, Israel S. Rego
Abstract:
The shock tube is a ground-facility widely used in aerospace and aeronautics science and technology for studies on gas dynamic and chemical-physical processes in gases at high-temperature, explosions and dynamic calibration of pressure sensors. A shock tube in its simplest form is comprised of two separate tubes of equal cross-section by a diaphragm. The diaphragm function is to separate the two reservoirs at different pressures. The reservoir containing high pressure is called the Driver, the low pressure reservoir is called Driven. When the diaphragm is broken by pressure difference, a normal shock wave and non-stationary (named Incident Shock Wave) will be formed in the same place of diaphragm and will get around toward the closed end of Driven. When this shock wave reaches the closer end of the Driven section will be completely reflected. Now, the shock wave will interact with the boundary layer that was created by the induced flow by incident shock wave passage. The interaction between boundary layer and shock wave force the separation of the boundary layer. The aim of this paper is to make an analysis of influences of separation of the boundary layer in the reservoir pressure in the shock tube. A comparison among CDF (Computational Fluids Dynamics), experiments test and analytical analysis were performed. For the analytical analysis, some routines in Python was created, in the numerical simulations (Computational Fluids Dynamics) was used the Ansys Fluent, and the experimental tests were used T1 shock tube located in IEAv (Institute of Advanced Studies).Keywords: boundary layer separation, moving shock wave, shock tube, transient simulation
Procedia PDF Downloads 3151941 Upconversion Nanomaterials for Applications in Life Sciences and Medicine
Authors: Yong Zhang
Abstract:
Light has proven to be useful in a wide range of biomedical applications such as fluorescence imaging, photoacoustic imaging, optogenetics, photodynamic therapy, photothermal therapy, and light controlled drug/gene delivery. Taking photodynamic therapy (PDT) as an example, PDT has been proven clinically effective in early lung cancer, bladder cancer, head, and neck cancer and is the primary treatment for skin cancer as well. However, clinical use of PDT is severely constrained by the low penetration depth of visible light through thick tissue, limiting its use to target regions only a few millimeters deep. One way to enhance the range is to use invisible near-infrared (NIR) light within the optical window (700–1100nm) for biological tissues, extending the depth up to 1cm with no observable damage to the intervening tissue. We have demonstrated use of NIR-to-visible upconversion fluorescent nanoparticles (UCNPs), emitting visible fluorescence when excited by a NIR light at 980nm, as a nanotransducer for PDT to convert deep tissue-penetrating NIR light to visible light suitable for activating photosensitizers. The unique optical properties of UCNPs enable the upconversion wavelength to be tuned and matched to the activation absorption wavelength of the photosensitizer. At depths beyond 1cm, however, tissue remains inaccessible to light even within the NIR window, and this critical depth limitation renders existing phototherapy ineffective against most deep-seated cancers. We have demonstrated some new treatment modalities for deep-seated cancers based on UCNP hydrogel implants and miniaturized, wirelessly powered optoelectronic devices for light delivery to deep tissues.Keywords: upconversion, fluorescent, nanoparticle, bioimaging, photodynamic therapy
Procedia PDF Downloads 1611940 Quantifying Meaning in Biological Systems
Authors: Richard L. Summers
Abstract:
The advanced computational analysis of biological systems is becoming increasingly dependent upon an understanding of the information-theoretic structure of the materials, energy and interactive processes that comprise those systems. The stability and survival of these living systems are fundamentally contingent upon their ability to acquire and process the meaning of information concerning the physical state of its biological continuum (biocontinuum). The drive for adaptive system reconciliation of a divergence from steady-state within this biocontinuum can be described by an information metric-based formulation of the process for actionable knowledge acquisition that incorporates the axiomatic inference of Kullback-Leibler information minimization driven by survival replicator dynamics. If the mathematical expression of this process is the Lagrangian integrand for any change within the biocontinuum then it can also be considered as an action functional for the living system. In the direct method of Lyapunov, such a summarizing mathematical formulation of global system behavior based on the driving forces of energy currents and constraints within the system can serve as a platform for the analysis of stability. As the system evolves in time in response to biocontinuum perturbations, the summarizing function then conveys information about its overall stability. This stability information portends survival and therefore has absolute existential meaning for the living system. The first derivative of the Lyapunov energy information function will have a negative trajectory toward a system's steady state if the driving force is dissipating. By contrast, system instability leading to system dissolution will have a positive trajectory. The direction and magnitude of the vector for the trajectory then serves as a quantifiable signature of the meaning associated with the living system’s stability information, homeostasis and survival potential.Keywords: meaning, information, Lyapunov, living systems
Procedia PDF Downloads 1311939 Factors That Contribute to Noise Induced Hearing Loss Amongst Employees at the Platinum Mine in Limpopo Province, South Africa
Authors: Livhuwani Muthelo, R. N. Malema, T. M. Mothiba
Abstract:
Long term exposure to excessive noise in the mining industry increases the risk of noise induced hearing loss, with consequences for employee’s health, productivity and the overall quality of life. Objective: The objective of this study was to investigate the factors that contribute to Noise Induced Hearing Loss amongst employees at the Platinum mine in the Limpopo Province, South Africa. Study method: A qualitative, phenomenological, exploratory, descriptive, contextual design was applied in order to explore and describe the contributory factors. Purposive non-probability sampling was used to select 10 male employees who were diagnosed with NIHL in the year 2014 in four mine shafts, and 10 managers who were involved in a Hearing Conservation Programme. The data were collected using semi-structured one-on-one interviews. A qualitative data analysis of Tesch’s approach was followed. Results: The following themes emerged: Experiences and challenges faced by employees in the work environment, hearing protective device factors and management and leadership factors. Hearing loss was caused by partial application of guidelines, policies, and procedures from the Department of Minerals and Energy. Conclusion: The study results indicate that although there are guidelines, policies, and procedures available, failure in the implementation of one element will affect the development and maintenance of employees hearing mechanism. It is recommended that the mine management should apply the guidelines, policies, and procedures and promptly repair the broken hearing protective devices.Keywords: employees, factors, noise induced hearing loss, noise exposure
Procedia PDF Downloads 1271938 Early Evaluation of Long-Span Suspension Bridges Using Smartphone Accelerometers
Authors: Ekin Ozer, Maria Q. Feng, Rupa Purasinghe
Abstract:
Structural deterioration of bridge systems possesses an ongoing threat to the transportation networks. Besides, landmark bridges’ integrity and safety are more than sole functionality, since they provide a strong presence for the society and nations. Therefore, an innovative and sustainable method to inspect landmark bridges is essential to ensure their resiliency in the long run. In this paper, a recently introduced concept, smartphone-based modal frequency estimation is addressed, and this paper targets to authenticate the fidelity of smartphone-based vibration measurements gathered from three landmark suspension bridges. Firstly, smartphones located at the bridge mid-span are adopted as portable and standalone vibration measurement devices. Then, their embedded accelerometers are utilized to gather vibration response under operational loads, and eventually frequency domain characteristics are deduced. The preliminary analysis results are compared with the reference publications and high-quality monitoring data to validate the usability of smartphones on long-span landmark suspension bridges. If the technical challenges such as high period of vibration, low amplitude excitation, embedded smartphone sensor features, sampling, and citizen engagement are tackled, smartphones can provide a novel and cost-free crowdsourcing tool for maintenance of these landmark structures. This study presents the early phase findings from three signature structures located in the United States.Keywords: smart and mobile sensing, structural health monitoring, suspension bridges, vibration analysis
Procedia PDF Downloads 2921937 Measuring Impacts of Agroforestry on Soil Erosion with Field Devices: Quantifying Potential for Water Infiltration, Soil Conservation, and Payments for Ecosystems Services Schemes
Authors: Arthur Rouanet, Marina Gavaldao
Abstract:
Throughout the second half of the 20th Century, estimates indicate that soil losses due to erosion have impacted one-third of worldwide arable lands. As such, these losses are amongst the largest threats to agriculture sustainability and production potential. Increasing tree cover is considered one of the most efficient methods to mitigate this phenomenon. The present study describes soil erosion measurements in different land cover situations in Alto Huayabamba, Peru, using the experimental plot methodology. Three parcels were studied during a one-year period (starting September 2015) with 3 different land cover scenarii evaluated: 10-year-old secondary tropical forest (P1), 3-year-old native species reforestation (P2) and bare soil (P3). Information was collected systematically after each rain to assess the average rainfall, water runoff and soil eroded. The results indicate that variance in land cover has a strong impact on the level of soil erosion. In our study, it was found that P1, P2 and P3 had erosion rates of 92 kg/ha/yr, 11 tons/ha/yr and 59,7 tons/ha/year respectively. Using a replacement cost method, the potential of limiting erosion by reforesting bare soil was estimated to be 561 $/ha/yr after three years and 687 $/ha/yr after ten years. Finally, the results of the study allow us to assess the potential soil services provided by vegetation, which could be an important building block for a payment for ecosystems services (PES) scheme. The latter has been increasingly spread all over the world through Public-Private Partnerships (PPP).Keywords: agroforestry, erosion, ecosystem services, payment for ecosystem services (PES), water conservation, public private partnership (PPP)
Procedia PDF Downloads 2661936 Transforming Healthcare with Immersive Visualization: An Analysis of Virtual and Holographic Health Information Platforms
Authors: Hossein Miri, Zhou YongQi, Chan Bormei-Suy
Abstract:
The development of advanced technologies and innovative solutions has opened up exciting new possibilities for revolutionizing healthcare systems. One such emerging concept is the use of virtual and holographic health information platforms that aim to provide interactive and personalized medical information to users. This paper provides a review of notable virtual and holographic health information platforms. It begins by highlighting the need for information visualization and 3D representation in healthcare. It then proceeds to provide background knowledge on information visualization and historical developments in 3D visualization technology. Additional domain knowledge concerning holography, holographic computing, and mixed reality is then introduced, followed by highlighting some of their common applications and use cases. After setting the scene and defining the context, the need and importance of virtual and holographic visualization in medicine are discussed. Subsequently, some of the current research areas and applications of digital holography and holographic technology are explored, alongside the importance and role of virtual and holographic visualization in genetics and genomics. An analysis of the key principles and concepts underlying virtual and holographic health information systems is presented, as well as their potential implications for healthcare are pointed out. The paper concludes by examining the most notable existing mixed-reality applications and systems that help doctors visualize diagnostic and genetic data and assist in patient education and communication. This paper is intended to be a valuable resource for researchers, developers, and healthcare professionals who are interested in the use of virtual and holographic technologies to improve healthcare.Keywords: virtual, holographic, health information platform, personalized interactive medical information
Procedia PDF Downloads 891935 Designing of Tooling Solution for Material Handling in Highly Automated Manufacturing System
Authors: Muhammad Umair, Yuri Nikolaev, Denis Artemov, Ighor Uzhinsky
Abstract:
A flexible manufacturing system is an integral part of a smart factory of industry 4.0 in which every machine is interconnected and works autonomously. Robots are in the process of replacing humans in every industrial sector. As the cyber-physical-system (CPS) and artificial intelligence (AI) are advancing, the manufacturing industry is getting more dependent on computers than human brains. This modernization has boosted the production with high quality and accuracy and shifted from classic production to smart manufacturing systems. However, material handling for such automated productions is a challenge and needs to be addressed with the best possible solution. Conventional clamping systems are designed for manual work and not suitable for highly automated production systems. Researchers and engineers are trying to find the most economical solution for loading/unloading and transportation workpieces from a warehouse to a machine shop for machining operations and back to the warehouse without human involvement. This work aims to propose an advanced multi-shape tooling solution for highly automated manufacturing systems. The currently obtained result shows that it could function well with automated guided vehicles (AGVs) and modern conveyor belts. The proposed solution is following requirements to be automation-friendly, universal for different part geometry and production operations. We used a bottom-up approach in this work, starting with studying different case scenarios and their limitations and finishing with the general solution.Keywords: artificial intelligence, cyber physics system, Industry 4.0, material handling, smart factory, flexible manufacturing system
Procedia PDF Downloads 1321934 Efficient Fuzzy Classified Cryptographic Model for Intelligent Encryption Technique towards E-Banking XML Transactions
Authors: Maher Aburrous, Adel Khelifi, Manar Abu Talib
Abstract:
Transactions performed by financial institutions on daily basis require XML encryption on large scale. Encrypting large volume of message fully will result both performance and resource issues. In this paper a novel approach is presented for securing financial XML transactions using classification data mining (DM) algorithms. Our strategy defines the complete process of classifying XML transactions by using set of classification algorithms, classified XML documents processed at later stage using element-wise encryption. Classification algorithms were used to identify the XML transaction rules and factors in order to classify the message content fetching important elements within. We have implemented four classification algorithms to fetch the importance level value within each XML document. Classified content is processed using element-wise encryption for selected parts with "High", "Medium" or “Low” importance level values. Element-wise encryption is performed using AES symmetric encryption algorithm and proposed modified algorithm for AES to overcome the problem of computational overhead, in which substitute byte, shift row will remain as in the original AES while mix column operation is replaced by 128 permutation operation followed by add round key operation. An implementation has been conducted using data set fetched from e-banking service to present system functionality and efficiency. Results from our implementation showed a clear improvement in processing time encrypting XML documents.Keywords: XML transaction, encryption, Advanced Encryption Standard (AES), XML classification, e-banking security, fuzzy classification, cryptography, intelligent encryption
Procedia PDF Downloads 4111933 An Analysis of Prefabricated Construction Waste: A Case Study Approach
Authors: H. Hakim, C. Kibert, C. Fabre, S. Monadizadeh
Abstract:
Construction industry is an industry saddled with chronic problems of high waste generation. Waste management that is to ensure materials are utilized in an efficient manner would make a major contribution to mitigating the negative environmental impacts of construction waste including finite resources depletion and growing occupied landfill areas to name a few. Furthermore, ‘material resource efficiency’ has been found an economically smart approach specially when considered during the design phase. One effective strategy is to utilizing off-site construction process which includes a series of prefabricated systems such as mobile, modular, and HUD construction (Department of Housing and Urban Development manufactured buildings). These types of buildings are by nature material and resource-efficient. Despite conventional construction that is exposed to adverse weather conditions, manufactured construction production line is capable of creating repetitive units in a factory controlled environment. A factory can have several parallel projects underway with a high speed and in a timely manner which simplifies the storage of excess materials and re-allocating to the next projects. The literature reports that prefabricated construction significantly helps reduce errors, site theft, rework, and delayed problems and can ultimately lead to a considerable waste reduction. However, there is not sufficient data to quantify this reduction when it comes to a regular modular house in the U.S. Therefore, this manuscript aims to provide an analysis of waste originated from a manufactured factory trend. The analysis was made possible with several visits and data collection of Homes of Merits, a Florida Manufactured and Modular Homebuilder. The results quantify and verify a noticeable construction waste reduction.Keywords: construction waste, modular construction, prefabricated buildings, waste management
Procedia PDF Downloads 2671932 Distributed Cost-Based Scheduling in Cloud Computing Environment
Authors: Rupali, Anil Kumar Jaiswal
Abstract:
Cloud computing can be defined as one of the prominent technologies that lets a user change, configure and access the services online. it can be said that this is a prototype of computing that helps in saving cost and time of a user practically the use of cloud computing can be found in various fields like education, health, banking etc. Cloud computing is an internet dependent technology thus it is the major responsibility of Cloud Service Providers(CSPs) to care of data stored by user at data centers. Scheduling in cloud computing environment plays a vital role as to achieve maximum utilization and user satisfaction cloud providers need to schedule resources effectively. Job scheduling for cloud computing is analyzed in the following work. To complete, recreate the task calculation, and conveyed scheduling methods CloudSim3.0.3 is utilized. This research work discusses the job scheduling for circulated processing condition also by exploring on this issue we find it works with minimum time and less cost. In this work two load balancing techniques have been employed: ‘Throttled stack adjustment policy’ and ‘Active VM load balancing policy’ with two brokerage services ‘Advanced Response Time’ and ‘Reconfigure Dynamically’ to evaluate the VM_Cost, DC_Cost, Response Time, and Data Processing Time. The proposed techniques are compared with Round Robin scheduling policy.Keywords: physical machines, virtual machines, support for repetition, self-healing, highly scalable programming model
Procedia PDF Downloads 1681931 Remote Controlled of In-Situ Forming Thermo-sensitive Hydrogel Nanocomposite for Hyperthermia Therapy Application: Synthesis and Characterizations
Authors: Elbadawy A. Kamoun
Abstract:
Magnetically responsive hydrogel nanocomposite (NCH) based on composites of superparamagnetic of Fe3O4 nano-particles and temperature responsive hydrogel matrices were developed. The nanocomposite hydrogel system based on the temperature sensitive N-isopropylacrylamide hydrogels crosslinked by poly(ethylene glycol)-400 dimethacrylate (PEG400DMA) incorporating with chitosan derivative, was synthesized and characterized. Likewise, the NCH system was synthesized by visible-light free radical photopolymerization, using carboxylated camphorquinone-amine system to avoid the common risks of the use of UV-light especially in hyperthermia treatment. Superparamagnetic of iron oxide nanoparticles were introduced into the hydrogel system by polymerizing mixture technique and monomer solution. FT-IR with Raman spectroscopy and Wide angle-XRD analysis were utilized to verify the chemical structure of NCH and exfoliation reaction for nanoparticles, respectively. Additionally, morphological structure of NCH was investigated using SEM and TEM photographs. The swelling responsive of the current nanocomposite hydrogel system with different crosslinking conditions, temperature, magnetic field efficiency, and the presence effect of magnetic nanoparticles were evaluated. Notably, hydrolytic degradation of this system was proved in vitro application. While, in-vivo release profile behavior is under investigation nowadays. Moreover, the compatibility and cytotoxicity tests were previously investigated in our studies for photoinitiating system. These systems show promised polymeric material candidate devices and are expected to have a wide applicability in various biomedical applications as mildly.Keywords: hydrogel nanocomposites, tempretaure-responsive hydrogel, superparamagnetic nanoparticles, hyperthermia therapy
Procedia PDF Downloads 2791930 Kinetic Analysis for Assessing Gait Disorders in Muscular Dystrophy Disease
Authors: Mehdi Razeghi
Abstract:
Background: The purpose of this case series was to quantify gait to study muscular dystrophy disease. In this research, the quantitative differences between normal and waddling gaits were assessed by force plate analysis. Methods: Nineteen myopathy patients and twenty normal subjects serving as the control group participated in this research. In this study, quantitative analyses of gait have been used to investigate the differences between the mobility of normal subjects and myopathy patients. This study was carried out at the Iranian Muscular Dystrophy Association in Boali Hospital, Tehran, Iran, from October 2015 to July 2020. Patient data were collected from Iranian Muscular Dystrophy Association members. individuals signed an informed consent form approved by the ethics committee of the Azad University. All of the gait tests were performed using a Kistler force platform. Participants walked at a self-selected speed, barefoot, independently, and without assistive devices. Results: Our findings indicate that there were no significant differences between the patients and the control group in the anterior-posterior components of the ground reaction forces; however, there were considerable differences in the force components between the groups in the medial-lateral and vertical directions of the ground reaction force. In addition, there were significant differences in the time parameters between the groups in the vertical and medial-lateral directions.Keywords: biomechanics, force plate analysis, gait disorder, ground reaction force, kinetic analysis, myopathy disease, rehabilitation engineering
Procedia PDF Downloads 821929 Energy Efficiency and Sustainability Analytics for Reducing Carbon Emissions in Oil Refineries
Authors: Gaurav Kumar Sinha
Abstract:
The oil refining industry, significant in its energy consumption and carbon emissions, faces increasing pressure to reduce its environmental footprint. This article explores the application of energy efficiency and sustainability analytics as crucial tools for reducing carbon emissions in oil refineries. Through a comprehensive review of current practices and technologies, this study highlights innovative analytical approaches that can significantly enhance energy efficiency. We focus on the integration of advanced data analytics, including machine learning and predictive modeling, to optimize process controls and energy use. These technologies are examined for their potential to not only lower energy consumption but also reduce greenhouse gas emissions. Additionally, the article discusses the implementation of sustainability analytics to monitor and improve environmental performance across various operational facets of oil refineries. We explore case studies where predictive analytics have successfully identified opportunities for reducing energy use and emissions, providing a template for industry-wide application. The challenges associated with deploying these analytics, such as data integration and the need for skilled personnel, are also addressed. The paper concludes with strategic recommendations for oil refineries aiming to enhance their sustainability practices through the adoption of targeted analytics. By implementing these measures, refineries can achieve significant reductions in carbon emissions, aligning with global environmental goals and regulatory requirements.Keywords: energy efficiency, sustainability analytics, carbon emissions, oil refineries, data analytics, machine learning, predictive modeling, process optimization, greenhouse gas reduction, environmental performance
Procedia PDF Downloads 311928 Improving Physical, Social, and Mental Health Outcomes for People Living with an Intellectual Disability through Cycling
Authors: Sarah Faulkner, Patrick Faulkner, Caroline Ellison
Abstract:
Improved mental and physical health, community connection, and increased life satisfaction has been strongly associated with bike riding for those with and without a disability. However, much evidence suggests that people living with a disability face increased barriers to engaging in cycling compared to members of the general population. People with an intellectual disability often live more sedentary and socially isolated lives that negatively impact their mental and physical health, as well as life satisfaction. This paper is based on preliminary findings from a three-year intervention cycling project funded by the South Australian Government. The cycling project was developed in partnership with community stakeholders that provided weekly instruction, training, and support to individuals living with intellectual disabilities to increase their capacity in cycling. This project aimed to support people living with intellectual disabilities to foster and facilitate improved physical and mental health, confidence, and independence and enhance social networking through their engagement in community cycling. The program applied principles of social role valorisation (SRV) theory as its guiding framework. Preliminary data collected is based on qualitative interviews with over 50 program participants, results from two participant wellness questionnaires, as well as a perceptually regulated exercise test administered throughout the project implementation. Preliminary findings are further supplemented with ethnographic analyses by the researchers who took a phenology of life experience approach. Preliminary findings of the program suggest a variety of social motivations behind participants' desire to learn cycling that acknowledges previous barriers to engagement and cycling’s role to address feelings of loneliness and social isolation. Meaningful health benefits can be achieved as demonstrated by increases in predicted V02 max measures, suggesting that physical intervention can not only improve physical health outcomes but also provide a variety of other social benefits. Initial engagement in the project has demonstrated an increase in participants' sense of confidence, well-being, and physical fitness. Implementation of the project in partnership with a variety of community stakeholders has identified a number of critical factors and processes necessary for future service replication, sustainability, and success. Findings from this intervention study contribute to the development of a knowledge base on how best to support individuals living with an intellectual disability to partake in bike riding and increase positive outcomes associated with their capacity building, social interaction, increased physical activity, physical health, and mental well-being. The initial findings of this study provide critical academic insights into the social and physical benefits of cycling for people living with a disability, as well as practical advice for future human service applications.Keywords: cycling, disability, social inclusion, capacity building
Procedia PDF Downloads 661927 Deciphering Electrochemical and Optical Properties of Folic Acid for the Applications of Tissue Engineering and Biofuel Cell
Authors: Sharda Nara, Bansi Dhar Malhotra
Abstract:
Investigation of the vitamins as an electron transfer mediator could significantly assist in merging the area of tissue engineering and electronics required for the implantable therapeutic devices. The present study report that the molecules of folic acid released by Providencia rettgeri via fermentation route under the anoxic condition of the microbial fuel cell (MFC) exhibit characteristic electrochemical and optical properties, as indicated by absorption spectroscopy, photoluminescence (PL), and cyclic voltammetry studies. The absorption spectroscopy has depicted an absorption peak at 263 nm with a small bulge around 293 nm on day two of bacterial culture, whereas an additional peak was observed at 365 nm on the twentieth day. Furthermore, the PL spectra has indicated that the maximum emission occurred at various wavelengths 420, 425, 440, and 445 nm when excited by 310, 325, 350, and 365 nm. The change of emission spectra with varying excitation wavelength might be indicating the presence of tunable optical bands in the folic acid molecules co-related with the redox activity of the molecules. The results of cyclic voltammetry studies revealed that the oxidation and reduction occurred at 0.25V and 0.12V, respectively, indicating the electrochemical behavior of the folic acid. This could be inferred that the released folic acid molecules in a MFC might undergo inter as well as intra molecular electron transfer forming different intermediate states while transferring electrons to the electrode surface. Synchronization of electrochemical and optical properties of folic acid molecules could be potentially promising for the designing of electroactive scaffold and biocompatible conductive surface for the applications of tissue engineering and biofuel cells, respectively.Keywords: biofuel cell, electroactivity, folic acid, tissue engineering
Procedia PDF Downloads 131