Search results for: v-board sandwich composite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2075

Search results for: v-board sandwich composite

1625 The Effect of Nylon and Kevlar Stitching on the Mode I Fracture of Carbon/Epoxy Composites

Authors: Nisrin R. Abdelal, Steven L. Donaldson

Abstract:

Composite materials are widely used in aviation industry due to their superior properties; however, they are susceptible to delamination. Through-thickness stitching is one of the techniques to alleviate delamination. Kevlar is one of the most common stitching materials; in contrast, it is expensive and presents stitching fabrication challenges. Therefore, this study compares the performance of Kevlar with an inexpensive and easy-to-use nylon fiber in stitching to alleviate delamination. Three laminates of unidirectional carbon fiber-epoxy composites were manufactured using vacuum assisted resin transfer molding process. One panel was stitched with Kevlar, one with nylon, and one unstitched. Mode I interlaminar fracture tests were carried out on specimens from the three composite laminates, and the results were compared. Fractographic analysis using optical and scanning electron microscope were conducted to reveal the differences between stitching with Kevlar and nylon on the internal microstructure of the composite with respect to the interlaminar fracture toughness values.

Keywords: carbon, delamination, Kevlar, mode I, nylon, stitching

Procedia PDF Downloads 266
1624 Machine Learning Prediction of Compressive Damage and Energy Absorption in Carbon Fiber-Reinforced Polymer Tubular Structures

Authors: Milad Abbasi

Abstract:

Carbon fiber-reinforced polymer (CFRP) composite structures are increasingly being utilized in the automotive industry due to their lightweight and specific energy absorption capabilities. Although it is impossible to predict composite mechanical properties directly using theoretical methods, various research has been conducted so far in the literature for accurate simulation of CFRP structures' energy-absorbing behavior. In this research, axial compression experiments were carried out on hand lay-up unidirectional CFRP composite tubes. The fabrication method allowed the authors to extract the material properties of the CFRPs using ASTM D3039, D3410, and D3518 standards. A neural network machine learning algorithm was then utilized to build a robust prediction model to forecast the axial compressive properties of CFRP tubes while reducing high-cost experimental efforts. The predicted results have been compared with the experimental outcomes in terms of load-carrying capacity and energy absorption capability. The results showed high accuracy and precision in the prediction of the energy-absorption capacity of the CFRP tubes. This research also demonstrates the effectiveness and challenges of machine learning techniques in the robust simulation of composites' energy-absorption behavior. Interestingly, the proposed method considerably condensed numerical and experimental efforts in the simulation and calibration of CFRP composite tubes subjected to compressive loading.

Keywords: CFRP composite tubes, energy absorption, crushing behavior, machine learning, neural network

Procedia PDF Downloads 120
1623 Effect of Cryogenic Treatment on Hybrid Natural Fiber Reinforced Polymer Composites

Authors: B. Vinod, L. J. Sudev

Abstract:

Natural fibers as reinforcement in polymer matrix material are gaining lot of attention in recent years. Natural fibers like jute, sisal, coir, hemp, banana etc. have attracted substantial importance as a potential structural material because of its attractive features along with its good mechanical properties. Cryogenic applications of natural fiber reinforced polymer composites are gaining importance. These materials need to possess good mechanical and physical properties at cryogenic temperatures to meet the high requirements by the cryogenic engineering applications. The objective of this work is to investigate the mechanical behavior of hybrid hemp/jute fibers reinforced epoxy composite material at liquid nitrogen temperature. Hybrid hemp/jute fibers reinforced polymer composite is prepared by hand lay-up method and test specimens are cut according to ASTM standards. These test specimens are dipped in liquid nitrogen for different time durations. The tensile properties, flexural properties and impact strength of the specimen are tested immediately after the specimens are removed from liquid nitrogen container. The experimental results indicate that the cryogenic treatment of the polymer composite has a significant effect on the mechanical properties of this material. The tensile properties and flexural properties of the hybrid hemp/jute fibers epoxy composite at liquid nitrogen temperature is higher than at room temperature. The impact strength of the material decreased after subjecting it to liquid nitrogen temperature.

Keywords: liquid nitrogen temperature, polymer composite, tensile properties, flexural properties

Procedia PDF Downloads 372
1622 Composite Kernels for Public Emotion Recognition from Twitter

Authors: Chien-Hung Chen, Yan-Chun Hsing, Yung-Chun Chang

Abstract:

The Internet has grown into a powerful medium for information dispersion and social interaction that leads to a rapid growth of social media which allows users to easily post their emotions and perspectives regarding certain topics online. Our research aims at using natural language processing and text mining techniques to explore the public emotions expressed on Twitter by analyzing the sentiment behind tweets. In this paper, we propose a composite kernel method that integrates tree kernel with the linear kernel to simultaneously exploit both the tree representation and the distributed emotion keyword representation to analyze the syntactic and content information in tweets. The experiment results demonstrate that our method can effectively detect public emotion of tweets while outperforming the other compared methods.

Keywords: emotion recognition, natural language processing, composite kernel, sentiment analysis, text mining

Procedia PDF Downloads 194
1621 Investigation of Optical, Film Formation and Magnetic Properties of PS Lates/MNPs Composites

Authors: Saziye Ugur

Abstract:

In this study, optical, film formation, morphological and the magnetic properties of a nanocomposite system, composed of polystyrene (PS) latex polymer and core-shell magnetic nanoparticles (MNPs) is presented. Nine different mixtures were prepared by mixing of PS latex dispersion with different amount of MNPs in the range of (0- 100 wt%). PS/MNPs films were prepared from these mixtures on glass substrates by drop casting method. After drying at room temperature, each film sample was separately annealed at temperatures from 100 to 250 °C for 10 min. In order to monitor film formation process, the transmittance of these composites was measured after each annealing step as a function of MNPs content. Below a critical MNPs content (30 wt%), it was found that PS percolates into the MNPs hard phase and forms an interconnected network upon annealing. The transmission results showed above this critical value, PS latexes were no longer film forming at all temperatures. Besides, the PS/MNPs composite films also showed excellent magnetic properties. All composite films showed superparamagnetic behaviors. The saturation magnetisation (Ms) first increased up to 0.014 emu in the range of (0-50) wt% MNPs content and then decreased to 0.010 emu with increasing MNPs content. The highest value of Ms was approximately 0.020 emu and was obtained for the film filled with 85 wt% MNPs content. These results indicated that the optical, film formation and magnetic properties of PS/MNPs composite films can be readily tuned by varying loading content of MNPs nanoparticles.

Keywords: composite film, film formation, magnetic nanoparticles, ps latex, transmission

Procedia PDF Downloads 228
1620 Graphene-Reinforced Silicon Oxycarbide Composite with Lamellar Structures Prepared by the Phase Transfer Method

Authors: Min Yu, Olivier T. Picot, Theo Graves Saunders, Ivo Dlouhy, Amit Mahajan, Michael J. Reece

Abstract:

Graphene was successfully introduced into a polymer-derived silicon oxycarbide (SiOC) matrix by phase transfer of graphene oxide (GO) from an aqueous (GO dispersed in water) to an organic phase (copolymer as SiOC precursor in diethyl ether). With GO concentrations increasing up to 2 vol%, graphene-containing flakes self-assembled into a lamellar structure in the matrix leading to composite with the anisotropic property. Spark plasma sintering (SPS) was applied to densify the composites with four different GO concentrations (0, 0.5, 1 and 2 vol%) up to ~2.3 g/cm3. The fracture toughness of SiOC-2 vol% GO composites was significantly increased by ~91% (from 0.70 to 1.34 MPa·m¹/²), at the expense of a decrease in the flexural strength (from 85MPa to 55MPa), compared to SiOC-0 vol% GO composites. Moreover, the electrical conductivity in the perpendicular direction (σ┴=3×10⁻¹ S/cm) in SiOC-2 vol% GO composite was two orders of magnitude higher than the parallel direction (σ║=4.7×10⁻³ S/cm) owing to the self-assembled lamellar structure of graphene in the SiOC matrix. The composites exhibited increased electrical conductivity (σ┴) from 8.4×10⁻³ to 3×10⁻¹ S/cm, with the increasing GO content from 0.5 to 2 vol%. The SiOC-2 vol% GO composites further showed the better electrochemical performance of oxygen reduction reaction (ORR) than pure graphene, exhibiting a similar onset potential (~0.75V vs. RHE) and more positive half-wave potential (~0.6V vs. RHE).

Keywords: composite, fracture toughness, flexural strength, electrical conductivity, electrochemical performance

Procedia PDF Downloads 147
1619 Effect of Chemical Modifier on the Properties of Polypropylene (PP) / Coconut Fiber (CF) in Automotive Application

Authors: K. Shahril, A. Nizam, M. Sabri, A. Siti Rohana, H. Salmah

Abstract:

Chemical modifier (Acrylic Acid) is used as filler treatment to improve mechanical properties and swelling behavior of polypropylene/coconut fiber (PP/CF) composites by creating more adherent bonding between CF filler and PP Matrix. Treated (with chemical modifier) and untreated (without chemical modifier) composites were prepared in the formulation of 10 wt%, 20 wt%, 30 wt%, and 40 wt%. The mechanical testing indicates that composite with 10 wt% of untreated composite has the optimum value of tensile strength, and the composite with chemical modifier shows the tensile strength was increased. By increasing of filler loading, elastic modulus was increased while the elongation at brake was decreased. Meanwhile, the swelling test discerned that the increase of filler loading increased the water absorption of composites and the presence of chemical modifier reduced the equilibrium water absorption percentage.

Keywords: coconut fiber, polypropylene, acid acrylic, ethanol, chemical modifier, composites

Procedia PDF Downloads 432
1618 Acoustic Behavior of Polymer Foam Composite of Shorea leprosula after UV-Irradiation Exposure

Authors: Anika Zafiah M. Rus, S. Shafizah

Abstract:

This study was developed to compare the behavior and the ability of polymer foam composites towards sound absorption test of Shorea leprosula wood (SL) of acid hydrolysis treatment with particle size < 355µm. Three different weight ratio of polyol to wood particle has been selected which are 10wt%, 15wt%, and 20wt%. The acid hydrolysis treatment is to optimize the surface interaction of a wood particle with polymer foam matrix. In addition, the acoustic characteristic of sound absorption coefficient (Į) was determined. Further treatment is to expose the polymer composite in UV irradiation by using UV-Weatherometer. Polymer foam composite of untreated shorea leprosula particle (SL-B) with respective percentage loading shows uniform pore structure as compared with treated wood particle (SL-A). As the filler percentage loading in polymer foam increases, the Į value approaching 1 for both samples. Furthermore, SL-A shows better Į value at 3500-4500 frequency absorption level(Hz), meanwhile Į value for SL-B is maximum at 4000-5000 Hz. The frequencies absorption level for both SL-B and SL-A after UV exposure was increased with the increasing of exposure time from 0-1000 hours. It is, therefore, concluded that the Į for each sound absorbing material, with or without acid hydrolysis treatment of wood particles and it’s percentages loading in polymer matrix effect the sound absorption behavior.

Keywords: polymer foam composite, sound absorption coefficient, UV-irradiation, wood

Procedia PDF Downloads 439
1617 Creep Effect on Composite Beam with Perfect Steel-Concrete Connection

Authors: Souici Abdelaziz, Tehami Mohamed, Rahal Nacer, Said Mohamed Bekkouche, Berthet Jean-Fabien

Abstract:

In this paper, the influence of the concrete slab creep on the initial deformability of a bent composite beam is modelled. This deformability depends on the rate of creep. This means the rise in value of the longitudinal strain ε c(x,t), the displacement D eflec(x,t) and the strain energy E(t). The variation of these three parameters can easily affect negatively the good appearance and the serviceability of the structure. Therefore, an analytical approach is designed to control the status of the deformability of the beam at the instant t. This approach is based on the Boltzmann’s superposition principle and very particularly on the irreversible law of deformation. For this, two conditions of compatibility and two other static equilibrium equations are adopted. The two first conditions are set according to the rheological equation of Dischinger. After having done a mathematical arrangement, we have reached a system of two differential equations whose integration allows to find the mathematical expression of each generalized internal force in terms of the ability of the concrete slab to creep.

Keywords: composite section, concrete, creep, deformation, differential equation, time

Procedia PDF Downloads 363
1616 Numerical Simulation of the Coal Spontaneous Combustion Dangerous Area in Composite Long-Wall Gobs

Authors: Changshan Zhang, Zhijin Yu, Shixing Fan

Abstract:

A comprehensive hazard evaluation for coal self-heating in composite long-wall gobs is heavily dependent on computational simulation. In this study, the spatial distributions of cracks which caused significant air leakage were simulated by universal distinct element code (UDEC) simulation. Based on the main routes of air leakage and characteristics of coal self-heating, a computational fluid dynamics (CFD) modeling was conducted to model the coal spontaneous combustion dangerous area in composite long-wall gobs. The results included the oxygen concentration distributions and temperature profiles showed that the numerical approach is validated by comparison with the test data. Furthermore, under the conditions of specific engineering, the major locations where some techniques for extinguishing and preventing long-wall gob fires need to be put into practice were also examined.

Keywords: computational simulation, UDEC simulation, coal self-heating, CFD modeling, long-wall gobs

Procedia PDF Downloads 282
1615 Processing and Evaluation of Jute Fiber Reinforced Hybrid Composites

Authors: Mohammad W. Dewan, Jahangir Alam, Khurshida Sharmin

Abstract:

Synthetic fibers (carbon, glass, aramid, etc.) are generally utilized to make composite materials for better mechanical and thermal properties. However, they are expensive and non-biodegradable. In the perspective of Bangladesh, jute fibers are available, inexpensive, and comprising good mechanical properties. The improved properties (i.e., low cost, low density, eco-friendly) of natural fibers have made them a promising reinforcement in hybrid composites without sacrificing mechanical properties. In this study, jute and e-glass fiber reinforced hybrid composite materials are fabricated utilizing hand lay-up followed by a compression molding technique. Room temperature cured two-part epoxy resin is used as a matrix. Approximate 6-7 mm thick composite panels are fabricated utilizing 17 layers of woven glass and jute fibers with different fiber layering sequences- only jute, only glass, glass, and jute alternatively (g/j/g/j---) and 4 glass - 9 jute – 4 glass (4g-9j-4g). The fabricated composite panels are analyzed through fiber volume calculation, tensile test, bending test, and water absorption test. The hybridization of jute and glass fiber results in better tensile, bending, and water absorption properties than only jute fiber-reinforced composites, but inferior properties as compared to only glass fiber reinforced composites. Among different fiber layering sequences, 4g-9j-4g fibers layering sequence resulted in better tensile, bending, and water absorption properties. The effect of chemical treatment on the woven jute fiber and chopped glass microfiber infusion are also investigated in this study. Chemically treated jute fiber and 2 wt. % chopped glass microfiber infused hybrid composite shows about 12% improvements in flexural strength as compared to untreated and no micro-fiber infused hybrid composite panel. However, fiber chemical treatment and micro-filler do not have a significant effect on tensile strength.

Keywords: compression molding, chemical treatment, hybrid composites, mechanical properties

Procedia PDF Downloads 128
1614 Strengthening of Reinforced Concrete Columns Using Advanced Composite Materials to Resist Earthquakes

Authors: Mohamed Osama Hassaan

Abstract:

Recent earthquakes have demonstrated the vulnerability of older reinforced concrete buildings to fail under imposed seismic loads. Accordingly, the need to strengthen existing reinforced concrete structures, mainly columns, to resist high seismic loads has increased. Conventional strengthening techniques such as using steel plates, steel angles and concrete overlay are used to achieve the required increase in strength or ductility. However, techniques using advanced composite materials are established. The column's splice zone is the most critical zone that failed under seismic loads. There are three types of splice zone failure that can be observed under seismic action, namely, Failure of the flexural plastic hinge region, shear failure and failure due to short lap splice. A lapped splice transfers the force from one bar to another through the concrete surrounding both bars. At any point along the splice, force is transferred from one bar by a bond to the surrounding concrete and also by a bond to the other bar of the pair forming the splice. The integrity of the lap splice depends on the development of adequate bond length. The R.C. columns built in seismic regions are expected to undergo a large number of inelastic deformation cycles while maintaining the overall strength and stability of the structure. This can be ensured by proper confinement of the concrete core. The last type of failure is focused in this research. There are insufficient studies that address the problem of strengthening existing reinforced concrete columns at splice zone through confinement with “advanced composite materials". Accordingly, more investigation regarding the seismic behavior of strengthened reinforced concrete columns using the new generation of composite materials such as (Carbon fiber polymer), (Glass fiber polymer), (Armiad fiber polymer).

Keywords: strengthening, columns, advanced composite materials, earthquakes

Procedia PDF Downloads 50
1613 Optimization of Machining Parameters in AlSi/10%AlN Metal Matrix Composite Material by TiN Coating Insert

Authors: Nurul Na'imy Wan, Mohamad Sazali Said, Jaharah Ab. Ghani, Rusli Othman

Abstract:

This paper presents the surface roughness of the aluminium silicon alloy (AlSi) matrix composite which has been reinforced with aluminium nitride (AlN). Experiments were conducted at various cutting speeds, feed rates, and depths of cut, according to a standard orthogonal array L27 of Taguchi method using TiN coating tool of insert. The signal-to-noise (S/N) ratio and analysis of variance are applied to study the characteristic performance of cutting speeds, feed rates and depths of cut in measuring the surface roughness during the milling operation. The surface roughness was observed using Mitutoyo Formtracer CS-500 and analyzed using the Taguchi method. From the Taguchi analysis, it was found that cutting speed of 230 m/min, feed rate of 0.4 mm/tooth, depth of cut of 0.3 mm were the optimum machining parameters using TiN coating insert.

Keywords: AlSi/AlN metal matrix composite (MMC), surface roughness, Taguchi method, machining parameters

Procedia PDF Downloads 401
1612 Reduction of Dynamic Influences in Composite Rubber-Concrete Block Designed to Walls Construction

Authors: Maciej Major, Izabela Major

Abstract:

The aim of this paper is a numerical analysis of three-layered block design to walls construction subjected to the dynamic load. The block consists of the layers: concrete with rubber pads in shape of crosses, space filled with air and concrete with I-shape rubber pads. The main purpose of rubber inserts embedded during the production process is additional protection against the transversal dynamic load. For the analysis, as rubber, the Zahorski hyperelastic incompressible material model was assumed. A concentrated force as dynamic load applied to the external block surface was investigated. The results for the considered block observed as the stress distribution plot were compared to the results obtained for the solid concrete block. In order to estimate the percentage damping of proposed composite, rubber-concrete block in relation to the solid block the numerical analysis with the use of finite element method based on ADINA software was performed.

Keywords: dynamics, composite, rubber, Zahorski

Procedia PDF Downloads 221
1611 Microstructure and Mechanical Evaluation of PMMA/Al₂O₃ Nanocomposite Fabricated via Friction Stir Processing

Authors: Reham K. El Sawah, N. S. M. El-Tayeb

Abstract:

This study aims to produce a polymer matrix composite reinforced with Al₂O₃ nanoparticles in order to enhance the mechanical properties of PMMA. The composite was fabricated via Friction stir processing to ensure homogenous dispersion of Al₂O₃ nanoparticles in the polymer, and the processing was submerged to prevent the sputtering of nanoparticles. The surface quality, microstructure, impact energy and hardness of the prepared samples were investigated. Good surface quality and dispersion of nanoparticles were attained through employing sufficient processing conditions. The experimental results indicated that as the percentage of nanoparticles increased, the impact energy and hardness increased, reaching 2 kJ/m2 and 14.7 HV at a nanoparticle concentration of 25%, which means that the toughness and the hardness of the polymer-ceramic produced composite is higher than unprocessed PMMA by 66% and 33% respectively.

Keywords: friction stir processing, polymer matrix nanocomposite, mechanical properties, microstructure

Procedia PDF Downloads 145
1610 An Analysis on Fibre-Reinforced Composite Material Usage on Urban Furniture

Authors: Nilgun Becenen

Abstract:

In this study, the structural properties of composite materials with the plastic matrix, which are used in body parts of urban furniture were investigated. Surfaces of the specimens were observed by scanning electron microscopy (SEM: JSM-5200, JEOL) and Climatic environmental test analyses in laboratory conditions were used to analyze the performance of the composite samples. Climate conditions were determined as follow; 3 hour working under the conditions of -10 ºC heat and 20 % moisture, Heating until 45 ºC for 4 hours, 3 hour work at 45 ºC, 3 hour work under the conditions of 45 ºC heat and 80 % moisture, Cooling at -10 ºC for 4 hours. In this cycle, the atmospheric conditions that urban furniture would be exposed to in the open air were taken into consideration. Particularly, sudden heat changes and humidity effect were investigated. The climate conditions show that performance in Low Temperatures: The endurance isn’t affected, hardness does not change, tensile, bending and impact resistance does not change, the view isn’t affected. It has a high environmental performance.

Keywords: fibre-reinforced material, glass fiber, textile science, polymer composites

Procedia PDF Downloads 226
1609 Behavior of Laminated Plates under Mechanical Loading

Authors: Mahmoudi Noureddine

Abstract:

In this study the use of two variable refined plate theories of laminated composite plates to static response of laminated plates. The plate theory accounts for parabolic distribution of the transverse shear strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factor. The validity of the present theory is demonstrated by comparison with solutions available in the literature and finite element method. The result is presented for the static response of simply supported rectangular plates under uniform sinusoidal mechanical loadings.

Keywords: bending, composite, laminate, plates, fem

Procedia PDF Downloads 379
1608 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms

Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager

Abstract:

This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.

Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties

Procedia PDF Downloads 38
1607 Processing and Characterization of Aluminum Matrix Composite Reinforced with Amorphous Zr₃₇.₅Cu₁₈.₆₇Al₄₃.₉₈ Phase

Authors: P. Abachi, S. Karami, K. Purazrang

Abstract:

The amorphous reinforcements (metallic glasses) can be considered as promising options for reinforcing light-weight aluminum and its alloys. By using the proper type of reinforcement, one can overcome to drawbacks such as interfacial de-cohesion and undesirable reactions which can be created at ceramic particle and metallic matrix interface. In this work, the Zr-based amorphous phase was produced via mechanical milling of elemental powders. Based on Miedema semi-empirical Model and diagrams for formation enthalpies and/or Gibbs free energies of Zr-Cu amorphous phase in comparison with the crystalline phase, the glass formability range was predicted. The composite was produced using the powder mixture of the aluminum and metallic glass and spark plasma sintering (SPS) at the temperature slightly above the glass transition Tg of the metallic glass particles. The selected temperature and rapid sintering route were suitable for consolidation of an aluminum matrix without crystallization of amorphous phase. To characterize amorphous phase formation, X-ray diffraction (XRD) phase analyses were performed on powder mixture after specified intervals of milling. The microstructure of the composite was studied by optical and scanning electron microscope (SEM). Uniaxial compression tests were carried out on composite specimens with the dimension of 4 mm long and a cross-section of 2 ˟ 2mm2. The micrographs indicated an appropriate reinforcement distribution in the metallic matrix. The comparison of stress–strain curves of the consolidated composite and the non-reinforced Al matrix alloy in compression showed that the enhancement of yield strength and mechanical strength are combined with an appreciable plastic strain at fracture. It can be concluded that metallic glasses (amorphous phases) are alternative reinforcement material for lightweight metal matrix composites capable of producing high strength and adequate ductility. However, this is in the expense of minor density increase.

Keywords: aluminum matrix composite, amorphous phase, mechanical alloying, spark plasma sintering

Procedia PDF Downloads 340
1606 Formulation, Acceptability, and Characteristics of Instant Surabi Based on Composite Rice-Soybean Flour and Supplemented with Torbangun Powder for Attention Deficit Hyperactivity Disorder Children

Authors: Dewi Hapsari Ratna Muninggar, M. Rizal Martua Damanik

Abstract:

The purpose of this study was to develop a formulation of instant Indonesian traditional pancake (Surabi) based on composite rice and soybean flour and supplemented with Torbangun (Coleus amboinicus Lour) powder as an alternative snack for ADHD (Attention Deficit Hyperactivity Disorder) children. Completely randomised factorial design by two factors which were the ratio of composite rice and soybean flour (75:25; 70:30; 65:35) as well as the addition of Torbangun powder (3%; 5%; 7%) was used in this study. This study revealed that the best formula was instant surabi with 65:35 composite rice and soybean flour and 5% addition of Torbangun powder by considering hedonic test result, functional aspect and nutrients contribution. Then, both chemical and physical characteristics from the best formula of instant surabi were measured. Nutrients content of the chosen instant surabi per 100 g wet basis were 62.68 g moisture, 1.30 g ash, 6.81 g protein, 0.75 g fat, 28.47 g carbohydrate, 88.62 mg calcium, 4.14 mg iron, and 144 kcal energy while physical characteristics, such as water activity, cohesiveness, and hardness were 0.97, 0.569, 5582.2 g force consecutively. The results of this research suggested that instant surabi which can be possibly beneficial for ADHD children had 65:35 for rice and soybean flour ratio as well as 5% for the addition of Torbangun powder.

Keywords: ADHD children, instant surabi, soybean, torbangun

Procedia PDF Downloads 118
1605 Effect of Plasticizer Additives on the Mechanical Properties of Cement Composite: A Molecular Dynamics Analysis

Authors: R. Mohan, V. Jadhav, A. Ahmed, J. Rivas, A. Kelkar

Abstract:

Cementitious materials are an excellent example of a composite material with complex hierarchical features and random features that range from nanometer (nm) to millimeter (mm) scale. Multi-scale modeling of complex material systems requires starting from fundamental building blocks to capture the scale relevant features through associated computational models. In this paper, molecular dynamics (MD) modeling is employed to predict the effect of plasticizer additive on the mechanical properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown molecular configuration of CSH, a representative configuration widely accepted in the field of mineral Jennite is employed. The effectiveness of the Molecular Dynamics modeling to understand the predictive influence of material chemistry changes based on molecular/nanoscale models is demonstrated.

Keywords: cement composite, mechanical properties, molecular dynamics, plasticizer additives

Procedia PDF Downloads 423
1604 The Impact of Steel Connections on the Fire Resistance of Composite Buildings

Authors: Shuyuan Lin, Zhaohui Huang, Mizi Fan

Abstract:

In the majority of previous research into modelling large scale composite floor subjected to fire, the beam-to-column and beam-to-beam connections were assumed to behave either as pinned or rigid for simplicity, and the vertical shear and axial tension failures of the connection were not taken into account. We have recently developed robust two-noded connection models for modeling endplate and partial endplate steel connections under fire conditions. The main objective of this research is to systematically investigate the impact of the connections of protected beams, on the tensile membrane actions of supported floor slabs in which the failures of the connections, such as, axial tension, vertical shear and bending are accounted for. The models developed have very good numerical stability under a static solver condition, and can be used for large scale modelling of composite buildings in fire.

Keywords: fire, steel structure, component-based model, beam-to-column connections

Procedia PDF Downloads 423
1603 Air-Purifying Properties of Cement Mortars Intermixed with TiO₂-SiO₂ Composites

Authors: A.M. Kaja, Q. Yu, H.J.H Brouwers

Abstract:

An increased functionality of concrete towards higher eco-efficiency is nowadays of great importance due to the decreasing air quality in urban areas. Surface modifications of concrete walls and roads, as a coating or an intermixing of the surface layer with TiO₂, provide an opportunity to improve the air quality by reducing NOx via photocatalytic phenomena. Nevertheless, there are still concerns regarding the cost-efficiency as well as the toxicity of intermediate products which can be produced during the photocatalysis, limiting a widespread adoption of these materials. This study addresses the problem of the selectivity of cement mortars towards nitrate in terms of microstructural characteristics and hydration products. The ability of cement mortars matrix intermixed with commercial TiO₂ and TiO₂-SiO₂ composite to abate NO₂ is investigated. The influence of hydration products formed under the carbonation facilitating conditions is discussed and solutions how to optimize the mix design are proposed. The incorporation of the TiO₂-SiO₂ composite into cement mortar is found to increase the nitrate selectivity index.

Keywords: cement matrix, NO₂ abatement, photocatalysis, TiO₂-SiO₂ composite

Procedia PDF Downloads 137
1602 The Photocatalytic Degradation of Acid Blue 25 Dye by Polypyrrole/Titanium Dioxide and Polypyrrole/Zinc Oxide Composites

Authors: Ljerka Kratofil Krehula, Martina Perlog, Jasmina Stjepanović, Vanja Gilja, Marijana Kraljić Roković, Zlata Hrnjak-Murgić

Abstract:

The composite preparation of titanium dioxide and zinc oxide photocatalysts with the conductive polymers gives the opportunity to carry out the catalysis reactions not only under UV light but also under visible light. Such processes may efficiently use sunlight in degradation of different organic pollutants and present new design for wastewater treatment. The paper presents the preparation procedure, material characteristics and photocatalytic efficiency of polypyrrole/titanium dioxide and polypyrrole/zinc oxide composites (PPy/TiO2 and PPy/ZnO). The obtained composite samples were characterized by Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy and thermogravimetric analysis (TGA). The photocatalytic efficiency of the samples was determined following the decomposition of Acid Blue 25 dye (AB 25) under UV and visible light by UV/Vis spectroscopy. The efficiency of degradation is determined by total organic carbon content (TOC) after photocatalysis processes. The results show enhanced photocatalytic efficiency of the samples under visible light, so the prepared composite samples are recognized as efficient catalysts in degradation process of AB 25 dye. It can be concluded that the preparation of TiO2 or ZnO composites with PPy can serve as a very efficient method for the improvement of TiO2 and ZnO photocatalytic performance under visible light.

Keywords: composite, photocatalysis, polypyrrole, titanium dioxide, zinc oxide

Procedia PDF Downloads 457
1601 Behavior Study of Concrete-Filled Thin-Walled Square Hollow Steel Stub Columns

Authors: Mostefa Mimoune

Abstract:

Test results on concrete-filled steel tubular stub columns under axial compression are presented. The study was mainly focused on square hollow section SHS columns; 27 columns were tested. The main experimental parameters considered were the thickness of the tube, columns length and cross section sizes. Existing design codes and theoretical model were used to predict load-carrying capacities of composite section to compare the accuracy of the predictions by using the recommendations of DTR-BC (Algerian code), CSA (Canadian standard), AIJ, EC4, DBJ, AISC, BS and EC4. Experimental results indicate that the studied parameters have significant influence on both the compressive load capacity and the column failure mode. All codes used in the comparison, provide higher resistance compared to those of tests. Equation method has been suggested to evaluate the axial capacity of the composite section seem to be in agreement with tests.

Keywords: axial loading, composite section, concrete-filled steel tubes, square hollow section

Procedia PDF Downloads 354
1600 Field Trial of Resin-Based Composite Materials for the Treatment of Surface Collapses Associated with Former Shallow Coal Mining

Authors: Philip T. Broughton, Mark P. Bettney, Isla L. Smail

Abstract:

Effective treatment of ground instability is essential when managing the impacts associated with historic mining. A field trial was undertaken by the Coal Authority to investigate the geotechnical performance and potential use of composite materials comprising resin and fill or stone to safely treat surface collapses, such as crown-holes, associated with shallow mining. Test pits were loosely filled with various granular fill materials. The fill material was injected with commercially available silicate and polyurethane resin foam products. In situ and laboratory testing was undertaken to assess the geotechnical properties of the resultant composite materials. The test pits were subsequently excavated to assess resin permeation. Drilling and resin injection was easiest through clean limestone fill materials. Recycled building waste fill material proved difficult to inject with resin; this material is thus considered unsuitable for use in resin composites. Incomplete resin permeation in several of the test pits created irregular ‘blocks’ of composite. Injected resin foams significantly improve the stiffness and resistance (strength) of the un-compacted fill material. The stiffness of the treated fill material appears to be a function of the stone particle size, its associated compaction characteristics (under loose tipping) and the proportion of resin foam matrix. The type of fill material is more critical than the type of resin to the geotechnical properties of the composite materials. Resin composites can effectively support typical design imposed loads. Compared to other traditional treatment options, such as cement grouting, the use of resin composites is potentially less disruptive, particularly for sites with limited access, and thus likely to achieve significant reinstatement cost savings. The use of resin composites is considered a suitable option for the future treatment of shallow mining collapses.

Keywords: composite material, ground improvement, mining legacy, resin

Procedia PDF Downloads 327
1599 Fabrication and Characterization of PPy/rGO|PPy/ZnO Composite with Varying Zno Concentration as Anode for Fuel Cell Applications

Authors: Bryan D. Llenarizas, Maria Carla F. Manzano

Abstract:

The rapid growth of electricity demand has led to a pursuit of alternative energy sources with high power output and not harmful to the environment. The fuel cell is a device that generates electricity via chemical reactions between the fuel and oxidant. Fuel cells have been known for decades, but the development of high-power output and durability was still one of the drawbacks of this energy source. This study investigates the potential of layer-by-layer composite for fuel cell applications. A two-electrode electrochemical cell was used for the galvanostatic electrochemical deposition method to fabricate a Polypyrrole/rGO|Polypyrrole/ZnO layer-by-layer composite material for fuel cell applications. In the synthesis, the first layer comprised 0.1M pyrrole monomer and 1mg of rGO, while the second layer had 0.1M pyrrole monomer and variations of ZnO concentration ranging from 0.08M up to 0.12M. A constant current density of 8mA/cm² was applied for 1 hour in fabricating each layer. Scanning electron microscopy (SEM) for the fabricated LBL material shows a globular surface with white spots. These white spots are the ZnO particles confirmed by energy-dispersive X-ray spectroscopy, indicating a successful deposition of the second layer onto the first layer. The observed surface morphology was consistent for each variation of ZnO concentrations. AC measurements were conducted to obtain the AC resistance of the fabricated film. Results show a decrease in AC resistance as the concentration of ZnO increases.

Keywords: anode, composite material, electropolymerization, fuel cell, galvanostatic, polypyrrole

Procedia PDF Downloads 45
1598 Experimental and Numerical Modeling of Dynamic Axial Crushing of a Composite Glass/PEHD

Authors: Mahmoudi Noureddine, Kaou Abdellah

Abstract:

Energy absorption is a major requirement for automotive structures. Although crashworthy structures of composite based glass fiber have exhibited energy absorption greater than similar at other composites structures, the crush process in many cases is accompanied by fracture, rather than by plastic deformation. The crash experiments show that the tubes are crushed in progressive manner start from one end of the tubes and delamination takes place between the layers. To better understand details of the crash process, ABAQUS finite element code is used.

Keywords: Energy absorption, crash, PEHD

Procedia PDF Downloads 472
1597 Early Age Microstructural Analysis of Cement-Polymer Composite Paste Cured at High Temperature

Authors: Bertilia L. Bartley, Ledjane S. Barreto

Abstract:

As a preliminary investigation on the control of microcracking in composite cement pastes, this study explores and compares the compatibility of Tetraethyl Orthosilicate (TEOS), Ethylene Glycol (EG) and Silicone Resin (SIL) in cement pastes cured at high temperature. Pastes were prepared by incorporating ordinary Portland cement (OPC) into an additive solution, using a solution/cement ratio of 0.45. Specimens were molded for 24h at 21 ± 2°C, then cured in deionized water for another 24h at 74 ± 1°C. TEOS and EG influence on fresh paste properties were similar to the reference OPC paste yet disintegration was observed in EG and SIL specimens after the first 12h of curing. X-Ray Diffraction analysis (XRD) coupled with thermogravimetric analysis (TGA/DTG) verified that SIL addition impedes portlandite formation significantly. Backscatter Scanning Electron Microscopy (SEM) techniques were therefore performed on selected areas of each sample to investigate the morphology of the hydration products detected. Various morphologies of portlandite crystals were observed in pastes with EG and TEOS addition, as well as dense morphologies of calcium silicate hydrate (C-S-H) gel and fibers, and ettringite needles. However, the formation of portlandite aggregate and clusters of C-S-H was highly favored by TEOS addition. Furthermore, the microstructural details of composite pastes were clearly visible at low magnifications i.e. 500x, as compared to the OPC paste. The results demonstrate accelerated hydration within composite pastes, a uniform distribution of hydration products, as well as an adhesive interaction with the products and polymer additive. Overall, TEOS demonstrated the most favorable influence, which indicates the potential of TEOS as a compatible polymer additive within the cement system at high temperature.

Keywords: accelerated curing, cement/polymer composite, hydration, microstructural properties, morphology, portlandite, scanning electron microscopy (sem)

Procedia PDF Downloads 159
1596 Thermal Property Improvement of Silica Reinforced Epoxy Composite Specimens

Authors: Hyu Sang Jo, Gyo Woo Lee

Abstract:

In this study, the mechanical and thermal properties of epoxy composites that are reinforced with micrometer-sized silica particles were investigated by using the specimen experiments. For all specimens used in this study (from the baseline to specimen containing 70 wt% silica filler), the tensile strengths were gradually increased by 8-10%, but the ductility of the specimen was decreased by 34%, compared with those of the baseline samples. Similarly, for the samples containing 70 wt% silica filler, the coefficient of thermal expansion was reduced by 25%, but the thermal conductivity was increased by 100%, compared with those of the baseline samples. The improvement of thermal stability of the silica-reinforced specimen was confirmed to be within the experimented range, and the smaller silica particle was found to be more effective in delaying the thermal expansion of the specimens. When the smaller particle was used as filler, due to the increased specific interface area between filler and matrix, the thermal conductivities of the composite specimens were measured to be slightly lower than those of the specimens reinforced with the larger particle.

Keywords: carbon nanotube filler, epoxy composite, mechanical property, thermal property

Procedia PDF Downloads 209