Search results for: specific heat at constant pressure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14839

Search results for: specific heat at constant pressure

14389 Region-Specific Secretory Protein, α2M, in Male Reproductive Tract of the Blue Crab And Its Dynamics during Sperm transit towards Female Spermatheca

Authors: Thanyaporn Senarai, Rapeepun Vanichviriyakit, Shinji Miyata, Chihiro Sato, Prapee Sretarugsa, Wattana Weerachatyanukul, Ken Kitajima

Abstract:

In this study, we characterized a region-specific 250 kDa protein that was secreted of MSD fluid, which is believed to play dual functions in forming a spermatophoric wall for sperm physical protection, and in sperm membrane modification as part of sperm maturation process. The partial amino acid sequence and N-terminal sequencing revealed that the MSD-specific 250 kDa protein showed a high similarity with a plasma-rich protein, α-2 macroglobulin (α2M), so termed pp-α2M. This protein was a large glycoprotein contained predominantly mannose and GlcNAc. The expression of pp-α2M mRNA was detected in spermatic duct (SD), androgenic gland (AG) and hematopoietic tissue, while the protein expression was rather specific to the apical cytoplasm of MSD epithelium. The secretory pp-α2M in MSD fluid was acquired onto the MSD sperm membrane and was also found within the matrix of the acrosome. Distally, pp-α2M was removed from spermathecal sperm membrane, while its level kept constant in the sperm AC. Together the results indicate that pp-α2M is a 250 kDa region-specific secretory protein which plays roles in sperm physical protection and also acts as maturation factor in the P. pelagicus sperm.

Keywords: alpha-2 macroglobulin, blue swimming crab, sperm maturation, spermatic duct

Procedia PDF Downloads 308
14388 Optimization Analysis of a Concentric Tube Heat Exchanger with Field Synergy Principle

Authors: M. C. Lin, C. W. Su

Abstract:

The paper investigates the optimization analysis to the heat exchanger design, mainly with response surface method and genetic algorithm to explore the relationship between optimal fluid flow velocity and temperature of the heat exchanger using field synergy principle. First, finite volume method is proposed to calculate the flow temperature and flow rate distribution for numerical analysis. We identify the most suitable simulation equations by response surface methodology. Furthermore, a genetic algorithm approach is applied to optimize the relationship between fluid flow velocity and flow temperature of the heat exchanger. The results show that the field synergy angle plays vital role in the performance of a true heat exchanger.

Keywords: optimization analysis, field synergy, heat exchanger, genetic algorithm

Procedia PDF Downloads 286
14387 Estimation of Pressure Profile and Boundary Layer Characteristics over NACA 4412 Airfoil

Authors: Anwar Ul Haque, Waqar Asrar, Erwin Sulaeman, Jaffar S. M. Ali

Abstract:

Pressure distribution data of the standard airfoils is usually used for the calibration purposes in subsonic wind tunnels. Results of such experiments are quite old and obtained by using the model in the spanwise direction. In this manuscript, pressure distribution over NACA 4412 airfoil model was presented by placing the 3D model in the lateral direction. The model is made of metal with pressure ports distributed longitudinally as well as in the lateral direction. The pressure model was attached to the floor of the tunnel with the help of the base plate to give the specified angle of attack to the model. Before the start of the experiments, the pressure tubes of the respective ports of the 128 ports pressure scanner are checked for leakage, and the losses due to the length of the pipes were also incorporated in the results for the specified pressure range. Growth rate maps of the boundary layer thickness were also plotted. It was found that with the increase in the velocity, the dynamic pressure distribution was also increased for the alpha seep. Plots of pressure distribution so obtained were overlapped with those obtained by using XFLR software, a low fidelity tool. It was found that at moderate and high angles of attack, the distribution of the pressure coefficients obtained from the experiments is high when compared with the XFLR ® results obtained along with the span of the wing. This under-prediction by XFLR ® is more obvious on the windward than on the leeward side.

Keywords: subsonic flow, boundary layer, wind tunnel, pressure testing

Procedia PDF Downloads 304
14386 Effect of T6 and Re-Aging Heat Treatment on Mechanical Properties of 7055 Aluminum Alloy

Authors: M. Esmailian, M. Shakouri, A. Mottahedi, S. G. Shabestari

Abstract:

Heat treatable aluminium alloys such as 7075 and 7055, because of high strength and low density, are used widely in aircraft industry. For best mechanical properties, T6 heat treatment has recommended for this regards, but this temper treatment is sensitive to corrosion induced and Stress Corrosion Cracking (SCC) damage. For improving this property, the over-aging treatment (T7) applies to this alloy, but it decreases the mechanical properties up to 30 percent. Hence, to increase the mechanical properties, without any remarkable decrease in SCC resistant, Retrogression and Re-Aging (RRA) heat treatment is used. This treatment performs in a relatively short time. In this paper, the RRA heat treatment was applied to 7055 aluminum alloy and then effect of RRA time on the mechanical properties of 7055 has been investigated. The results show that the 40 minute time is suitable time for retrogression of 7055 aluminum alloy and ultimate strength increases up to 625MPa.

Keywords: 7055 Aluminum alloy, mechanical properties, SCC resistance, heat Treatment

Procedia PDF Downloads 411
14385 Metabolic Regulation of Rhizobacteria for Cool-Season Grass Tolerance to Heat Stress

Authors: Kashif Jaeel, Bingru Huang

Abstract:

Stress-induced accumulation of ethylene exacerbates drought damages in plants, and suppressing stress induction of ethylene may promote plant tolerance to heat stress. The objective of this study was to investigate the effects of endophytic bacteria (Paraburkholderia aspalathi) with 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase enzymes in suppressing ethylene production on plant tolerance to heat stress and underlying physiological mechanisms of P. aspalathi-regulation in creeping bentgrass (Agrostis stolonifera). A novel strain of P. aspalathi, ‘WSF23’, with ACC deaminase activity was used to inoculate the roots of plants (cv. ‘Penncross’) subjected to heat stress in controlled-environment chambers. Inoculation with WSF23 bacteria resulted in improved shoot and root growth during heat stress. The differential changes in metabolite regulation due to the bacterial inoculation could contribute to ACC deamination bacteria-improved heat tolerance in cool-season grass species.

Keywords: rhizobacteria, grass, heat, plant metabolism, soil bacteria

Procedia PDF Downloads 46
14384 Development of a New Method for the Evaluation of Heat Tolerant Wheat Genotypes for Genetic Studies and Wheat Breeding

Authors: Hameed Alsamadany, Nader Aryamanesh, Guijun Yan

Abstract:

Heat is one of the major abiotic stresses limiting wheat production worldwide. To identify heat tolerant genotypes, a newly designed system involving a large plastic box holding many layers of filter papers positioned vertically with wheat seeds sown in between for the ease of screening large number of wheat geno types was developed and used to study heat tolerance. A collection of 499 wheat geno types were screened under heat stress (35ºC) and non-stress (25ºC) conditions using the new method. Compared with those under non-stress conditions, a substantial and very significant reduction in seedling length (SL) under heat stress was observed with an average reduction of 11.7 cm (P<0.01). A damage index (DI) of each geno type based on SL under the two temperatures was calculated and used to rank the genotypes. Three hexaploid geno types of Triticum aestivum [Perenjori (DI= -0.09), Pakistan W 20B (-0.18) and SST16 (-0.28)], all growing better at 35ºC than at 25ºC were identified as extremely heat tolerant (EHT). Two hexaploid genotypes of T. aestivum [Synthetic wheat (0.93) and Stiletto (0.92)] and two tetraploid genotypes of T. turgidum ssp dicoccoides [G3211 (0.98) and G3100 (0.93)] were identified as extremely heat susceptible (EHS). Another 14 geno types were classified as heat tolerant (HT) and 478 as heat susceptible (HS). Extremely heat tolerant and heat susceptible geno types were used to develop re combinant inbreeding line populations for genetic studies. Four major QTLs, HTI4D, HTI3B.1, HTI3B.2 and HTI3A located on wheat chromosomes 4D, 3B (x2) and 3A, explaining up to 34.67 %, 28.93 %, 13.46% % and 11.34% phenotypic variation, respectively, were detected. The four QTLs together accounted for 88.40% of the total phenotypic variation. Random wheat geno types possessing the four heat tolerant alleles performed significantly better under the heat condition than those lacking the heat tolerant alleles indicating the importance of the four QTLs in conferring heat tolerance in wheat. Molecular markers are being developed for marker assisted breeding of heat tolerant wheat.

Keywords: bread wheat, heat tolerance, screening, RILs, QTL mapping, association analysis

Procedia PDF Downloads 528
14383 Influence of Pressure from Compression Textile Bands: Their Using in the Treatment of Venous Human Leg Ulcers

Authors: Bachir Chemani, Rachid Halfaoui

Abstract:

The aim of study was to evaluate pressure distribution characteristics of the elastic textile bandages using two instrumental techniques: a prototype Instrument and a load Transference. The prototype instrument which simulates shape of real leg has pressure sensors which measure bandage pressure. Using this instrument, the results show that elastic textile bandages presents different pressure distribution characteristics and none produces a uniform distribution around lower limb. The load transference test procedure is used to determine whether a relationship exists between elastic textile bandage structure and pressure distribution characteristics. The test procedure assesses degree of load, directly transferred through a textile when loads series are applied to bandaging surface. A range of weave fabrics was produced using needle weaving machine and a sewing technique. A textile bandage was developed with optimal characteristics far superior pressure distribution than other bandages. From results, we find that theoretical pressure is not consistent exactly with practical pressure. It is important in this study to make a practical application for specialized nurses in order to verify the results and draw useful conclusions for predicting the use of this type of elastic band.

Keywords: textile, cotton, pressure, venous ulcers, elastic

Procedia PDF Downloads 344
14382 Fire Characteristic of Commercial Retardant Flame Polycarbonate under Different Oxygen Concentration: Ignition Time and Heat Blockage

Authors: Xuelin Zhang, Shouxiang Lu, Changhai Li

Abstract:

The commercial retardant flame polycarbonate samples as the main high speed train interior carriage material with different thicknesses were investigated in Fire Propagation Apparatus with different external heat fluxes under different oxygen concentration from 12% to 40% to study the fire characteristics and quantitatively analyze the ignition time, mass loss rate and heat blockage. The additives of commercial retardant flame polycarbonate were intumescent and maintained a steady height before ignition when heated. The results showed the transformed ignition time (1/t_ig)ⁿ increased linearly with external flux under different oxygen concentration after deducting the heat blockage due to pyrolysis products, the mass loss rate was taken on linearly with external heat fluxes and the slop of the fitting line for mass loss rate and external heat fluxes decreased with the enhanced oxygen concentration and the heat blockage independent on external heat fluxes rose with oxygen concentration increasing. The inquired data as the input of the fire simulation model was the most important to be used to evaluate the fire risk of commercial retardant flame polycarbonate.

Keywords: ignition time, mass loss rate, heat blockage, fire characteristic

Procedia PDF Downloads 269
14381 Estimation of Fouling in a Cross-Flow Heat Exchanger Using Artificial Neural Network Approach

Authors: Rania Jradi, Christophe Marvillet, Mohamed Razak Jeday

Abstract:

One of the most frequently encountered problems in industrial heat exchangers is fouling, which degrades the thermal and hydraulic performances of these types of equipment, leading thus to failure if undetected. And it occurs due to the accumulation of undesired material on the heat transfer surface. So, it is necessary to know about the heat exchanger fouling dynamics to plan mitigation strategies, ensuring a sustainable and safe operation. This paper proposes an Artificial Neural Network (ANN) approach to estimate the fouling resistance in a cross-flow heat exchanger by the collection of the operating data of the phosphoric acid concentration loop. The operating data of 361 was used to validate the proposed model. The ANN attains AARD= 0.048%, MSE= 1.811x10⁻¹¹, RMSE= 4.256x 10⁻⁶ and r²=99.5 % of accuracy which confirms that it is a credible and valuable approach for industrialists and technologists who are faced with the drawbacks of fouling in heat exchangers.

Keywords: cross-flow heat exchanger, fouling, estimation, phosphoric acid concentration loop, artificial neural network approach

Procedia PDF Downloads 182
14380 Optimal Sizing and Placement of Distributed Generators for Profit Maximization Using Firefly Algorithm

Authors: Engy Adel Mohamed, Yasser Gamal-Eldin Hegazy

Abstract:

This paper presents a firefly based algorithm for optimal sizing and allocation of distributed generators for profit maximization. Distributed generators in the proposed algorithm are of photovoltaic and combined heat and power technologies. Combined heat and power distributed generators are modeled as voltage controlled nodes while photovoltaic distributed generators are modeled as constant power nodes. The proposed algorithm is implemented in MATLAB environment and tested the unbalanced IEEE 37-node feeder. The results show the effectiveness of the proposed algorithm in optimal selection of distributed generators size and site in order to maximize the total system profit.

Keywords: distributed generators, firefly algorithm, IEEE 37-node feeder, profit maximization

Procedia PDF Downloads 420
14379 The Effect of Glass Thickness on Stress in Vacuum Glazing

Authors: Farid Arya, Trevor Hyde, Andrea Trevisi, Paolo Basso, Danilo Bardaro

Abstract:

Heat transfer through multiple pane windows can be reduced by creating a vacuum pressure less than 0.1 Pa between the glass panes, with low emittance coatings on one or more of the internal surfaces. Fabrication of vacuum glazing (VG) requires the formation of a hermetic seal around the periphery of the glass panes together with an array of support pillars between the panes to prevent them from touching under atmospheric pressure. Atmospheric pressure and temperature differentials induce stress which can affect the integrity of the glazing. Several parameters define the stresses in VG including the glass thickness, pillar specifications, glazing dimensions and edge seal configuration. Inherent stresses in VG can result in fractures in the glass panes and failure of the edge seal. In this study, stress in VG with different glass thicknesses is theoretically studied using Finite Element Modelling (FEM). Based on the finding in this study, suggestions are made to address problems resulting from the use of thinner glass panes in the fabrication of VG. This can lead to the development of high performance, light and thin VG.

Keywords: vacuum glazing, stress, vacuum insulation, support pillars

Procedia PDF Downloads 169
14378 Climate Change Implications on Occupational Health and Productivity in Tropical Countries: Study Results from India

Authors: Vidhya Venugopal, Jeremiah Chinnadurai, Rebekah A. I. Lucas, Tord Kjellstrom, Bruno Lemke

Abstract:

Introduction: The effects of climate change (CC) are largely discussed across the globe in terms of impacts on the environment and the general population, but the impacts on workers remain largely unexplored. The predicted rise in temperatures and heat events in the CC scenario have health implications on millions of workers in physically exerting jobs. The current health and productivity risks associated with heat exposures are characterized, future risk estimates as temperature rises and recommendations towards developing protective and preventive occupational health and safety guidelines for India are discussed. Methodology: Cross-sectional studies were conducted in several occupational sectors with workers engaged in moderate to heavy labor (n=1580). Quantitative data on heat exposures (WBGT°C), physiological heat strain indicators viz., Core temperature (CBT), Urine specific gravity (USG), Sweat rate (SwR) and qualitative data on heat-related health symptoms and productivity losses were collected. Data were analyzed for associations between heat exposures, health and productivity outcomes related to heat stress. Findings: Heat conditions exceeded the Threshold Limit Value (TLV) for safe manual work in 66% of the workers across several sectors (Avg.WBGT of 28.7°C±3.1°C). Widespread concerns about heat-related health outcomes (86%) were prevalent among workers exposed to high TLVs, with excessive sweating, fatigue and tiredness being commonly reported by workers. The heat stress indicators, core temperature (14%), Sweat rate (8%) and USG (9%), were above normal levels in the study population. A significant association was found between rise in Core Temperatures and WBGT exposures (p=0.000179) Elevated USG and SwR in the worker population indicate moderate dehydration, with potential risks of developing heat-related illnesses. In a steel industry with high heat exposures, an alarming 9% prevalence of kidney/urogenital anomalies was observed in a young workforce. Heat exposures above TLVs were associated with significantly increased odds of various adverse health outcomes (OR=2.43, 95% CI 1.88 to 3.13, p-value = <0.0001) and productivity losses (OR=1.79, 95% CI 1.32 to 2.4, p-value = 0.0002). Rough estimates for the number of workers who would be subjected to higher than TLV levels in the various RCP scenarios are RCP2.6 =79%, RCP4.5 & RCP6 = 81% and at RCP 8.5 = 85%. Rising temperatures due to CC has the capacity to further reduce already compromised health and productivity by subjecting the workers to increased heat exposures in the RCP scenarios are of concern for the country’s occupational health and economy. Conclusion: The findings of this study clearly identify that health protection from hot weather will become increasingly necessary in the Indian subcontinent and understanding the various adaptation techniques needs urgent attention. Further research with a multi-targeted approach to develop strategies for implementing interventions to protect the millions of workers is imperative. Approaches to include health aspects of climate change within sectoral and climate change specific policies should be encouraged, via a number of mechanisms, such as the “Health in All Policies” approach to avert adverse health and productivity consequences as climate change proceeds.

Keywords: heat stress, occupational health, productivity loss, heat strain, adverse health outcomes

Procedia PDF Downloads 305
14377 Blood Pressure and Anthropometric Measurements: A Correlational Study

Authors: Abdul-Monim Batiha, Manar AlAzzam, Mohammed ALBashtawy, Loai Tawalbeh, Ahmad Tubaishat, Fadwa N. Alhalaiqa

Abstract:

Background: Obesity is the major modifiable risk factor for many chronic illnesses especially high blood pressure. Objectives: To evaluate the relationship between anthropometric indices and high blood pressure, and which one was most strongly correlated with high blood pressure in Jordanian population. Methods: A cross-sectional study was conducted with a total 622 students and workers from three Jordanian universities. Results: Nearly half of the participant are overweight (34.7%) and obese (15.4%) and hypertension was detected among 138 (22.2%) of the participants. Linear correlation was significant (p<0.01) between both systolic blood pressure and diastolic blood pressure for all anthropometric indices, except for A body shape index and diastolic blood pressure was significant at p< 0.05. Stepwise multiple linear regression analysis was used to assess the influence of age and anthropometric measurements. Conclusions: The waist circumference was the only independent predictor of hypertension, showing that this simple measurement may be an importance marker of high blood pressure in Jordanian population.

Keywords: anthropometric indices, Jordan, blood pressure, cross-sectional study, obesity, hypertension, waist circumference

Procedia PDF Downloads 273
14376 Analyzing Temperature and Pressure Performance of a Natural Air-Circulation System

Authors: Emma S. Bowers

Abstract:

Perturbations in global environments and temperatures have heightened the urgency of creating cost-efficient, energy-neutral building techniques. Structural responses to this thermal crisis have included designs (including those of the building standard PassivHaus) with airtightness, window placement, insulation, solar orientation, shading, and heat-exchange ventilators as potential solutions or interventions. Limitations in the predictability of the circulation of cooled air through the ambient temperature gradients throughout a structure are one of the major obstacles facing these enhanced building methods. A diverse range of air-cooling devices utilizing varying technologies is implemented around the world. Many of them worsen the problem of climate change by consuming energy. Using natural ventilation principles of air buoyancy and density to circulate fresh air throughout a building with no energy input can combat these obstacles. A unique prototype of an energy-neutral air-circulation system was constructed in order to investigate potential temperature and pressure gradients related to the stack effect (updraft of air through a building due to changes in air pressure). The stack effect principle maintains that since warmer air rises, it will leave an area of low pressure that cooler air will rush in to fill. The result is that warmer air will be expelled from the top of the building as cooler air is directed through the bottom, creating an updraft. Stack effect can be amplified by cooling the air near the bottom of a building and heating the air near the top. Using readily available, mostly recyclable or biodegradable materials, an insulated building module was constructed. A tri-part construction model was utilized: a subterranean earth-tube heat exchanger constructed of PVC pipe and placed in a horizontally oriented trench, an insulated, airtight cube aboveground to represent a building, and a solar chimney (painted black to increase heat in the out-going air). Pressure and temperature sensors were placed at four different heights within the module as well as outside, and data was collected for a period of 21 days. The air pressures and temperatures over the course of the experiment were compared and averaged. The promise of this design is that it represents a novel approach which directly addresses the obstacles of air flow and expense, using the physical principle of stack effect to draw a continuous supply of fresh air through the structure, using low-cost and readily available materials (and zero manufactured energy). This design serves as a model for novel approaches to creating temperature controlled buildings using zero energy and opens the door for future research into the effects of increasing module scale, increasing length and depth of the earth tube, and shading the building. (Model can be provided).

Keywords: air circulation, PassivHaus, stack effect, thermal gradient

Procedia PDF Downloads 139
14375 Thermodynamic Cycle Using Cyclopentane for Waste Heat Recovery Power Generation from Clinker Cooler Exhaust Flue Gas

Authors: Vijayakumar Kunche

Abstract:

Waste heat recovery from Pre Heater exhaust gases and Clinker cooler vent gases is now common place in Cement Industry. Most common practice is to use Steam Rankine cycle for heat to power conversion. In this process, waste heat from the flue gas is recovered through a Heat Recovery steam generator where steam is generated and fed to a conventional Steam turbine generator. However steam Rankine cycle tends to have lesser efficiency for smaller power plants with less than 5MW capacity and where the steam temperature at the inlet of the turbine is less than 350 deg C. further a steam Rankine cycle needs treated water and maintenance intensive. These problems can be overcome by using Thermodynamic cycle using Cyclopentane vapour in place of steam. This innovative cycle is best suited for Heat recovery in cement plants and results in best possible heat to power conversion efficiency. This paper discusses about Heat Recovery Power generation using innovative thermal cycle which uses Cyclopentane vapour in place of water- steam. And how this technology has been adopted for a Clinker cooler hot gas from mid-tap.

Keywords: clinker cooler, energy efficiency, organic rankine cycle, waste heat recovery

Procedia PDF Downloads 216
14374 Experimental and Numerical Determination of the Freeze Point Depression of a Multi-Phase Flow in a Scraped Surface Heat Exchanger

Authors: Carlos A. Acosta, Amar Bhalla, Ruyan Guo

Abstract:

Scraped surface heat exchangers (SSHE) use a rotor shaft assembly with scraping blades to homogenize viscous fluids during the heat transfer process. Obtaining in-situ measurements is difficult because the rotor and scraping blades spin continuously inside the mixing chamber, obstructing the instrumentation pathway. Computational fluid dynamics simulations provide useful insight into the flow behavior around the scraper blades for a variety of fluids and blade geometries. However, numerical solutions often focus on the fluid dynamics and heat transfer phenomena of rotating flow, ignoring the glass-transition temperature and freezing point depression. This research studies the multi-phase fluid dynamics and freezing point depression inside the SSHE with non-isothermal conditions in a time dependent process using an aqueous solution that contains 13.5 wt.% high fructose corn syrup and CO₂. The computational results were validated with in-situ pressure, temperature, and optical spectroscopy measurements. Results from the numerical model show good quantitatively agreement with experimental values.

Keywords: computational fluid dynamics, freezing point depression, phase-transition temperature, multi-phase flow

Procedia PDF Downloads 132
14373 Methanol Steam Reforming with Heat Recovery for Hydrogen-Rich Gas Production

Authors: Horng-Wen Wu, Yi Chao, Rong-Fang Horng

Abstract:

This study is to develop a methanol steam reformer with a heat recovery zone, which recovers heat from exhaust gas of a diesel engine, and to investigate waste heat recovery ratio at the required reaction temperature. The operation conditions of the reformer are reaction temperature (200 °C, 250 °C, and 300 °C), steam to carbonate (S/C) ratio (0.9, 1.1, and 1.3), and N2 volume flow rate (40 cm3/min, 70 cm3/min, and 100 cm3/min). Finally, the hydrogen concentration, the CO, CO2, and N2 concentrations are measured and recorded to calculate methanol conversion efficiency, hydrogen flow rate, and assisting combustion gas and impeding combustion gas ratio. The heat source of this reformer comes from electric heater and waste heat of exhaust gas from diesel engines. The objective is to recover waste heat from the engine and to make more uniform temperature distribution within the reformer. It is beneficial for the reformer to enhance the methanol conversion efficiency and hydrogen-rich gas production. Experimental results show that the highest hydrogen flow rate exists at N2 of the volume rate 40 cm3/min and reforming reaction temperature of 300 °C and the value is 19.6 l/min. With the electric heater and heat recovery from exhaust gas, the maximum heat recovery ratio is 13.18 % occurring at water-methanol (S/C) ratio of 1.3 and the reforming reaction temperature of 300 °C.

Keywords: heat recovery, hydrogen-rich production, methanol steam reformer, methanol conversion efficiency

Procedia PDF Downloads 448
14372 Experimental Investigation with Different Inclination Angles on Copper Oscillating Heat Pipes Performance Using Fe2O3 / Kerosene under Magnetic Field

Authors: H. R. Goshayeshi, M. Mansori, M. Ahmady, M. Zhaloyi

Abstract:

This paper presents the result of an experimental investigation regarding the use of Fe2O3 nanoparticles added to Kerosene as a working fluid, under magnetic field for Copper Oscillating Heat pipe with inclination angle of 0°(horizontal), 15°, 30°, 45°, 60°, 75°, and 90° (vertical). The following were examined; measure the temperature distribution and heat transfer rate on Oscillating Heat Pipe (OHP), with magnetic field under different angles. Results showed that the addition of Fe2O3 nanoparticles under magnetic field improved thermal performance of OHP especially in 75°.

Keywords: copper oscillating heat pipe, Fe2O3, magnetic field, inclination angles

Procedia PDF Downloads 348
14371 Adsorption Studies of Methane on Zeolite NaX, LiX, KX at High Pressures

Authors: El Hadi Zouaoui, Djamel Nibou, Mohamed Haddouche, Wan Azlina Wan Ab Karim Ghani, Samira Amokrane

Abstract:

In this study, CH₄ adsorption isotherms on NaX or Faujasite X and exchanged zeolites with Li⁺(LiX), and K⁺(KX) at different temperatures (298, 308, 323 and 353 K) has been investigated, using high pressure (3 MPa (30 bar)) thermo-gravimetric analyser. The experimental results were then validated using several isothermal kinetics models, namely Langmuir, Toth, and Marczewski-Jaroniec, followed by a calculation of the error coefficients between the experimental and theoretical results. It was found that the CH₄ adsorption isotherms are characterized by a strong increase in adsorption at low pressure and a tendency towards a high pressure limit value Qₘₐₓ. The size and position of the exchanged cations, the spherical shape of methane, the specific surface, and the volume of the pores revealed the most important influence parameters for this study. These results revealed that the experimentation and the modeling, well correlated with Marczewski-Jaroniec, Toth, and gave the best results whatever the temperature and the material used.

Keywords: CH₄ adsorption, exchange cations, exchanged zeolite, isotherm study, NaX zeolite

Procedia PDF Downloads 230
14370 The Effect of Type of Nanoparticles on the Quenching Process

Authors: Dogan Ciloglu, Abdurrahim Bolukbasi, Harun Cifci

Abstract:

In this study, the experiments were carried out to determine the best coolant for the quenching process among water-based silica, alumina, titania and copper oxide nanofluids (0.1 vol%). A sphere made up off brass material was used in the experiments. After the spherical test specimen was heated at high temperatures, it was suddenly plunged into the nanofluid suspensions. All experiments were performed at saturated conditions and under atmospheric pressure. Using the temperature-time data of the specimen, the cooling curves were obtained. The experimental results showed that the cooling performance of test specimen depended on the type of nanofluids. The silica nanoparticles enhanced the performance of boiling heat transfer and it is the best coolant for the quenching among other nanoparticles.

Keywords: quenching, nanofluid, pool boiling, heat transfer

Procedia PDF Downloads 274
14369 Thermodynamic Analysis and Experimental Study of Agricultural Waste Plasma Processing

Authors: V. E. Messerle, A. B. Ustimenko, O. A. Lavrichshev

Abstract:

A large amount of manure and its irrational use negatively affect the environment. As compared with biomass fermentation, plasma processing of manure enhances makes it possible to intensify the process of obtaining fuel gas, which consists mainly of synthesis gas (CO + H₂), and increase plant productivity by 150–200 times. This is achieved due to the high temperature in the plasma reactor and a multiple reduction in waste processing time. This paper examines the plasma processing of biomass using the example of dried mixed animal manure (dung with a moisture content of 30%). Characteristic composition of dung, wt.%: Н₂О – 30, С – 29.07, Н – 4.06, О – 32.08, S – 0.26, N – 1.22, P₂O₅ – 0.61, K₂O – 1.47, СаО – 0.86, MgO – 0.37. The thermodynamic code TERRA was used to numerically analyze dung plasma gasification and pyrolysis. Plasma gasification and pyrolysis of dung were analyzed in the temperature range 300–3,000 K and pressure 0.1 MPa for the following thermodynamic systems: 100% dung + 25% air (plasma gasification) and 100% dung + 25% nitrogen (plasma pyrolysis). Calculations were conducted to determine the composition of the gas phase, the degree of carbon gasification, and the specific energy consumption of the processes. At an optimum temperature of 1,500 K, which provides both complete gasification of dung carbon and the maximum yield of combustible components (99.4 vol.% during dung gasification and 99.5 vol.% during pyrolysis), and decomposition of toxic compounds of furan, dioxin, and benz(a)pyrene, the following composition of combustible gas was obtained, vol.%: СО – 29.6, Н₂ – 35.6, СО₂ – 5.7, N₂ – 10.6, H₂O – 17.9 (gasification) and СО – 30.2, Н₂ – 38.3, СО₂ – 4.1, N₂ – 13.3, H₂O – 13.6 (pyrolysis). The specific energy consumption of gasification and pyrolysis of dung at 1,500 K is 1.28 and 1.33 kWh/kg, respectively. An installation with a DC plasma torch with a rated power of 100 kW and a plasma reactor with a dung capacity of 50 kg/h was used for dung processing experiments. The dung was gasified in an air (or nitrogen during pyrolysis) plasma jet, which provided a mass-average temperature in the reactor volume of at least 1,600 K. The organic part of the dung was gasified, and the inorganic part of the waste was melted. For pyrolysis and gasification of dung, the specific energy consumption was 1.5 kWh/kg and 1.4 kWh/kg, respectively. The maximum temperature in the reactor reached 1,887 K. At the outlet of the reactor, a gas of the following composition was obtained, vol.%: СO – 25.9, H₂ – 32.9, СO₂ – 3.5, N₂ – 37.3 (pyrolysis in nitrogen plasma); СO – 32.6, H₂ – 24.1, СO₂ – 5.7, N₂ – 35.8 (air plasma gasification). The specific heat of combustion of the combustible gas formed during pyrolysis and plasma-air gasification of agricultural waste is 10,500 and 10,340 kJ/kg, respectively. Comparison of the integral indicators of dung plasma processing showed satisfactory agreement between the calculation and experiment.

Keywords: agricultural waste, experiment, plasma gasification, thermodynamic calculation

Procedia PDF Downloads 19
14368 Thermal Performance of Dual Flame Impinging Normally on to a Flat Surface

Authors: Satpal Singh, Subhash Chander

Abstract:

An experimental study has been conducted to evaluate the thermal performance of the CNG/air dual flame impinging normally on to a flat surface. The stability limits for the dual flame under both impinging and free conditions have been evaluated to select experimental operating range. Dual flame shape and structure have been explained with direct flame image and schematic diagram indicating modification in recirculation zone in presence of inner flame. Effects of various operating parameters like H/Dh, Re(o), Φ(o), and θ(o) on heat transfer characteristics have been discussed. Inner non-swirling flame Reynolds number (Re(i)) and equivalence ratio (Φ(i)) were kept constant. Heating patterns in the impingement region around the stagnation point have been altered significantly with change in the values of H/Dh, Re(o), Φ(o), and θ(o). The axial flow of inner flame has been notably effected with increase in Re(o). Heating was most favorable near stoichiometeric conditions of the outer swirling flame. However, the effect of change in swirl intensity (expressed in terms of θ(o)) on overall heat transfer efficiency was not as significant as in the case of other parameters. It has been inferred that best performance (higher uniformity and efficiency) of the dual flame impinging on a flat surface can be achieved at moderate value of separation distance (H/Dh of 2-3) and outer swirling flame Reynolds number (Re(o) of 7000-9000) under stoichiometeric conditions.

Keywords: dual flame, heat transfer, impingement, swirling insert, transmission efficiency

Procedia PDF Downloads 278
14367 Heat Transfer from a Cylinder in Cross-Flow of Single and Multiphase Flows

Authors: F. A. Hamad, S. He

Abstract:

In this paper, the average heat transfer characteristics for a cross flow cylinder of 16 mm diameter in a vertical pipe has been studied for single-phase flow (water/oil) and multicomponent (non-boiling) flow (water-air, water-oil, oil-air and water-oil-air). The cylinder is uniformly heated by electrical heater placed at the centre of the element. The results show that the values of average heat transfer coefficients for water are around four times the values for oil flow. Introducing air as a second phase with water has very little effect on heat transfer rate, while the heat transfer increased by 70% in case of oil. For water–oil flow, the heat transfer coefficient values are reflecting the percentage of water up to 50%, but increasing the water more than 50% leads to a sharp increase in the heat transfer coefficients to become close to the values of pure water. The enhancement of heat transfer by mixing two phases may be attributed to the changes in flow structure near to cylinder surface which lead to thinner boundary layer and higher turbulence. For three-phase flow, the heat transfer coefficients for all cases fall within the limit of single-phase flow of water and oil and are very close to pure water values. The net effect of the turbulence augmentation due to the introduction of air and the attenuation due to the introduction of oil leads to a thinner boundary layer of oil over the cylinder surface covered by a mixture of water and air bubbles.

Keywords: circular cylinder, cross flow, hear transfer, multicomponent multiphase flow

Procedia PDF Downloads 376
14366 The Contact between a Rigid Substrate and a Thick Elastic Layer

Authors: Nicola Menga, Giuseppe Carbone

Abstract:

Although contact mechanics has been widely focused on the study of contacts between half-space, it has been recently pointed out that in presence of finite thickness elastic layers the results of the contact problem show significant difference in terms of the main contact quantities (e.g. contact area, penetration, mean pressure, etc.). Actually, there exist a wide range of industrial application demanding for this kind of studies, such as seals leakage prediction or pressure-sensitive coatings for electrical applications. In this work, we focus on the contact between a rigid profile and an elastic layer of thickness h confined under two different configurations: rigid constrain and applied uniform pressure. The elastic problem at hand has been formalized following Green’s function method and then numerically solved by means of a matrix inversion. We study different contact conditions, both considering and neglecting adhesive interactions at the interface. This leads to different solution techniques: Adhesive contacts equilibrium solution is found, in term of contact area for given penetration, making stationary the total free energy of the system; whereas, adhesiveless contacts are addressed defining an equilibrium criterion, again on the contact area, relying on the fracture mechanics stress intensity factor KI. In particular, we make the KI vanish at the edges of the contact area, as peculiar for adhesiveless elastic contacts. The results are obtained in terms of contact area, penetration, and mean pressure for both adhesive and adhesiveless contact conditions. As expected, in the case of a uniform applied pressure the slab turns out much more compliant than the rigidly constrained one. Indeed, we have observed that the peak value of the contact pressure, for both the adhesive and adhesiveless condition, is much higher for the rigidly constrained configuration than in the case of applied uniform pressure. Furthermore, we observed that, for little contact area, both systems behave the same and the pull-off occurs at approximately the same contact area and mean contact pressure. This is an expected result since in this condition the ratio between the layers thickness and the contact area is very high and both layer configurations recover the half-space behavior where the pull-off occurrence is mainly controlled by the adhesive interactions, which are kept constant among the cases.

Keywords: contact mechanics, adhesion, friction, thick layer

Procedia PDF Downloads 489
14365 An Accurate Prediction of Surface Temperature History in a Supersonic Flight

Authors: A. M. Tahsini, S. A. Hosseini

Abstract:

In the present study, the surface temperature history of the adaptor part in a two-stage supersonic launch vehicle is accurately predicted. The full Navier-Stokes equations are used to estimate the aerodynamic heat flux. The one-dimensional heat conduction in solid phase is used to compute the temperature history. The instantaneous surface temperature is used to improve the applied heat flux, to improve the accuracy of the results.

Keywords: aerodynamic heating, heat conduction, numerical simulation, supersonic flight, launch vehicle

Procedia PDF Downloads 435
14364 Heat Treatment of Additively Manufactured Hybrid Rocket Fuel Grains

Authors: Jim J. Catina, Jackee M. Gwynn, Jin S. Kang

Abstract:

Additive manufacturing (AM) for hybrid rocket engines is becoming increasingly attractive due to its ability to create complex grain configurations with improved regression rates when compared to cast grains. However, the presence of microvoids in parts produced through the additive manufacturing method of Fused Deposition Modeling (FDM) results in a lower fuel density and is believed to cause a decrease in regression rate compared to ideal performance. In this experiment, FDM was used to create hybrid rocket fuel grains with a star configuration composed of acrylonitrile butadiene styrene (ABS). Testing was completed to determine the effect of heat treatment as a post-processing method to improve the combustion performance of hybrid rocket fuel grains manufactured by FDM. For control, three ABS star configuration grains were printed using FDM and hot fired using gaseous oxygen (GOX) as the oxidizer. Parameters such as thrust and mass flow rate were measured. Three identical grains were then heat treated to varying degrees and hot fired under the same conditions as the control grains. This paper will quantitatively describe the amount of improvement in engine performance as a result of heat treatment of the AM hybrid fuel grain. Engine performance is measured in this paper by specific impulse, which is determined from the thrust measurements collected in testing.

Keywords: acrylonitrile butadiene styrene, additive manufacturing, fused deposition modeling, heat treatment

Procedia PDF Downloads 96
14363 The Effect of Adding CuO Nanoparticles on Boiling Heat Transfer Enhancement in Horizontal Flattened Tubes

Authors: M. A. Akhavan-Behabadi, M. Najafi, A. Abbasi

Abstract:

An empirical investigation was performed in order to study the heat transfer characteristics of R600a flow boiling inside horizontal flattened tubes and the simultaneous effect of nanoparticles on boiling heat transfer in flattened channel. Round copper tubes of 8.7 mm I.D. were deformed into flattened shapes with different inside heights of 6.9, 5.5, and 3.4 mm as test areas. The effect of different parameters such as mass flux, vapor quality and inside height on heat transfer coefficient was studied. Flattening the tube caused a significant enhancement in heat transfer performance, so that the maximum augmentation ratio of 163% was obtained in flattened channel with lowest internal height. A new correlation was developed based on the present experimental data to predict the heat transfer coefficient in flattened tubes. This correlation estimated 90% of the entire database within ±20%. The best flat channel with the point of view of heat transfer performance was selected to study the effect of nanoparticle on heat transfer enhancement. Four homogenized mixtures containing 1% weight fraction of R600a/oil with different CuO nanoparticles concentration including 0.5%, 1% and 1.5% mass fraction of R600a/oil/CuO were studied. Observations show that heat transfer was improved by adding nanoparticles, which lead to maximum enhancement of 79% compare to the pure refrigerant at the same test condition.

Keywords: nano fluids, heat transfer, flattend tube, transport phenomena

Procedia PDF Downloads 410
14362 Investigating the Effect of Ceramic Thermal Barrier Coating on Diesel Engine with Lemon Oil Biofuel

Authors: V. Karthickeyan

Abstract:

The demand for energy is anticipated to increase, due to growing urbanization, industrialization, upgraded living standards and cumulatively increasing human population. The general public is becoming gradually aware of the diminishing fossil fuel resources along with the environmental issues, and it has become clear that biofuel is intended to make significant support to the forthcoming energy needs of the native and industrial sectors. Nowadays, the investigation on biofuels obtained from peels of fruits and vegetables have gained the consideration as an environment-friendly alternative to diesel. In the present work, biofuel was produced from non-edible Lemon Oil (LO) using steam distillation process. LO is characterized by its beneficial aspects like low kinematic viscosity and enhanced calorific value which provides better fuel atomization and evaporation. Furthermore, the heating values of the biofuels are approximately equal to diesel. A single cylinder, four-stroke diesel engine was used for this experimentation. An engine modification technique namely Thermal Barrier Coating (TBC) was attempted. Combustion chamber components were thermally coated with ceramic material namely partially stabilized zirconia (PSZ). The benefit of thermal barrier coating is to diminish the heat loss from engine and transform the collected heat into piston work. Performance characteristics like Brake Thermal Efficiency (BTE) and Brake Specific Fuel Consumption (BSFC) were analyzed. Combustion characteristics like in-cylinder pressure and heat release rate were analyzed. In addition, the following engine emissions namely nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke were measured. The acquired performance combustion and emission characteristics of uncoated engine were compared with PSZ coated engine. From the results, it was perceived that the LO biofuel may be considered as the prominent alternative in the near prospect with thermal barrier coating technique to enrich the performance, combustion and emission characteristics of diesel engine.

Keywords: ceramic material, thermal barrier coating, biofuel and diesel engine

Procedia PDF Downloads 134
14361 Thermal Efficiency Analysis and Optimal of Feed Water Heater for Mae Moh Thermal Power Plant

Authors: Khomkrit Mongkhuntod, Chatchawal Chaichana, Atipoang Nuntaphan

Abstract:

Feed Water Heater is the important equipment for thermal power plant. The heating temperature from feed heating process is an impact to power plant efficiency or heat rate. Normally, the degradation of feed water heater that operated for a long time is effect to decrease plant efficiency or increase plant heat rate. For Mae Moh power plant, each unit operated more than 20 years. The degradation of the main equipment is effect of planting efficiency or heat rate. From the efficiency and heat rate analysis, Mae Moh power plant operated in high heat rate more than the commissioning period. Some of the equipment were replaced for improving plant efficiency and plant heat rates such as HP turbine and LP turbine that the result is increased plant efficiency by 5% and decrease plant heat rate by 1%. For the target of power generation plan that Mae Moh power plant must be operated more than 10 years. These work is focus on thermal efficiency analysis of feed water heater to compare with the commissioning data for find the way to improve the feed water heater efficiency that may effect to increase plant efficiency or decrease plant heat rate by use heat balance model simulation and economic value add (EVA) method to study the investment for replacing the new feed water heater and analyze how this project can stay above the break-even point to make the project decision.

Keywords: feed water heater, power plant efficiency, plant heat rate, thermal efficiency analysis

Procedia PDF Downloads 343
14360 Cavitating Flow through a Venturi Using Computational Fluid Dynamics

Authors: Imane Benghalia, Mohammed Zamoum, Rachid Boucetta

Abstract:

Hydrodynamic cavitation is a complex physical phenomenon that appears in hydraulic systems (pumps, turbines, valves, Venturi tubes, etc.) when the fluid pressure decreases below the saturated vapor pressure. The works carried out in this study aimed to get a better understanding of the cavitating flow phenomena. For this, we have numerically studied a cavitating bubbly flow through a Venturi nozzle. The cavitation model is selected and solved using a commercial computational fluid dynamics (CFD) code. The obtained results show the effect of the inlet pressure (10, 7, 5, and 2 bars) of the Venturi on pressure, the velocity of the fluid flow, and the vapor fraction. We found that the inlet pressure of the Venturi strongly affects the evolution of the pressure, velocity, and vapor fraction formation in the cavitating flow.

Keywords: cavitating flow, CFD, phase change, venturi

Procedia PDF Downloads 69