Search results for: larch wood
103 Engineers’ Ability to Lead Effectively the Transformation to Sustainable Manufacturing: A Case Study of Saudi Arabia
Authors: Mohammed Alharbi, Clare Wood, Vasileios Samaras
Abstract:
Sustainability leadership is a controversial topic, particularly in the engineering context. The theoretical and practical technical focus of the engineering profession impacts our lives. Technologically, engineers significantly contribute to our modern civilization. Industrial revolutions are among the top engineering accomplishments that have contributed to the flourishing of our life. However, engineers have not always received the credit they deserve; instead, they have been blamed for the advent of various global issues, among them the global warming phenomena that are believed to be a result of the industrial revolutions. Global challenges demand engineers demonstrate more than their technical skills for effective contribution to a sustainable future. As a result, engineering leadership has emerged as a new research field. Sustainable manufacturing is a cornerstone for sustainable development. Investigating the change to more sustainable manufacturing practices is a significant issue for all, and even more in the field of engineering leadership. Engineers dominate the manufacturing industry; however, one of the main criticism of engineers is the lack of leadership skills. The literature on engineering leadership has not highlighted enough the engineers' leadership ability in leading sustainable manufacturing. Since we are at the cusp of a new industrial revolution -Industry 4.0, it is vital to investigate the ability of engineers to lead the industry towards a sustainable future. The primary purpose of this paper is to evaluate engineers' sustainability leadership competencies utilizing The Cambridge University Behavioral Competency Model. However, the practical application of the Cambridge model is limited due to the absence of a reliable measurement tool. Therefore, this study developed a valid and reliable survey instrument tool compatible with the Cambridge model as a secondary objective. More than 300 Saudi engineers from the manufacturing industry responded to an online questionnaire collected through the Qualtrics platform and analyzed using SPSS software. The findings provide a contemporary understanding of engineers' mindset related to sustainability leadership. The output of this research study could be valuable in designing effective engineering leadership programs in academia or industry, particularly for enhancing a sustainable manufacturing environment.Keywords: engineer, leadership, manufacturing, sustainability
Procedia PDF Downloads 158102 Effect of Windrow Management on Ammonia and Nitrous Oxide Emissions from Swine Manure Composting
Authors: Nanh Lovanh, John Loughrin, Kimberly Cook, Phil Silva, Byung-Taek Oh
Abstract:
In the era of sustainability, utilization of livestock wastes as soil amendment to provide micronutrients for crops is very economical and sustainable. It is well understood that livestock wastes are comparable, if not better, nutrient sources for crops as chemical fertilizers. However, the large concentrated volumes of animal manure produced from livestock operations and the limited amount of available nearby agricultural land areas necessitated the need for volume reduction of these animal wastes. Composting of these animal manures is a viable option for biomass and pathogenic reduction in the environment. Nevertheless, composting also increases the potential loss of available nutrients for crop production as well as unwanted emission of anthropogenic air pollutants due to the loss of ammonia and other compounds via volatilization. In this study, we examine the emission of ammonia and nitrous oxide from swine manure windrows to evaluate the benefit of biomass reduction in conjunction with the potential loss of available nutrients. The feedstock for the windrows was obtained from swine farm in Kentucky where swine manure was mixed with wood shaving as absorbent material. Static flux chambers along with photoacoustic gas analyzer were used to monitor ammonia and nitrous oxide concentrations during the composting process. The results show that ammonia and nitrous oxide fluxes were quite high during the initial composting process and after the turning of each compost pile. Over the period of roughly three months of composting, the biochemical oxygen demand (BOD) decreased by about 90%. Although composting of animal waste is quite beneficial for biomass reduction, composting may not be economically feasible from an agronomical point of view due to time, nutrient loss (N loss), and potential environmental pollution (ammonia and greenhouse gas emissions). Therefore, additional studies are needed to assess and validate the economics and environmental impact of animal (swine) manure composting (e.g., crop yield or impact on climate change).Keywords: windrow, swine manure, ammonia, nitrous oxide, fluxes, management
Procedia PDF Downloads 358101 Characterization of Defense-Related Genes and Metabolite Profiling in Oil Palm Elaeis guineensis during Interaction with Ganoderma boninense
Authors: Mohammad Nazri Abdul Bahari, Nurshafika Mohd Sakeh, Siti Nor Akmar Abdullah
Abstract:
Basal stem rot (BSR) is the most devastating disease in oil palm. Among the oil palm pathogenic fungi, the most prevalent and virulent species associated with BSR is Ganoderma boninense. Early detection of G. boninense attack in oil palm wherein physical symptoms has not yet appeared can offer opportunities to prevent the spread of the necrotrophic fungus. However, poor understanding of molecular defense responses and roles of antifungal metabolites in oil palm against G. boninense has complicated the resolving measures. Hence, characterization of defense-related molecular responses and production of antifungal compounds during early interaction with G. boninense is of utmost important. Four month-old oil palm (Elaeis guineensis) seedlings were artificially infected with G. boninense-inoculated rubber wood block via sitting technique. RNA of samples were extracted from roots and leaves tissues at 0, 3, 7 and 11 days post inoculation (d.p.i) followed with sequencing using RNA-Seq method. Differentially-expressed genes (DEGs) of oil palm-G. boninense interaction were identified, while changes in metabolite profile will be scrutinized related to the DEGs. The RNA-Seq data generated a total of 113,829,376 and 313,293,229 paired-end clean reads from untreated (0 d.p.i) and treated (3, 7, 11 d.p.i) samples respectively, each with two biological replicates. The paired-end reads were mapped to Elaeis guineensis reference genome to screen out non-oil palm genes and subsequently generated 74,794 coding sequences. DEG analysis of phytohormone biosynthetic genes in oil palm roots revealed that at p-value ≤ 0.01, ethylene and jasmonic acid may act in antagonistic manner with salicylic acid to coordinate defense response at early interaction with G. boninense. Findings on metabolite profiling of G. boninense-infected oil palm roots and leaves are hoped to explain the defense-related compounds elicited by Elaeis guineensis in response to G. boninense colonization. The study aims to shed light on molecular defense response of oil palm at early interaction with G. boninense and promote prevention measures against Ganoderma infection.Keywords: Ganoderma boninense, metabolites, phytohormones, RNA-Seq
Procedia PDF Downloads 265100 Distant Speech Recognition Using Laser Doppler Vibrometer
Authors: Yunbin Deng
Abstract:
Most existing applications of automatic speech recognition relies on cooperative subjects at a short distance to a microphone. Standoff speech recognition using microphone arrays can extend the subject to sensor distance somewhat, but it is still limited to only a few feet. As such, most deployed applications of standoff speech recognitions are limited to indoor use at short range. Moreover, these applications require air passway between the subject and the sensor to achieve reasonable signal to noise ratio. This study reports long range (50 feet) automatic speech recognition experiments using a Laser Doppler Vibrometer (LDV) sensor. This study shows that the LDV sensor modality can extend the speech acquisition standoff distance far beyond microphone arrays to hundreds of feet. In addition, LDV enables 'listening' through the windows for uncooperative subjects. This enables new capabilities in automatic audio and speech intelligence, surveillance, and reconnaissance (ISR) for law enforcement, homeland security and counter terrorism applications. The Polytec LDV model OFV-505 is used in this study. To investigate the impact of different vibrating materials, five parallel LDV speech corpora, each consisting of 630 speakers, are collected from the vibrations of a glass window, a metal plate, a plastic box, a wood slate, and a concrete wall. These are the common materials the application could encounter in a daily life. These data were compared with the microphone counterpart to manifest the impact of various materials on the spectrum of the LDV speech signal. State of the art deep neural network modeling approaches is used to conduct continuous speaker independent speech recognition on these LDV speech datasets. Preliminary phoneme recognition results using time-delay neural network, bi-directional long short term memory, and model fusion shows great promise of using LDV for long range speech recognition. To author’s best knowledge, this is the first time an LDV is reported for long distance speech recognition application.Keywords: covert speech acquisition, distant speech recognition, DSR, laser Doppler vibrometer, LDV, speech intelligence surveillance and reconnaissance, ISR
Procedia PDF Downloads 18099 Social Perception of the Benefits of Using a Solar Dryer to Conserve Fruits and Vegetables in Rural Communities in Manica - Mozambique
Authors: Constâncio Augusto Machanguana, Luís Miguel Estevão Cristóvão
Abstract:
In Mozambique, over 80% of the rural population relies on agriculture, livestock, and silviculture for their livelihoods. Unfortunately, these communities face persistent food shortages, which are exacerbated by natural disasters and post-harvest losses due to inadequate storage facilities. Addressing post-harvest loss is critical not only for ensuring food security but also for preventing financial hardships faced by farmers. The study delves into the perceptions of beneficiary communities regarding the construction of three food dryer models made from metal, wood, and clay brick. These solar dryers are part of the project titled ‘Solar Dryer Integrated with Natural Rocks as Energy Storage for Drying Fruits and Vegetables in Mozambique.’ The overarching goal is to enhance food availability beyond the typical growing season, particularly for fruits and vegetables, while simultaneously combating hunger. Given the context of climate change impacts on agriculture, this project becomes even more relevant. Structured interviews conducted with 45 members of beneficiary associations in Manica Province—primarily female heads of households—revealed that rural communities are aware of various food drying alternatives. However, reliance on traditional methods often comes at a cost: compromised product quality and reduced shelf life. To address these challenges, the project implemented energy storage solutions like rock-based thermal energy storage for food drying. This result underscores the urgent need to foster innovation and extend these sustainable practices —such as solar dryers integrated with thermal energy-storage systems made of locally abundant and affordable materials— to more local communities, especially those with significant agricultural potential within the country. By taking these actions, we can improve food security and alleviate hunger.Keywords: solar dryer, food security, rural community, small technology
Procedia PDF Downloads 3398 Internal Audit Function Contributions to the External Audit
Authors: Douglas F. Prawitt, Nathan Y. Sharp, David A. Wood
Abstract:
Consistent with prior experimental and survey studies, we find that IAFs that spend more time directly assisting the external auditor is associated with lower external audit fees. Interestingly, we do not find evidence that external auditors reduce fees based on work previously performed by the IAF. We also find that the time spent assisting the external auditor has a greater negative effect on external audit fees than the time spent performing tasks upon which the auditor may rely but that are not performed as direct assistance to the external audit. Our results also show that previous proxies used to measure this relation is either not associated with or are negatively associated with our direct measures of how the IAF can contribute to the external audit and are highly positively associated with the size and the complexity of the organization. Thus, we conclude the disparate experimental and archival results may be attributable to issues surrounding the construct validity of measures used in previous archival studies and that when measures similar to those used in experimental studies are employed in archival tests, the archival results are consistent with experimental findings. Our research makes four primary contributions to the literature. First, we provide evidence that internal auditing contributes to a reduction in external audit fees. Second, we replicate and provide an explanation for why previous archival studies find that internal auditing has either no association with external audit fees or is associated with an increase in those fees: prior studies generally use proxies of internal audit contribution that do not adequately capture the intended construct. Third, our research expands on survey-based research (e.g., Oil Libya sh.co.) by separately examining the impact on the audit fee of the internal auditors’ work, indirectly assisting external auditors and internal auditors’ prior work upon which external auditors can rely. Finally, we extend prior research by using a new, independent data source to validate and extend prior studies. This data set also allows for a sample of examining the impact of internal auditing on the external audit fee and the use of a more comprehensive external audit fee model that better controls for determinants of the external audit fee.Keywords: internal audit, contribution, external audit, function
Procedia PDF Downloads 12497 Assessment of the Thermal and Mechanical Properties of Bio-based Composite Materials for Thermal Insulation
Authors: Nega Tesfie Asfaw, Rafik Absi, Labouda B. A, Ikram El Abbassi
Abstract:
Composite materials have come to the fore a few decades ago because of their superior insulation performances. Recycling natural fiber composites and natural fiber reinforcement of waste materials are other steps for conserving resources and the environment. This paper reviewed the Thermal properties (Thermal conductivity, Effusivity, and Diffusivity) and Mechanical properties (Compressive strength, Flexural strength, and Tensile strength) of bio-composite materials for thermal insulation in the construction industry. For several years, the development of the building materials industry has placed a special emphasis on bio-source materials. According to recent studies, most natural fibers have good thermal insulating qualities and good mechanical properties. To determine the thermal and mechanical performance of bio-composite materials in construction most research used experimental methods. the results of the study show that these natural fibers have allowed us to optimize energy consumption in a building and state that density, porosity, percentage of fiber, the direction of heat flow orientation of the fiber, and the shape of the specimen are the main elements that limit the thermal performance and also showed that density, porosity, Type of Fiber, Fiber length, orientation and weight percentage loading, Fiber-matrix adhesion, Choice of the polymer matrix, Presence of void are the main elements that limit the mechanical performance of the insulation material. Based on the results of this reviewed paper Moss fibers (0.034W/ (m. K)), Wood Fiber (0.043 W/ (m. K)), Wheat straw (0.046 W/ (m. K), and corn husk fibers (0.046 W/ (m. K) are a most promising solution for energy efficiency for construction industry with interesting insulation properties and with good acceptable mechanical properties. Finally, depending on the best fibers used for insulation applications in the construction sector, the thermal performance rate of various fibers reviewed in this article are analyzed. Due to Typha's high porosity, the results indicated that Typha australis fiber had a better thermal performance rate of 89.03% with clay.Keywords: bio-based materials, thermal conductivity, compressive strength, thermal performance
Procedia PDF Downloads 3196 Developing Sustainable Rammed Earth Material Using Pulp Mill Fly Ash as Cement Replacement
Authors: Amin Ajabi, Chinchu Cherian, Sumi Siddiqua
Abstract:
Rammed earth (RE) is a traditional soil-based building material made by compressing a mixture of natural earth and binder ingredients such as chalk or lime, in temporary formworks. However, the modern RE uses 5 to 10% cement as a binder in order to meet the strength and durability requirements as per the standard specifications and guidelines. RE construction is considered to be an energy-efficient and environmental-friendly approach when compared to conventional concrete systems, which use 20 to 30% cement. The present study aimed to develop RE mix designs by utilizing non-hazardous wood-based fly ash generated by pulp and paper mills as a partial replacement for cement. The pulp mill fly ash (PPFA)-stabilized RE is considered to be a sustainable approach keeping in view of the massive carbon footprints associated with cement production as well as the adverse environmental impacts due to disposal of PPFA in landfills. For the experimental study, as-received PPFA, as well as PPFA-based geopolymer (synthesized by alkaline activation method), were incorporated as cement substitutes in the RE mixtures. Initially, local soil was collected and characterized by index and engineering properties. The PPFA was procured from a pulp manufacturing mill, and its physicochemical, mineralogical and morphological characterization, as well as environmental impact assessment, was conducted. Further, the various mix designs of RE material incorporating local soil and different proportions of cement, PPFA, and alkaline activator (a mixture of sodium silicate and sodium hydroxide solutions) were developed. The compacted RE specimens were cured and tested for 7-day and 28-day unconfined compressive strength (UCS) variations. Based on UCS results, the optimum mix design was identified corresponding to maximum strength improvement. Further, the cured RE specimens were subjected to freeze-thaw cycle testing for evaluating its performance and durability as a sustainable construction technique under extreme climatic conditions.Keywords: sustainability, rammed earth, stabilization, pulp mill fly ash, geopolymer, alkaline activation, strength, durability
Procedia PDF Downloads 9995 Recycled Cellulosic Fibers and Lignocellulosic Aggregates for Sustainable Building Materials
Authors: N. Stevulova, I. Schwarzova, V. Hospodarova, J. Junak, J. Briancin
Abstract:
Sustainability is becoming a priority for developers and the use of environmentally friendly materials is increasing. Nowadays, the application of raw materials from renewable sources to building materials has gained a significant interest in this research area. Lignocellulosic aggregates and cellulosic fibers are coming from many different sources such as wood, plants and waste. They are promising alternative materials to replace synthetic, glass and asbestos fibers as reinforcement in inorganic matrix of composites. Natural fibers are renewable resources so their cost is relatively low in comparison to synthetic fibers. With the consideration of environmental consciousness, natural fibers are biodegradable so their using can reduce CO2 emissions in the building materials production. The use of cellulosic fibers in cementitious matrices have gained importance because they make the composites lighter at high fiber content, they have comparable cost - performance ratios to similar building materials and they could be processed from waste paper, thus expanding the opportunities for waste utilization in cementitious materials. The main objective of this work is to find out the possibility of using different wastes: hemp hurds as waste of hemp stem processing and recycled fibers obtained from waste paper for making cement composite products such as mortars based on cellulose fibers. This material was made of cement mortar containing organic filler based on hemp hurds and recycled waste paper. In addition, the effects of fibers and their contents on some selected physical and mechanical properties of the fiber-cement plaster composites have been investigated. In this research organic material have used to mortars as 2.0, 5.0 and 10.0 % replacement of cement weight. Reference sample is made for comparison of physical and mechanical properties of cement composites based on recycled cellulosic fibers and lignocellulosic aggregates. The prepared specimens were tested after 28 days of curing in order to investigate density, compressive strength and water absorbability. Scanning Electron Microscopy examination was also carried out.Keywords: Hemp hurds, organic filler, recycled paper, sustainable building materials
Procedia PDF Downloads 22394 Carbon Pool Assessment in Community Forests, Nepal
Authors: Medani Prasad Rijal
Abstract:
Forest itself is a factory as well as product. It supplies tangible and intangible goods and services. It supplies timber, fuel wood, fodder, grass leaf litter as well as non timber edible goods and medicinal and aromatic products additionally provides environmental services. These environmental services are of local, national or even global importance. In Nepal, more than 19 thousands community forests are providing environmental service in less economic benefit than actual efficiency. There is a risk of cost of management of those forest exceeds benefits and forests get converted to open access resources in future. Most of the environmental goods and services do not have markets which mean no prices at which they are available to the consumers, therefore the valuation of these services goods and services establishment of paying mechanism for such services and insure the benefit to community is more relevant in local as well as global scale. There are few examples of carbon trading in domestic level to meet the country wide emission goal. In this contest, the study aims to explore the public attitude towards carbon offsetting and their responsibility over service providers. This study helps in promotion of environment service awareness among general people, service provider and community forest. The research helps to unveil the carbon pool scenario in community forest and willingness to pay for carbon offsetting of people who are consuming more energy than general people and emitting relatively more carbon in atmosphere. The study has assessed the carbon pool status in two community forest and valuated carbon service from community forest through willingness to pay in Dharan municipality situated in eastern. In the study, in two community forests carbon pools were assessed following the guideline “Forest Carbon Inventory Guideline 2010” prescribed by Ministry of Forest and soil Conservation, Nepal. Final outcomes of analysis in intensively managed area of Hokse CF recorded as 103.58 tons C /ha with 6173.30 tons carbon stock. Similarly in Hariyali CF carbon density was recorded 251.72 mg C /ha. The total carbon stock of intensively managed blocks in Hariyali CF is 35839.62 tons carbon.Keywords: carbon, offsetting, sequestration, valuation, willingness to pay
Procedia PDF Downloads 35693 Locally Produced Solid Biofuels – Carbon Dioxide Emissions and Competitiveness with Conventional Ways of Individual Space Heating
Authors: Jiri Beranovsky, Jaroslav Knapek, Tomas Kralik, Kamila Vavrova
Abstract:
The paper deals with the results of research focused on the complex aspects of the use of intentionally grown biomass on agricultural land for the production of solid biofuels as an alternative for individual household heating. . The study primarily deals with the analysis of CO2 emissions of the logistics cycle of biomass for the production of energy pellets. Growing, harvesting, transport and storage are evaluated in the pellet production cycle. The aim is also to take into account the consumption profile during the year in terms of heating of common family houses, which are typical end-market segment for these fuels. It is assumed that in family houses, bio-pellets are able to substitute typical fossil fuels, such as brown coal and old wood burning heating devices and also electric boilers. One of the competing technology with the pellets are heat pumps. The results show the CO2 emissions related with considered fuels and technologies for their utilization. Comparative analysis is aimed biopellets from intentionally grown biomass, brown coal, natural gas and electricity used in electric boilers and heat pumps. Analysis combines CO2 emissions related with individual fuels utilization with costs of these fuels utilization. Cost of biopellets from intentionally grown biomass is derived from the economic models of individual energy crop plantations. At the same time, the restrictions imposed by EU legislation on Ecodesign's fuel and combustion equipment requirements and NOx emissions are discussed. Preliminary results of analyzes show that to achieve the competitiveness of pellets produced from specifically grown biomass, it would be necessary to either significantly ecological tax on coal (from about 0.3 to 3-3.5 EUR/GJ), or to multiply the agricultural subsidy per area. In addition to the Czech Republic, the results are also relevant for other countries, such as Bulgaria and Poland, which also have a high proportion of solid fuels for household heating.Keywords: CO2 emissions, heating costs, energy crop, pellets, brown coal, heat pumps, economical evaluation
Procedia PDF Downloads 11492 Tea and Its Working Methodology in the Biomass Estimation of Poplar Species
Authors: Pratima Poudel, Austin Himes, Heidi Renninger, Eric McConnel
Abstract:
Populus spp. (poplar) are the fastest-growing trees in North America, making them ideal for a range of applications as they can achieve high yields on short rotations and regenerate by coppice. Furthermore, poplar undergoes biochemical conversion to fuels without complexity, making it one of the most promising, purpose-grown, woody perennial energy sources. Employing wood-based biomass for bioenergy offers numerous benefits, including reducing greenhouse gas (GHG) emissions compared to non-renewable traditional fuels, the preservation of robust forest ecosystems, and creating economic prospects for rural communities.In order to gain a better understanding of the potential use of poplar as a biomass feedstock for biofuel in the southeastern US, the conducted a techno-economic assessment (TEA). This assessment is an analytical approach that integrates technical and economic factors of a production system to evaluate its economic viability. the TEA specifically focused on a short rotation coppice system employing a single-pass cut-and-chip harvesting method for poplar. It encompassed all the costs associated with establishing dedicated poplar plantations, including land rent, site preparation, planting, fertilizers, and herbicides. Additionally, we performed a sensitivity analysis to evaluate how different costs can affect the economic performance of the poplar cropping system. This analysis aimed to determine the minimum average delivered selling price for one metric ton of biomass necessary to achieve a desired rate of return over the cropping period. To inform the TEA, data on the establishment, crop care activities, and crop yields were derived from a field study conducted at the Mississippi Agricultural and Forestry Experiment Station's Bearden Dairy Research Center in Oktibbeha County and Pontotoc Ridge-Flatwood Branch Experiment Station in Pontotoc County.Keywords: biomass, populus species, sensitivity analysis, technoeconomic analysis
Procedia PDF Downloads 8391 Is Sodium Channel Nav1.7 an Ideal Therapeutically Analgesic Target? A Systematic Review
Authors: Yutong Wan, John N. Wood
Abstract:
Introduction: SCN9A encoded Nav1.7 is an ideal therapeutic target with minimal side effects for the pharmaceutical industry because SCN9A variants can cause both human gains of function pain-related mutations and loss of function pain-free mutations. This study reviews the clinical effectiveness of existing Nav1.7 inhibitors, which theoretically should be powerful analgesics. Methods: A systematic review is conducted on the effectiveness of current Nav1.7 blockers undergoing clinical trials. Studies were mainly extracted from PubMed, U.S. National Library of Medicine Clinical Trials, World Health Organization International Clinical Trials Registry, ISRCTN registry platform, and Integrated Research Approval System by NHS. Only studies with full text available and those conducted using double-blinded, placebo controlled, and randomised designs and reporting at least one analgesic measurement were included. Results: Overall, 61 trials were screened, and eight studies covering PF 05089771 (Pfizer), TV 45070 (Teva & Xenon), and BIIB074 (Biogen) met the inclusion criteria. Most studies were excluded because results were not published. All three compounds demonstrated insignificant analgesic effects, and the comparison between PF 05089771 and pregabalin/ibuprofen showed that PF 05089771 was a much weaker analgesic. All three drug candidates only have mild side effects, indicating the potentials for further investigation of Nav1.7 antagonists. Discussion: The failure of current Nav1.7 small molecule inhibitors might attribute to ignorance of the key role of endogenous systems in Nav1.7 null mutants, the lack of selectivity and blocking potency, and central impermeability. The synergistic combination of analgesic drugs, a recent UCL patent, combining a small dose of Nav1.7 blockers and opioids or enkephalinase inhibitors dramatically enhanced the analgesic effects. Conclusion: The current clinical testing Nav1.7 blockers are generally disappointing. However, the newer generation of Nav1.7 targeting analgesics has overcome the major constraints of its predecessors.Keywords: chronic pain, Nav1.7 blockers, SCN9A, systematic review
Procedia PDF Downloads 13190 Evaluation of Azo Dye Toxicity Using Some Haematological and Histopathological Alterations in Fish Catla Catla
Authors: Jagruti Barot
Abstract:
The textile industry plays a major role in the economy of India and on the other side of the coin it is the major source for water pollution. As azo dyes is the largest dye class they are extensively used in many fields such as textile industry, leather tanning industry, paper production, food, colour photography, pharmaceuticals and medicine, cosmetic, hair colourings, wood staining, agricultural, biological and chemical research etc. In addition to these, they can have acute and/or chronic effects on organisms depending on their concentration and length of exposure when they discharged as effluent in the environment. The aim of this study was to assess the genotoxic and histotoxic potentials of environmentally relevant concentrations of RR 120 on Catla catla, important edible freshwater fingerlings. For this, healthy Catla catla fingerlings were procured from the Government Fish Farm and acclimatized in 100 L capacity and continuously aerated glass aquarium in laboratory for 15 days. According to APHA some physic-chemical parameters were measured and maintained such as temperature, pH, dissolve oxygen, alkalinity, total hardness. Water along with excreta had been changed every 24 hrs. All fingerlings were fed artificial food palates once a day @ body weight. After 15 days fingerlings were grouped in 5 (10 in each) and exposed to various concentrations of RR 120 (Control, 10, 20, 30 and 40 mg/L) and samples (peripheral blood and gills, kidney) were collected and analyzed at 96 hrs. of interval. All results were compared with the control. Micronuclei (MN), nuclear buds (NB), fragmented-apoptotic (FA) and bi-nucleated (BN) cells in blood cells and in tissues (gills and kidney cells) were observed. Prominent histopathological alterations were noticed in gills such as aneurism, hyperplasia, degenerated central axis, lifting of gill epithelium, curved secondary gill lamellae etc. Similarly kidney showed some detrimental changes like shrunken glomeruli with increased periglomerular space, degenerated renal tubules etc. Both haematological and histopathological changes clearly reveal the toxic potential of RR 120. This work concludes that water pollution assessment can be done by these two biomarkers which provide baseline to the further chromosomal or molecular work.Keywords: micronuclei, genotoxicity, RR 120, Catla catla
Procedia PDF Downloads 20989 Risk and Reliability Based Probabilistic Structural Analysis of Railroad Subgrade Using Finite Element Analysis
Authors: Asif Arshid, Ying Huang, Denver Tolliver
Abstract:
Finite Element (FE) method coupled with ever-increasing computational powers has substantially advanced the reliability of deterministic three dimensional structural analyses of a structure with uniform material properties. However, railways trackbed is made up of diverse group of materials including steel, wood, rock and soil, while each material has its own varying levels of heterogeneity and imperfections. It is observed that the application of probabilistic methods for trackbed structural analysis while incorporating the material and geometric variabilities is deeply underworked. The authors developed and validated a 3-dimensional FE based numerical trackbed model and in this study, they investigated the influence of variability in Young modulus and thicknesses of granular layers (Ballast and Subgrade) on the reliability index (-index) of the subgrade layer. The influence of these factors is accounted for by changing their Coefficients of Variance (COV) while keeping their means constant. These variations are formulated using Gaussian Normal distribution. Two failure mechanisms in subgrade namely Progressive Shear Failure and Excessive Plastic Deformation are examined. Preliminary results of risk-based probabilistic analysis for Progressive Shear Failure revealed that the variations in Ballast depth are the most influential factor for vertical stress at the top of subgrade surface. Whereas, in case of Excessive Plastic Deformations in subgrade layer, the variations in its own depth and Young modulus proved to be most important while ballast properties remained almost indifferent. For both these failure moods, it is also observed that the reliability index for subgrade failure increases with the increase in COV of ballast depth and subgrade Young modulus. The findings of this work is of particular significance in studying the combined effect of construction imperfections and variations in ground conditions on the structural performance of railroad trackbed and evaluating the associated risk involved. In addition, it also provides an additional tool to supplement the deterministic analysis procedures and decision making for railroad maintenance.Keywords: finite element analysis, numerical modeling, probabilistic methods, risk and reliability analysis, subgrade
Procedia PDF Downloads 14088 Sustainable Solutions for Urban Problems: Industrial Container Housing for Endangered Communities in Maranhao, Brazil
Authors: Helida Thays Gomes Soares, Conceicao De Maria Pinheiro Correia, Fabiano Maciel Soares, Kleymer Silva
Abstract:
There is great discussion around populational increase in urban areas of the global south, and, consequently, the growth of inappropriate housing and the different ways humans have found to solve housing problems around the world. Sao Luís, the capital of the state of Maranhao is a good example. The 1.6 million inhabitant metropole is a colonial tropical city that shelters 22% of the population of Maranhão, brazilian state that still carries the scars of slavery in past centuries. In 2016, Brazilian Institute of Geography and Statistic found that 20% of Maranhão’s inhabitants were living in houses with external walls made of non-durable materials, like recycled wood, cardboard or soil. Out of this problematic, this study aims to propose interventions not only in the physical structure of irregular housing, but also to serve as a guide to intervene in the way eco-friendly, communitarian housing is seen by extreme poor zones inside metropolitan regions around big cities in the global south. The adaptation and reuse of industrial containers from the Harbor of Itaqui for housing is also an aim of the project. The great volume of discarded industrial containers may be an opportunity to solve housing deficit in the city. That way, through field research in São Luís’ neighborhoods mostly occupied by inappropriate housing, the study intends to raise ethnographical and physical values that help to shape new uses of industrial containers and recycled building materials, bringing the community into the process of shaping new-housing for local housing programs, changing the mindset of a concrete/brick model of building. The study used a general feasibility analysis of local engineers regarding strength of the locally used container for construction purposes, and also researched in-loco the current impressions of risky areas inhabitants of housing, traditional housing and the role they played as city shapers, evaluating their perceptions of what means to live and how their houses represent their personality.Keywords: container housing, civil construction, housing deficit, participatory design, sustainability
Procedia PDF Downloads 19287 Stress-Strain Behavior of Banana Fiber Reinforced and Biochar Amended Compressed Stabilized Earth Blocks
Authors: Farnia Nayar Parshi, Mohammad Shariful Islam
Abstract:
Though earth construction is an ancient technology, researchers are working on increasing its strength by adding different types of stabilizers. Ordinary Portland cement for sandy soil and lime for clayey soil is very popular practice as well as recommended by various authorities for making stabilized blocks for satisfactory performance. The addition of these additives improves compressive strength but fails to improve ductility. The addition of both synthetic and natural fibers increases both compressive strength and ductility. Studies are conducted to make earth blocks more cost-effective, energy-efficient and sustainable. In this experiment, an agricultural waste banana fiber and biochar is used to study the compressive stress-strain behavior of earth blocks made with four types of soil low plastic clay, sandy low plastic clay, very fine sand and medium to fine sand. Biochar is a charcoal-like carbon usually produced from organic or agricultural waste in high temperatures through a controlled condition called pyrolysis. In this experimental study, biochar was collected from BBI (Bangladesh Biochar Initiative) produced from wood flakes around 400 deg. Celsius. Locally available PPC (Portland Pozzolana Cement) is used. 5 cm × 5 cm × 5 cm earth blocks were made with eight different combinations such as bare soil, soil with 6% cement, soil with 6% cement and 5% biochar, soil with 6% cement, 5% biochar and 1% fiber, soil with 1% fiber, soil with 5% biochar and 1% fiber and soil with 6% cement and 1% fiber. All samples were prepared with 10-12% water content. Uniaxial compressive strength tests were conducted on 21 days old earth blocks. Stress-strain diagram shows that the addition of banana fiber improved compressive strength drastically, but the combined effect of fiber and biochar is different based on different soil types. For clayey soil, 6% cement and 1% fiber give maximum compressive strength of 991 kPa, and for very fine sand, a combination of 5% biochar, 6% cement and 1% fiber gives maximum compressive strength of 522 kPa as well as ductility. For medium-to-find sand, 6% cement and 1% fiber give the best result, 1530 kPa, among other combinations. The addition of fiber increases not only ductility but also compressive strength as well. The effect of biochar with fiber varies with the soil type.Keywords: banana fiber, biochar, cement, compressed stabilized earth blocks, compressive strength
Procedia PDF Downloads 12186 Cellulose Nanocrystals from Melon Plant Residues: A Sustainable and Renewable Source
Authors: Asiya Rezzouq, Mehdi El Bouchti, Omar Cherkaoui, Sanaa Majid, Souad Zyade
Abstract:
In recent years, there has been a steady increase in the exploration of new renewable and non-conventional sources for the production of biodegradable nanomaterials. Nature harbours valuable cellulose-rich materials that have so far been under-exploited and can be used to create cellulose derivatives such as cellulose microfibres (CMFs) and cellulose nanocrystals (CNCs). These unconventional sources have considerable potential as alternatives to conventional sources such as wood and cotton. By using agricultural waste to produce these cellulose derivatives, we are responding to the global call for sustainable solutions to environmental and economic challenges. Responsible management of agricultural waste is increasingly crucial to reducing the environmental consequences of its disposal, including soil and water pollution, while making efficient use of these untapped resources. In this study, the main objective was to extract cellulose nanocrystals (CNC) from melon plant residues using methods that are both efficient and sustainable. To achieve this high-quality extraction, we followed a well-defined protocol involving several key steps: pre-treatment of the residues by grinding, filtration and chemical purification to obtain high-quality (CMF) with a yield of 52% relative to the initial mass of the melon plant residue. Acid hydrolysis was then carried out using phosphoric acid and sulphuric acid to convert (CMF) into cellulose nanocrystals. The extracted cellulose nanocrystals were subjected to in-depth characterization using advanced techniques such as transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The resulting cellulose nanocrystals have exceptional properties, including a large specific surface area, high thermal stability and high mechanical strength, making them suitable for a variety of applications, including as reinforcements for composite materials. In summary, the study highlights the potential for recovering agricultural melon waste to produce high-quality cellulose nanocrystals with promising applications in industry, nanotechnology, and biotechnology, thereby contributing to environmental and economic sustainability.Keywords: cellulose, melon plant residues, cellulose nanocrystals, properties, applications, composite materials
Procedia PDF Downloads 5785 Filling the Policy Gap for Coastal Resources Management: Case of Evidence-Based Mangrove Institutional Strengthening in Cameroon
Authors: Julius Niba Fon, Jean Hude E. Moudingo
Abstract:
Mangrove ecosystems in Cameroon are valuable both in services and functions as they play host to carbon sinks, fishery breeding grounds and natural coastal barriers against storms. In addition to the globally important biodiversity that they contain, they also contribute to local livelihoods. Despite these appraisals, a reduction of about 30 % over a 25 years period due to anthropogenic and natural actions has been recorded. The key drivers influencing mangrove change include population growth, climate change, economic and political trends and upstream habitat use. Reversing the trend of mangrove loss and growing vulnerability of coastal peoples requires a real commitment by the government to develop and implement robust level policies. It has been observed in Cameroon that special ecosystems like mangroves are insufficiently addressed by forestry and/or environment programs. Given these facts, the Food Agriculture Organization (FAO) in partnership with the Government of Cameroon and other development actors have put in place the project for sustainable community-based management and conservation of mangrove ecosystems in Cameroon. The aim is to address two issues notably the present weak institutional and legal framework for mangrove management, and the unrestricted and unsustainable harvesting of mangrove resources. Civil society organizations like the Cameroon Wildlife Conservation Society, Cameroon Ecology and Organization for the Environment and Development have been working to reduce the deforestation and degradation trend of Cameroon mangroves and also bringing the mangrove agenda to the fore in national and international arenas. Following a desktop approach, we found out that in situ and ex situ initiatives on mangrove management and conservation exist on propagation of improved fish smoke ovens to reduce fuel wood consumption, mangrove forest regeneration, shrimps farming and mangrove protected areas management. The evidence generated from the field experiences are inputs for processes of improving the legal and institutional framework for mangrove management in Cameroon, such as the elaboration of norms for mangroves management engaged by the government.Keywords: mangrove ecosystem, legal and institutional framework, climate change, civil society organizations
Procedia PDF Downloads 36584 Solar-Thermal-Electric Stirling Engine-Powered System for Residential Units
Authors: Florian Misoc, Cyril Okhio, Joshua Tolbert, Nick Carlin, Thomas Ramey
Abstract:
This project is focused on designing a Stirling engine system for a solar-thermal-electrical system that can supply electric power to a single residential unit. Since Stirling engines are heat engines operating any available heat source, is notable for its ability to generate clean and reliable energy without emissions. Due to the need of finding alternative energy sources, the Stirling engines are making a comeback with the recent technologies, which include thermal energy conservation during the heat transfer process. Recent reviews show mounting evidence and positive test results that Stirling engines are able to produce constant energy supply that ranges from 5kW to 20kW. Solar Power source is one of the many uses for Stirling engines. Using solar energy to operate Stirling engines is an idea considered by many researchers, due to the ease of adaptability of the Stirling engine. In this project, the Stirling engine developed was designed and tested to operate from biomass source of energy, i.e., wood pellets stove, during low solar radiation, with good results. A 20% efficiency of the engine was estimated, and 18% efficiency was measured, making it suitable and appropriate for residential applications. The effort reported was aimed at exploring parameters necessary to design, build and test a ‘Solar Powered Stirling Engine (SPSE)’ using Water (H₂O) as the Heat Transfer medium, with Nitrogen as the working gas that can reach or exceed an efficiency of 20%. The main objectives of this work consisted in: converting a V-twin cylinder air compressor into an alpha-type Stirling engine, construct a Solar Water Heater, by using an automotive radiator as the high-temperature reservoir for the Stirling engine, and an array of fixed mirrors that concentrate the solar radiation on the automotive radiator/high-temperature reservoir. The low-temperature reservoir is the surrounding air at ambient temperature. This work has determined that a low-cost system is sufficiently efficient and reliable. Off-the-shelf components have been used and estimates of the ability of the Engine final design to meet the electricity needs of small residence have been determined.Keywords: stirling engine, solar-thermal, power inverter, alternator
Procedia PDF Downloads 27983 Cleaning of Polycyclic Aromatic Hydrocarbons (PAH) Obtained from Ferroalloys Plant
Authors: Stefan Andersson, Balram Panjwani, Bernd Wittgens, Jan Erik Olsen
Abstract:
Polycyclic Aromatic hydrocarbons are organic compounds consisting of only hydrogen and carbon aromatic rings. PAH are neutral, non-polar molecules that are produced due to incomplete combustion of organic matter. These compounds are carcinogenic and interact with biological nucleophiles to inhibit the normal metabolic functions of the cells. Norways, the most important sources of PAH pollution is considered to be aluminum plants, the metallurgical industry, offshore oil activity, transport, and wood burning. Stricter governmental regulations regarding emissions to the outer and internal environment combined with increased awareness of the potential health effects have motivated Norwegian metal industries to increase their efforts to reduce emissions considerably. One of the objective of the ongoing industry and Norwegian research council supported "SCORE" project is to reduce potential PAH emissions from an off gas stream of a ferroalloy furnace through controlled combustion. In a dedicated combustion chamber. The sizing and configuration of the combustion chamber depends on the combined properties of the bulk gas stream and the properties of the PAH itself. In order to achieve efficient and complete combustion the residence time and minimum temperature need to be optimized. For this design approach reliable kinetic data of the individual PAH-species and/or groups thereof are necessary. However, kinetic data on the combustion of PAH are difficult to obtain and there is only a limited number of studies. The paper presents an evaluation of the kinetic data for some of the PAH obtained from literature. In the present study, the oxidation is modelled for pure PAH and also for PAH mixed with process gas. Using a perfectly stirred reactor modelling approach the oxidation is modelled including advanced reaction kinetics to study influence of residence time and temperature on the conversion of PAH to CO2 and water. A Chemical Reactor Network (CRN) approach is developed to understand the oxidation of PAH inside the combustion chamber. Chemical reactor network modeling has been found to be a valuable tool in the evaluation of oxidation behavior of PAH under various conditions.Keywords: PAH, PSR, energy recovery, ferro alloy furnace
Procedia PDF Downloads 27382 Managing Construction and Demolition Wastes - A Case Study of Multi Triagem, Lda
Authors: Cláudia Moço, Maria Santos, Carlos Arsénio, Débora Mendes, Miguel Oliveira. José Paulo Da Silva
Abstract:
Construction industry generates large amounts of waste all over the world. About 450 million tons of construction and demolition wastes (C&DW) are produced annually in the European Union. C&DW are highly heterogeneous materials in size and composition, which imposes strong difficulties on their management. Directive n.º 2008/98/CE, of the European Parliament and of the Council of 6 November establishes that 70 % of the C&DW have to be recycled by 2020. To evaluate possible applications of these materials, a detailed physical, chemical and environmental characterization is necessary. Multi Triagem, Lda. is a company located in Algarve (Portugal) and was supported by the European Regional Development Fund (grant QREN 30307 Multivalor) to quantify and characterize the received C&DW, in order to evaluate their possible applications. This evaluation, performed in collaboration with the University of Algarve, involves a physical, chemical and environmental detailed characterization of the received C&DW. In this work we report on the amounts, trial procedures and properties of the C&DW received over a period of fifteen month. In this period the company received C&DW coming from 393 different origins. The total amount was 32.458 tons, mostly mixtures containing concrete, masonry/mortar and soil/rock. Most of C&DW came from demodulation constructions and diggings. The organic/inert component, namely metal, glass, wood and plastics, were screened first and account for about 3 % of the received materials. The remaining materials were screened and grouped according to their origin and contents, the latter evaluated by visual inspection. Twenty five samples were prepared and submitted to a detailed physical, chemical and environmental analysis. The C&DW aggregates show lower quality properties than natural aggregates for concrete preparation and unbound layers of road pavements. However, chemical analyzes indicated that most samples are environmentally safe. A continuous monitoring of the presence of heavy metals and organic compounds is needed in order to perform a proper screening of the C&DW. C&DW aggregates provide a good alternative to natural aggregates.Keywords: construction and demolition wastes, waste classification, waste composition, waste screening
Procedia PDF Downloads 35181 Multi-Criteria Decision Making Tool for Assessment of Biorefinery Strategies
Authors: Marzouk Benali, Jawad Jeaidi, Behrang Mansoornejad, Olumoye Ajao, Banafsheh Gilani, Nima Ghavidel Mehr
Abstract:
Canadian forest industry is seeking to identify and implement transformational strategies for enhanced financial performance through the emerging bioeconomy or more specifically through the concept of the biorefinery. For example, processing forest residues or surplus of biomass available on the mill sites for the production of biofuels, biochemicals and/or biomaterials is one of the attractive strategies along with traditional wood and paper products and cogenerated energy. There are many possible process-product biorefinery pathways, each associated with specific product portfolios with different levels of risk. Thus, it is not obvious which unique strategy forest industry should select and implement. Therefore, there is a need for analytical and design tools that enable evaluating biorefinery strategies based on a set of criteria considering a perspective of sustainability over the short and long terms, while selecting the existing core products as well as selecting the new product portfolio. In addition, it is critical to assess the manufacturing flexibility to internalize the risk from market price volatility of each targeted bio-based product in the product portfolio, prior to invest heavily in any biorefinery strategy. The proposed paper will focus on introducing a systematic methodology for designing integrated biorefineries using process systems engineering tools as well as a multi-criteria decision making framework to put forward the most effective biorefinery strategies that fulfill the needs of the forest industry. Topics to be covered will include market analysis, techno-economic assessment, cost accounting, energy integration analysis, life cycle assessment and supply chain analysis. This will be followed by describing the vision as well as the key features and functionalities of the I-BIOREF software platform, developed by CanmetENERGY of Natural Resources Canada. Two industrial case studies will be presented to support the robustness and flexibility of I-BIOREF software platform: i) An integrated Canadian Kraft pulp mill with lignin recovery process (namely, LignoBoost™); ii) A standalone biorefinery based on ethanol-organosolv process.Keywords: biorefinery strategies, bioproducts, co-production, multi-criteria decision making, tool
Procedia PDF Downloads 23280 Utilization of Synthetic and Natural Ascorbic Acid (African Locust Bean, Baobab, and Prosopis Africana) Pulp for Sustainable Broiler Production in the Era of Global Warming
Authors: Lawan Adamu, Aminu Maidala
Abstract:
Heat stress exerts a high deteriorating impact on the poultry industry which could be ameliorated by dietary incorporation of synthetic vitamin C. Certain herbs either alone or in combination thereof are also a rich source of ascorbic acid in natural form. Gashua is located in the semi arid zones with temperature ranges of 38-43oC especially in the months of March up to June/July which make survival and production much difficult to poultry especially broilers chickens as it was found that high ambient temperatures above 380C feed consumption, growth rate, feed efficiency, survivability, egg production and egg quality tends to decline. In order to address the problem of heat stress, an experiment was conducted in the month of March/April to determine the effect of synthetic ascorbic-acid (vitamin C), natural ascorbic from baobab, African locust bean and prosopis africana pulp was administer in drinking water and basal diets adlibitum. 300 day old marshal breed chicks were used for this experiment which was divided into five treatment group with 20 birds per replicate which designated as zero, synthetic ascorbic acid 40g/L, baobab pulp 40g/L, African locust pulp 40g/L and iron wood pulp 40g/L for T1, T2 T3 T4 and T5 respectively. The experiment was lasted for eight weeks (four weeks each for the starter and finisher). Data collected were subjected to analysis of variance (ANOVA) using SAS 2002 soft wire and significant difference observed means were separated using Duncan multiple range test. The result revealed that bird on control diet were significantly (p<0.05) lowered in terms total and daily weight gain and feed efficiency but significantly (p<0.05) higher in terms feed intake, water intake, rectal temperature and mortality. This study concluded that ascorbic acid increased broiler performance and reduced mortality under high temperature thereby maintain the sustainability of broiler production to bridge the gap of animal protein deficit in the hot arid zone.Keywords: ascorbic acid, heat stress, broiler, performance
Procedia PDF Downloads 2779 Nitrogen Fixation of Soybean Approaches for Enhancing under Saline and Water Stress Conditions
Authors: Ayman El Sabagh, AbdElhamid Omar, Dekoum Assaha, Khair Mohammad Youldash, Akihiro Ueda, Celaleddin Barutçular, Hirofumi Saneoka
Abstract:
Drought and salinity stress are a worldwide problem, constraining global crop production seriously. Hence, soybean is susceptible to yield loss from water deficit and salinity stress. Therefore, different approaches have been suggested to solve these issues. Osmoprotectants play an important role in protection the plants from various environmental stresses. Moreover, organic fertilization has several beneficial effects on agricultural fields. Presently, efforts to maximize nitrogen fixation in soybean are critical because of widespread increase in soil degradation in Egypt. Therefore, a greenhouse research was conducted at plant nutritional physiology laboratory, Hiroshima University, Japan for assessing the impact of exogenous osmoregulators and compost application in alleviating the adverse effects of salinity and water stress on soybean. Treatments was included (i) water stress treatments (different soil moisture levels consisting of (100%, 75%, and 50% of field water holding capacity), (ii) salinity concentrations (0 and 15 mM) were applied in fully developed trifoliolate leaf node (V1), (iii) compost treatments (0 and 24 t ha-1) and (iv) the exogenous, proline and glycine betaine concentrations (0 mM and 25 mM) for each, was applied at two growth stages (V1 and R1). The seeds of soybean cultivar Giza 111, was sown into basin from wood (length10 meter, width 50cm, height 50cm and depth 350cm) containing a soil mixture of granite regosol soil and perlite (2:1 v/v). The nitrogen-fixing activity was estimated by using gas chromatography and all measurements were made in three replicates. The results showed that water deficit and salinity stress reduced biological nitrogen fixation and specific nodule activity than normal irrigation conditions. Exogenous osmoprotectants were improved biological nitrogen fixation and specific nodule activity as well as, applying of compost led to improving many of biological nitrogen fixation and specific nodule activity with superiority than stress conditions. The combined application compost fertilizer and exogenous osmoprotectants were more effective in alleviating the adverse effect of stress to improve biological nitrogen fixation and specific nodule activity of Soybean.Keywords: a biotic stress, biological nitrogen fixation, compost, osmoprotectants, specific nodule activity, soybean
Procedia PDF Downloads 30978 Analysis of Trends and Challenges of Using Renewable Biomass for Bioplastics
Authors: Namasivayam Navaranjan, Eric Dimla
Abstract:
The world needs more quality food, shelter and transportation to meet the demands of growing population and improving living standard of those who currently live below the poverty line. Materials are essential commodities for various applications including food and pharmaceutical packaging, building and automobile. Petroleum based plastics are widely used materials amongst others for these applications and their demand is expected to increase. Use of plastics has environment related issues because considerable amount of plastic used worldwide is disposed in landfills, where its resources are wasted, the material takes up valuable space and blights communities. Some countries have been implementing regulations and/or legislations to increase reuse, recycle, renew and remanufacture materials as well as to minimise the use of non-environmentally friendly materials such as petroleum plastics. However, issue of material waste is still a concern in the countries who have low environmental regulations. Development of materials, mostly bioplastics from renewable biomass resources has become popular in the last decade. It is widely believed that the potential for up to 90% substitution of total plastics consumption by bioplastics is technically possible. The global demand for bioplastics is estimated to be approximately six times larger than in 2010. Recently, standard polymers like polyethylene (PE), polypropylene (PP), Polyvinyl Chloride (PVC) or Polyethylene terephthalate (PET), but also high-performance polymers such as polyamides or polyesters have been totally or partially substituted by their renewable equivalents. An example is Polylactide (PLA) being used as a substitute in films and injection moulded products made of petroleum plastics, e.g. PET. The starting raw materials for bio-based materials are usually sugars or starches that are mostly derived from food resources, partially also recycled materials from food or wood processing. The risk in lower food availability by increasing price of basic grains as a result of competition with biomass-based product sectors for feedstock also needs to be considered for the future bioplastic production. Manufacturing of bioplastic materials is often still reliant upon petroleum as an energy and materials source. Life Cycle Assessment (LCA) of bioplastic products has being conducted to determine the sustainability of a production route. However, the accuracy of LCA depends on several factors and needs improvement. Low oil price and high production cost may also limit the technically possible growth of these plastics in the coming years.Keywords: bioplastics, plastics, renewable resources, biomass
Procedia PDF Downloads 30877 Dinoflagellate Thecal Plates as a Green Cellulose Source
Authors: Alvin Chun Man Kwok, Wai Sun Chan, Wei Yuan, Joseph Tin Yum Wong
Abstract:
Cellulose, the most abundant biopolymer, is the major constituent of plant and dinoflagellate cell walls. Thecate dinoflagellates, in particular, are renowned for their remarkable capacity to synthesize intricate cellulosic thecal plates (CTPs). Unlike the extracellular two-dimensional structure of plant cell walls, these CTPs are three-dimensional and reside within the cellular structure itself. The deposition of CTPs occurs with remarkable precision, and their arrangement serves as crucial taxonomic markers. It is noteworthy that these plates possess the hardness of wood, despite the absence of lignin. Partial and prolonged hydrolysis of CTPs results in the formation of uniform long bundles and lowdimensional, modular crystalline whiskers. This observation aligns with the consistent nanomechanical properties, suggesting a CTPboard structure. The unique composition and structural characteristics of CTPs distinguish them from other cellulose-based materials in the natural world. Spectroscopic studies using Raman and FTIR methods indicate a clear low crystallinity index, with the OH shift becoming more distinct following SDS treatment. Birefringence imaging confirms the highly organized structure of CTPs, demonstrating varying degrees of anisotropy in different regions, including both seaward and cytosolic passages. The knockdown of a cellulose synthase enzyme in dinoflagellates resulted in severe malformation of CTPs and hindered the life-cycle transition. Unlike certain other microalgal groups, these unique circum-spherical depositions of CTPs were not pre-fabricated and transported "to site," but synthesized within alveolar sacs at the specific site. Our research is particularly focused on unraveling the mechanisms underlying the biodeposition of CTPs and exploring their potential biotechnological applications. Understanding the processes involved in CTP formation can pave the way for harnessing their unique properties for various practical applications. Dinoflagellates play a crucial role as major agents of algal blooms and are also known for producing anti-greenhouse sulfur compounds such as DMS/DMSP, highlighting the significance of CTPs as a carbon-neutral source of cellulose. Grant acknowledgement: Research in the laboratory are supported by GRF16104523 from Research Grant Council to JTYW.Keywords: cellulosic thecal plates, dinoflagellates, cellulose, cell wall
Procedia PDF Downloads 10176 Biodeterioration of Historic Parks of UK by Algae
Authors: Syeda Fatima Manzelat
Abstract:
This chapter investigates the biodeterioration of parks in the UK caused by lichens, focusing on Campbell Park and Great Linford Manor Park in Milton Keynes. The study first isolates and identifies potent biodeteriogens responsible for potential biodeterioration in these parks, enumerating and recording different classes and genera of lichens known for their biodeteriorative properties. It then examines the implications of lichens on biodeterioration at historic sites within these parks, considering impacts on historic structures, the environment, and associated health risks. Conservation strategies and preventive measures are discussed before concluding.Lichens, characterized by their symbiotic association between a fungus and an alga, thrive on various surfaces including building materials, soil, rock, wood, and trees. The fungal component provides structure and protection, while the algal partner performs photosynthesis. Lichens collected from the park sites, such as Xanthoria, Cladonia, and Arthonia, were observed affecting the historic walls, objects, and trees. Their biodeteriorative impacts were visible to the naked eye, contributing to aesthetic and structural damage. The study highlights the role of lichens as bioindicators of pollution, sensitive to changes in air quality. The presence and diversity of lichens provide insights into the air quality and pollution levels in the parks. However, lichens also pose health risks, with certain species causing respiratory issues, allergies, skin irritation, and other toxic effects in humans and animals. Conservation strategies discussed include regular monitoring, biological and chemical control methods, physical removal, and preventive cleaning. The study emphasizes the importance of a multifaceted, multidisciplinary approach to managing lichen-induced biodeterioration. Future management practices could involve advanced techniques such as eco-friendly biocides and self-cleaning materials to effectively control lichen growth and preserve historic structures. In conclusion, this chapter underscores the dual role of lichens as agents of biodeterioration and indicators of environmental quality. Comprehensive conservation management approaches, encompassing monitoring, targeted interventions, and advanced conservation methods, are essential for preserving the historic and natural integrity of parks like Campbell Park and Great Linford Manor Park.Keywords: biodeterioration, historic parks, algae, UK
Procedia PDF Downloads 3675 Volume Estimation of Trees: An Exploratory Study on Pterocarpus erinaceus Logging Operations within Forest Transition and Savannah Ecological Zones of Ghana
Authors: Albert Kwabena Osei Konadu
Abstract:
Pterocarpus erinaceus, also known as Rosewood, is tropical wood, endemic in forest savannah transition zones within the middle and northern portion of Ghana. Its economic viability has made it increasingly popular and in high demand, leading to widespread conservation concerns. Ghana’s forest resource management regime for these ecozones is mainly on conservation and very little on resource utilization. Consequently, commercial logging management standards are at teething stage and not fully developed, leading to a deficiency in the monitoring of logging operations and quantification of harvested trees volumes. Tree information form (TIF); a volume estimation and tracking regime, has proven to be an effective, sustainable management tool for regulating timber resource extraction in the high forest zones of the country. This work aims to generate TIF that can track and capture requisite parameters to accurately estimate the volume of harvested rosewood within forest savannah transition zones. Tree information forms were created on three scenarios of individual billets, stacked billets and conveying vessel basis. These TIFs were field-tested to deduce the most viable option for the tracking and estimation of harvested volumes of rosewood using the smallian and cubic volume estimation formula. Overall, four districts were covered with individual billets, stacked billets and conveying vessel scenarios registering mean volumes of 25.83m3,45.08m3 and 32.6m3, respectively. These adduced volumes were validated by benchmarking to assigned volumes of the Forestry Commission of Ghana and known standard volumes of conveying vessels. The results did indicate an underestimation of extracted volumes under the quotas regime, a situation that could lead to unintended overexploitation of the species. The research revealed conveying vessels route is the most viable volume estimation and tracking regime for the sustainable management of the Pterocarpous erinaceus species as it provided a more practical volume estimate and data extraction protocol.Keywords: convention on international trade in endangered species, cubic volume formula, forest transition savannah zones, pterocarpus erinaceus, smallian’s volume formula, tree information form
Procedia PDF Downloads 11074 Assessment of Biofuel Feedstock Production on Arkansas State Highway Transportation Department's Marginalized Lands
Authors: Ross J. Maestas
Abstract:
Biofuels are derived from multiple renewable bioenergy feedstocks including animal fats, wood, starchy grains, and oil seeds. Transportation agencies have considered growing the latter two on underutilized and nontraditional lands that they manage, such as in the Right of Way (ROW), abandoned weigh stations, and at maintenance yards. These crops provide the opportunity to generate revenue or supplement fuel once converted and offer a solution to increasing fuel costs and instability by creating a ‘home-grown’ alternative. Biofuels are non-toxic, biodegradable, and emit less Green House Gasses (GHG) than fossil fuels, therefore allowing agencies to meet sustainability goals and regulations. Furthermore, they enable land managers to achieve soil erosion and roadside aesthetic strategies. The research sought to understand if the cultivation of a biofuel feedstock within the Arkansas State Highway Transportation Department’s (AHTD) managed and marginalized lands is feasible by identifying potential land areas and crops. To determine potential plots the parcel data was downloaded from Arkansas’s GIS office. ArcGIS was used to query the data for all variations of the names of property owned by AHTD and a KML file was created that identifies the queried parcel data in Google Earth. Furthermore, biofuel refineries in the state were identified to optimize the harvest to transesterification process. Agricultural data was collected from federal and state agencies and universities to assess various oil seed crops suitable for conversion and suited to grow in Arkansas’s climate and ROW conditions. Research data determined that soybean is the best adapted biofuel feedstock for Arkansas with camelina and canola showing possibilities as well. Agriculture is Arkansas’s largest industry and soybean is grown in over half of the state’s counties. Successful cultivation of a feedstock in the aforementioned areas could potentially offer significant employment opportunity for which the skilled farmers already exist. Based on compiled data, AHTD manages 21,489 acres of marginalized land. The result of the feasibility assessment offer suggestions and guidance should AHTD decide to further investigate this type of initiative.Keywords: Arkansas highways, biofuels, renewable energy initiative, marginalized lands
Procedia PDF Downloads 329