Search results for: geographically weighted principal components analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30999

Search results for: geographically weighted principal components analysis

30549 Exploring Transitions between Communal- and Market-Based Knowledge Sharing

Authors: Benbya Hind, Belbaly Nassim

Abstract:

Markets and communities are often cast as alternative forms of knowledge sharing, but an open question is how and why people dynamically transition between them. To study these transitions, we design a technology that allows geographically distributed participants to either buy knowledge (using virtual points) or request it for free. We use a data-driven, inductive approach, studying 550 members in over 5000 interactions, during nine months. Because the technology offered participants choices between market or community forms, we can document both individual and collective transitions that emerge as people cycle between these forms. Our inductive analysis revealed that uncertainties endemic to knowledge sharing were the impetus for these transitions. Communities evoke uncertainties about knowledge sharing’s costs and benefits, which markets resolve by quantifying explicit prices. However, if people manipulate markets, they create uncertainties about the validity of those prices, allowing communities to reemerge to establish certainty via identity-based validation.

Keywords: knowledge sharing, communities, information technology design, transitions, markets

Procedia PDF Downloads 179
30548 Phytotechnologies for Use and Reconstitution of Contaminated Sites

Authors: Olga Shuvaeva, Tamara Romanova, Sergey Volynkin, Valentina Podolinnaya

Abstract:

Green chemistry concept is focused on the prevention of environmental pollution caused by human activity. However, there are a lot of contaminated areas in the world which pose a serious threat to ecosystems in terms of their conservation. Therefore in accordance with the principles of green chemistry, it should not be forgotten about the need to clean these areas. Furthermore, the waste material often contains the valuable components, the extraction of which by traditional wet chemical technologies is inefficient both from the economic and environmental protection standpoint. Wherein, the plants may be successfully used to ‘scavenge’ a range of metals from polluted land sites in an approach allowing to carry out both of these processes – phytoremediation and phytomining in conjunction. The goal of the present work was to study bioaccumulation ability of floating macrophytes such as water hyacinth and pondweed toward Hg, Ba, Cd, Mo and Pb as pollutants in aquatic medium and terrestrial plants (birch, reed, and cane) towards gold and silver as valuable components. The peculiarity of ongoing research was that the plants grew under extreme conditions (pH of drainage and pore waters was about 2.5). The study was conducted at the territory of Ursk tailings (Southwestern Siberia, Russia) formed as a result of primary polymetallic ores cyanidation. The waste material is mainly presented (~80%) by pyrite (FeS₂) and barite (BaSO₄), the raw minerals included FeAsS, HgS, PbS, Ag₂S as minor ones. It has been shown that water hyacinth demonstrates high ability to accumulate different metals, and what is especially important – to remove mercury from polluted waters with BCF value more than 1000. As for the gold, its concentrations in reed and cane growing near the waste material were estimated as 500 and 900 μg∙kg⁻¹ respectively. It was also found that the plants can survive under extreme conditions of acidic environment and hence we can assume that there is a principal opportunity to use them for the valuable substances extraction from an area of the mining waste dumps burial.

Keywords: bioaccumulation, gold, heavy metals, mine tailing

Procedia PDF Downloads 171
30547 Passive Vibration Isolation Analysis and Optimization for Mechanical Systems

Authors: Ozan Yavuz Baytemir, Ender Cigeroglu, Gokhan Osman Ozgen

Abstract:

Vibration is an important issue in the design of various components of aerospace, marine and vehicular applications. In order not to lose the components’ function and operational performance, vibration isolation design involving the optimum isolator properties selection and isolator positioning processes appear to be a critical study. Knowing the growing need for the vibration isolation system design, this paper aims to present two types of software capable of implementing modal analysis, response analysis for both random and harmonic types of excitations, static deflection analysis, Monte Carlo simulations in addition to study of parameter and location optimization for different types of isolation problem scenarios. Investigating the literature, there is no such study developing a software-based tool that is capable of implementing all those analysis, simulation and optimization studies in one platform simultaneously. In this paper, the theoretical system model is generated for a 6-DOF rigid body. The vibration isolation system of any mechanical structure is able to be optimized using hybrid method involving both global search and gradient-based methods. Defining the optimization design variables, different types of optimization scenarios are listed in detail. Being aware of the need for a user friendly vibration isolation problem solver, two types of graphical user interfaces (GUIs) are prepared and verified using a commercial finite element analysis program, Ansys Workbench 14.0. Using the analysis and optimization capabilities of those GUIs, a real application used in an air-platform is also presented as a case study at the end of the paper.

Keywords: hybrid optimization, Monte Carlo simulation, multi-degree-of-freedom system, parameter optimization, location optimization, passive vibration isolation analysis

Procedia PDF Downloads 565
30546 Spatial Planning Model on Landslide Risk Disaster at West Java Geothermal Field, Indonesia

Authors: Herawanti Kumalasari, Raldi Hendro Koestoer, Hayati Sari Hasibuan

Abstract:

Geographically, Indonesia is located in the arc of volcanoes that cause disaster prone one of them is landslide disaster. One of the causes of the landslide is the conversion of land from forest to agricultural land in upland areas and river border that has a steep slope. The study area is located in the highlands with fertile soil conditions, so most of the land is used as agricultural land and plantations. Land use transfer also occurs around the geothermal field in Pangalengan District, West Java Province which will threaten the sustainability of geothermal energy utilization and the safety of the community. The purpose of this research is to arrange the concept of spatial pattern arrangement in the geothermal area based on disaster mitigation. This research method using superimpose analysis. Superimpose analysis to know the basic physical condition of the planned area through the overlay of disaster risk map with the map of the plan of spatial plan pattern of Bandung Regency Spatial Plan. The results of the analysis will then be analyzed spatially. The results have shown that most of the study areas were at moderate risk level. Planning of spatial pattern of existing study area has not fully considering the spread of disaster risk that there are settlement area and the agricultural area which is in high landslide risk area. The concept of the arrangement of the spatial pattern of the study area will use zoning system which is divided into three zones namely core zone, buffer zone and development zone.

Keywords: spatial planning, geothermal, disaster risk, zoning

Procedia PDF Downloads 272
30545 Determination of Genotypic Relationship among 12 Sugarcane (Saccharum officinarum) Varieties

Authors: Faith Eweluegim Enahoro-Ofagbe, Alika Eke Joseph

Abstract:

Information on genetic variation within a population is crucial for utilizing heterozygosity for breeding programs that aim to improve crop species. The study was conducted to ascertain the genotypic similarities among twelve sugarcane (Saccharum officinarum) varieties to group them for purposes of hybridizations for cane yield improvement. The experiment was conducted at the University of Benin, Faculty of Agriculture Teaching and Research Farm, Benin City. Twelve sugarcane varieties obtained from National Cereals Research Institute, Badeggi, Niger State, Nigeria, were planted in three replications in a randomized complete block design. Each variety was planted on a five-row plot of 5.0 m in length. Data were collected on 12 agronomic traits, including; the number of millable cane, cane girth, internode length, number of male and female flowers (fuss), days to flag leaf, days to flowering, brix%, cane yield, and others. There were significant differences, according to the findings among the twelve genotypes for the number of days to flag leaf, number of male and female flowers (fuss), and cane yield. The relationship between the twelve sugarcane varieties was expressed using hierarchical cluster analysis. The twelve genotypes were grouped into three major clusters based on hierarchical classification. Cluster I had five genotypes, cluster II had four, and cluster III had three. Cluster III was dominated by varieties characterized by higher cane yield, number of leaves, internode length, brix%, number of millable stalks, stalk/stool, cane girth, and cane length. Cluster II contained genotypes with early maturity characteristics, such as early flowering, early flag leaf development, growth rate, and the number of female and male flowers (fuss). The maximum inter-cluster distance between clusters III and I indicated higher genetic diversity between the two groups. Hybridization between the two groups could result in transgressive recombinants for agronomically important traits.

Keywords: sugarcane, Saccharum officinarum, genotype, cluster analysis, principal components analysis

Procedia PDF Downloads 80
30544 Architectural Strategies for Designing Durable Steel Structural Systems

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

Nowadays, steel structures are used for not only common buildings but also high-rise construction and wide span covering. The advanced methods of construction as well as the advanced structural connections have a great effect on architecture. However a better use of steel structural systems will be achieved with the deep understanding of steel structures specifications and their substantial advantages. On the other hand, the steel structures face to the different environmental factors such as air flow which cause erosion and corrosion. With the time passing, the amount of these steel mass damages and also the imposed stress will be increased. In other words, the position of erosion in steel structures related to existing stresses indicates that effective environmental conditions will gradually decrease the structural resistance of steel components and result in decreasing the durability of steel components. In this paper, the durability of different steel structural components is evaluated and on the basis of these stress, architectural strategies for designing the system and the components of steel structures is recognized in order to achieve an optimum life cycle.

Keywords: durability, bending stress, erosion in steel structure, life cycle

Procedia PDF Downloads 560
30543 Language Development and Growing Spanning Trees in Children Semantic Network

Authors: Somayeh Sadat Hashemi Kamangar, Fatemeh Bakouie, Shahriar Gharibzadeh

Abstract:

In this study, we target to exploit Maximum Spanning Trees (MST) of children's semantic networks to investigate their language development. To do so, we examine the graph-theoretic properties of word-embedding networks. The networks are made of words children learn prior to the age of 30 months as the nodes and the links which are built from the cosine vector similarity of words normatively acquired by children prior to two and a half years of age. These networks are weighted graphs and the strength of each link is determined by the numerical similarities of the two words (nodes) on the sides of the link. To avoid changing the weighted networks to the binaries by setting a threshold, constructing MSTs might present a solution. MST is a unique sub-graph that connects all the nodes in such a way that the sum of all the link weights is maximized without forming cycles. MSTs as the backbone of the semantic networks are suitable to examine developmental changes in semantic network topology in children. From these trees, several parameters were calculated to characterize the developmental change in network organization. We showed that MSTs provides an elegant method sensitive to capture subtle developmental changes in semantic network organization.

Keywords: maximum spanning trees, word-embedding, semantic networks, language development

Procedia PDF Downloads 145
30542 Pure Scalar Equilibria for Normal-Form Games

Authors: Herbert W. Corley

Abstract:

A scalar equilibrium (SE) is an alternative type of equilibrium in pure strategies for an n-person normal-form game G. It is defined using optimization techniques to obtain a pure strategy for each player of G by maximizing an appropriate utility function over the acceptable joint actions. The players’ actions are determined by the choice of the utility function. Such a utility function could be agreed upon by the players or chosen by an arbitrator. An SE is an equilibrium since no players of G can increase the value of this utility function by changing their strategies. SEs are formally defined, and examples are given. In a greedy SE, the goal is to assign actions to the players giving them the largest individual payoffs jointly possible. In a weighted SE, each player is assigned weights modeling the degree to which he helps every player, including himself, achieve as large a payoff as jointly possible. In a compromise SE, each player wants a fair payoff for a reasonable interpretation of fairness. In a parity SE, the players want their payoffs to be as nearly equal as jointly possible. Finally, a satisficing SE achieves a personal target payoff value for each player. The vector payoffs associated with each of these SEs are shown to be Pareto optimal among all such acceptable vectors, as well as computationally tractable.

Keywords: compromise equilibrium, greedy equilibrium, normal-form game, parity equilibrium, pure strategies, satisficing equilibrium, scalar equilibria, utility function, weighted equilibrium

Procedia PDF Downloads 113
30541 Explanation Conceptual Model of the Architectural Form Effect on Structures in Building Aesthetics

Authors: Fatemeh Nejati, Farah Habib, Sayeh Goudarzi

Abstract:

Architecture and structure have always been closely interrelated so that they should be integrated into a unified, coherent and beautiful universe, while in the contemporary era, both structures and architecture proceed separately. The purpose of architecture is the art of creating form and space and order for human service, and the goal of the structural engineer is the transfer of loads to the structure, too. This research seeks to achieve the goal by looking at the relationship between the form of architecture and structure from its inception to the present day to the Global Identification and Management Plan. Finally, by identifying the main components of the design of the structure in interaction with the architectural form, an effective step is conducted in the Professional training direction and solutions to professionals. Therefore, after reviewing the evolution of structural and architectural coordination in various historical periods as well as how to reach the form of the structure in different times and places, components are required to test the components and present the final theory that one hundred to be tested in this regard. Finally, this research indicates the fact that the form of architecture and structure has an aesthetic link, which is influenced by a number of components that could be edited and has a regular order throughout history that could be regular. The research methodology is analytic, and it is comparative using analytical and matrix diagrams and diagrams and tools for conducting library research and interviewing.

Keywords: architecture, structural form, structural and architectural coordination, effective components, aesthetics

Procedia PDF Downloads 215
30540 Component Interface Formalization in Robotic Systems

Authors: Anton Hristozov, Eric Matson, Eric Dietz, Marcus Rogers

Abstract:

Components are heavily used in many software systems, including robotics systems. The growth of sophistication and diversity of new capabilities for robotic systems presents new challenges to their architectures. Their complexity is growing exponentially with the advent of AI, smart sensors, and the complex tasks they have to accomplish. Such complexity requires a more rigorous approach to the creation, use, and interoperability of software components. The issue is exacerbated because robotic systems are becoming more and more reliant on third-party components for certain functions. In order to achieve this kind of interoperability, including dynamic component replacement, we need a way to standardize their interfaces. A formal approach is desperately needed to specify what an interface of a robotic software component should contain. This study performs an analysis of the issue and presents a universal and generic approach to standardizing component interfaces for robotic systems. Our approach is inspired by well-established robotic architectures such as ROS, PX4, and Ardupilot. The study is also applicable to other software systems that share similar characteristics with robotic systems. We consider the use of JSON or Domain Specific Languages (DSL) development with tools such as Antlr and automatic code and configuration file generation for frameworks such as ROS and PX4. A case study with ROS2 is presented as a proof of concept for the proposed methodology.

Keywords: CPS, robots, software architecture, interface, ROS, autopilot

Procedia PDF Downloads 92
30539 Stress Analysis of a Pressurizer in a Pressurized Water Reactor Using Finite Element Method

Authors: Tanvir Hasan, Minhaz Uddin, Anwar Sadat Anik

Abstract:

A pressurizer is a safety-related reactor component that maintains the reactor operating pressure to guarantee safety. Its structure is usually made of high thermal and pressure resistive material. The mechanical structure of these components should be maintained in all working settings, including transient to severe accidents conditions. The goal of this study is to examine the structural integrity and stress of the pressurizer in order to ensure its design integrity towards transient situations. For this, the finite element method (FEM) was used to analyze the mechanical stress on pressurizer components in this research. ANSYS MECHANICAL tool was used to analyze a 3D model of the pressurizer. The material for the body and safety relief nozzle is selected as low alloy steel i.e., SA-508 Gr.3 Cl.2. The model was put into ANSYS WORKBENCH and run under the boundary conditions of (internal Pressure, -17.2 MPa, inside radius, -1348mm, the thickness of the shell, -127mm, and the ratio of the outside radius to an inside radius, - 1.059). The theoretical calculation was done using the formulas and then the results were compared with the simulated results. When stimulated at design conditions, the findings revealed that the pressurizer stress analysis completely fulfilled the ASME standards.

Keywords: pressurizer, stress analysis, finite element method, nuclear reactor

Procedia PDF Downloads 158
30538 Study of Mechanical Behavior of Unidirectional Composite Laminates According

Authors: Deliou Adel, Saadalah Younes, Belkaid Khmissi, Dehbi Meriem

Abstract:

Composite materials, in the most common sense of the term, are a set of synthetic materials designed and used mainly for structural applications; the mechanical function is dominant. The mechanical behaviors of the composite, as well as the degradation mechanisms leading to its rupture, depend on the nature of the constituents and on the architecture of the fiber preform. The profile is required because it guides the engineer in designing structures with precise properties in relation to the needs. This work is about studying the mechanical behavior of unidirectional composite laminates according to different failure criteria. Varying strength parameter values make it possible to compare the ultimate mechanical characteristics obtained by the criteria of Tsai-Hill, Fisher and maximum stress. The laminate is subjected to uniaxial tensile membrane forces. Estimates of their ultimate strengths and the plotting of the failure envelope constitute the principal axis of this study. Using the theory of maximum stress, we can determine the various modes of damage of the composite. The different components of the deformation are presented for different orientations of fibers.

Keywords: unidirectional kevlar/epoxy composite, failure criterion, membrane stress, deformations, failure envelope

Procedia PDF Downloads 88
30537 Locating Potential Site for Biomass Power Plant Development in Central Luzon Philippines Using GIS-Based Suitability Analysis

Authors: Bryan M. Baltazar, Marjorie V. Remolador, Klathea H. Sevilla, Imee Saladaga, Loureal Camille Inocencio, Ma. Rosario Concepcion O. Ang

Abstract:

Biomass energy is a traditional source of sustainable energy, which has been widely used in developing countries. The Philippines, specifically Central Luzon, has an abundant source of biomass. Hence, it could supply abundant agricultural residues (rice husks), as feedstock in a biomass power plant. However, locating a potential site for biomass development is a complex process which involves different factors, such as physical, environmental, socio-economic, and risks that are usually diverse and conflicting. Moreover, biomass distribution is highly dispersed geographically. Thus, this study develops an integrated method combining Geographical Information Systems (GIS) and methods for energy planning; Multi-Criteria Decision Analysis (MCDA) and Analytical Hierarchy Process (AHP), for locating suitable site for biomass power plant development in Central Luzon, Philippines by considering different constraints and factors. Using MCDA, a three level hierarchy of factors and constraints was produced, with corresponding weights determined by experts by using AHP. Applying the results, a suitability map for Biomass power plant development in Central Luzon was generated. It showed that the central part of the region has the highest potential for biomass power plant development. It is because of the characteristics of the area such as the abundance of rice fields, with generally flat land surfaces, accessible roads and grid networks, and low risks to flooding and landslide. This study recommends the use of higher accuracy resource maps, and further analysis in selecting the optimum site for biomass power plant development that would account for the cost and transportation of biomass residues.

Keywords: analytic hierarchy process, biomass energy, GIS, multi-criteria decision analysis, site suitability analysis

Procedia PDF Downloads 424
30536 A Novel Meta-Heuristic Algorithm Based on Cloud Theory for Redundancy Allocation Problem under Realistic Condition

Authors: H. Mousavi, M. Sharifi, H. Pourvaziri

Abstract:

Redundancy Allocation Problem (RAP) is a well-known mathematical problem for modeling series-parallel systems. It is a combinatorial optimization problem which focuses on determining an optimal assignment of components in a system design. In this paper, to be more practical, we have considered the problem of redundancy allocation of series system with interval valued reliability of components. Therefore, during the search process, the reliabilities of the components are considered as a stochastic variable with a lower and upper bounds. In order to optimize the problem, we proposed a simulated annealing based on cloud theory (CBSAA). Also, the Monte Carlo simulation (MCS) is embedded to the CBSAA to handle the random variable components’ reliability. This novel approach has been investigated by numerical examples and the experimental results have shown that the CBSAA combining MCS is an efficient tool to solve the RAP of systems with interval-valued component reliabilities.

Keywords: redundancy allocation problem, simulated annealing, cloud theory, monte carlo simulation

Procedia PDF Downloads 412
30535 Engineering Microstructural Evolution during Arc Wire Directed Energy Deposition of Magnesium Alloy (AZ31)

Authors: Nivatha Elangovan, Lakshman Neelakantan, Murugaiyan Amirthalingam

Abstract:

Magnesium and its alloys are widely used for various lightweight engineering and biomedical applications as they render high strength to low weight ratio and excellent corrosion resistance. These alloys possess good bio-compatibility and similar mechanical properties to natural bone. However, manufacturing magnesium alloy components by conventional formative and subtractive methods is challenging due to their poor castability, oxidation potential, and machinability. Therefore, efforts are made to produce complex-design containing magnesium alloy components by additive manufacturing (AM). Arc-wire directed energy deposition (AW-DED), also known as wire arc additive manufacturing (WAAM), is more attractive to produce large volume components with increased productivity than any other AM technique. In this research work, efforts were made to optimise the deposition parameters to build thick-walled (about 10 mm) AZ31 magnesium alloy components by a gas metal arc (GMA) based AW-DED process. By using controlled dip short-circuiting metal transfer in a GMA process, depositions were carried out without defects and spatter formation. Current and voltage waveforms were suitably modified to achieve stable metal transfer. Moreover, the droplet transfer behaviour was analysed using high-speed image analysis and correlated with arc energy. Optical and scanning electron microscopy analyses were carried out to correlate the influence of deposition parameters with the microstructural evolution during deposition. The investigation reveals that by carefully controlling the current-voltage waveform and droplet transfer behaviour, it is possible to stabilise equiaxed grain microstructures in the deposited AZ31 components. The printed component exhibited an improved mechanical property as equiaxed grains improve the ductility and enhance the toughness. The equiaxed grains in the component improved the corrosion-resistant behaviour of other conventionally manufactured components.

Keywords: arc wire directed energy deposition, AZ31 magnesium alloy, equiaxed grain, corrosion

Procedia PDF Downloads 124
30534 Degree of Hydrolysis of Proteinaceous Components of Porang Flour Using Papain

Authors: Fadilah Fadilah, Rochmadi Rochmadi, Siti Syamsiah, Djagal W. Marseno

Abstract:

Glucomannan can be found in the tuber of porang together with starch and proteinaceous components which were regarded as impurities. An enzymatic process for obtaining higher glucomannan content from Porang flour have been conducted. Papain was used for hydrolysing proteinaceous components in Porang flour which was conducted after a simultaneous extraction of glucomannan and enzymatic starch hydrolysis. Three variables affecting the rate were studied, i.e. temperature, the amount of enzyme and the stirring speed. The ninhydrin method was used to determine degree of protein hydrolysis. Results showed that the rising of degree of hydrolysis were fast in the first ten minutes of the reaction and then proceeded slowly afterward. The optimum temperature for hydrolysis was 60 oC. Increasing the amount of enzyme showed a remarkable effect to degree of hydrolysis, but the stirring speed had no significant effect. This indicated that the reaction controlled the rate of hydrolysis.

Keywords: degree of hydrolysis, ninhydrin, papain, porang flour, proteinaceous components

Procedia PDF Downloads 250
30533 Defects Estimation of Embedded Systems Components by a Bond Graph Approach

Authors: I. Gahlouz, A. Chellil

Abstract:

The paper concerns the estimation of system components faults by using an unknown inputs observer. To reach this goal, we used the Bond Graph approach to physical modelling. We showed that this graphical tool is allowing the representation of system components faults as unknown inputs within the state representation of the considered physical system. The study of the causal and structural features of the system (controllability, observability, finite structure, and infinite structure) based on the Bond Graph approach was hence fulfilled in order to design an unknown inputs observer which is used for the system component fault estimation.

Keywords: estimation, bond graph, controllability, observability

Procedia PDF Downloads 412
30532 Structural Performance Evaluation of Power Boiler for the Pressure Release Valve in Consideration of the Thermal Expansion

Authors: Young-Hun Lee, Tae-Gwan Kim, Jong-Kyu Kim, Young-Chul Park

Abstract:

In this study, Spring safety valve Heat - structure coupled analysis was carried out. Full analysis procedure and performing thermal analysis at a maximum temperature, them to the results obtained through to give an additional load and the pressure on the valve interior, and Disc holder Heat-Coupled structure Analysis was carried out. Modeled using a 3D design program Solidworks, For the modeling of the safety valve was used 3D finite element analysis program ANSYS. The final result to be obtained through the Analysis examined the stability of the maximum displacement and the maximum stress to the valve internal components occurring in the high-pressure conditions.

Keywords: finite element method, spring safety valve, gap, stress, strain, deformation

Procedia PDF Downloads 367
30531 An Alternative Framework of Multi-Resolution Nested Weighted Essentially Non-Oscillatory Schemes for Solving Euler Equations with Adaptive Order

Authors: Zhenming Wang, Jun Zhu, Yuchen Yang, Ning Zhao

Abstract:

In the present paper, an alternative framework is proposed to construct a class of finite difference multi-resolution nested weighted essentially non-oscillatory (WENO) schemes with an increasingly higher order of accuracy for solving inviscid Euler equations. These WENO schemes firstly obtain a set of reconstruction polynomials by a hierarchy of nested central spatial stencils, and then recursively achieve a higher order approximation through the lower-order precision WENO schemes. The linear weights of such WENO schemes can be set as any positive numbers with a requirement that their sum equals one and they will not pollute the optimal order of accuracy in smooth regions and could simultaneously suppress spurious oscillations near discontinuities. Numerical results obtained indicate that these alternative finite-difference multi-resolution nested WENO schemes with different accuracies are very robust with low dissipation and use as few reconstruction stencils as possible while maintaining the same efficiency, achieving the high-resolution property without any equivalent multi-resolution representation. Besides, its finite volume form is easier to implement in unstructured grids.

Keywords: finite-difference, WENO schemes, high order, inviscid Euler equations, multi-resolution

Procedia PDF Downloads 145
30530 Fire Protection Performance of Different Industrial Intumescent Coatings for Steel Beams

Authors: Serkan Kocapinar, Gülay Altay

Abstract:

This study investigates the efficiency of two different industrial intumescent coatings which have different types of certifications, in the fire protection performance in steel beams in the case of ISO 834 fire for 2 hours. A better understanding of industrial intumescent coatings, which assure structural integrity and prevent a collapse of steel structures, is needed to minimize the fire risks in steel structures. A comparison and understanding of different fire protective intumescent coatings, which are Product A and Product B, are used as a thermal barrier between the steel components and the fire. Product A is tested according to EN 13381-8 and BS 476-20,22 and is certificated by ISO Standards. Product B is tested according to EN 13381-8 and ASTM UL-94 and is certificated by the Turkish Standards Institute (TSE). Generally, fire tests to evaluate the fire performance of steel components are done numerically with commercial software instead of experiments due to the high cost of an ISO 834 fire test in a furnace. Hence, there is a gap in the literature about the comparisons of different certificated intumescent coatings for fire protection in the case of ISO 834 fire in a furnace experiment for 2 hours. The experiment was carried out by using two 1-meter UPN 200 steel sections. Each one was coated by different industrial intumescent coatings. A furnace was used by the Turkish Standards Institute (TSE) for the experiment. The temperature of the protected steels and the inside of the furnace was measured with the help of 24 thermocouples which were applied before the intumescent coatings during the two hours for the performance of intumescent coatings by getting a temperature-time curve of steel components. FIN EC software was used to determine the critical temperatures of protected steels, and Abaqus was used for thermal analysis to get theoretical results to compare with the experimental results.

Keywords: fire safety, structural steel, ABAQUS, thermal analysis, FIN EC, intumescent coatings

Procedia PDF Downloads 103
30529 Discrimination Between Bacillus and Alicyclobacillus Isolates in Apple Juice by Fourier Transform Infrared Spectroscopy and Multivariate Analysis

Authors: Murada Alholy, Mengshi Lin, Omar Alhaj, Mahmoud Abugoush

Abstract:

Alicyclobacillus is a causative agent of spoilage in pasteurized and heat-treated apple juice products. Differentiating between this genus and the closely related Bacillus is crucially important. In this study, Fourier transform infrared spectroscopy (FT-IR) was used to identify and discriminate between four Alicyclobacillus strains and four Bacillus isolates inoculated individually into apple juice. Loading plots over the range of 1350 and 1700 cm-1 reflected the most distinctive biochemical features of Bacillus and Alicyclobacillus. Multivariate statistical methods (e.g. principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA)) were used to analyze the spectral data. Distinctive separation of spectral samples was observed. This study demonstrates that FT-IR spectroscopy in combination with multivariate analysis could serve as a rapid and effective tool for fruit juice industry to differentiate between Bacillus and Alicyclobacillus and to distinguish between species belonging to these two genera.

Keywords: alicyclobacillus, bacillus, FT-IR, spectroscopy, PCA

Procedia PDF Downloads 488
30528 Determination of Yield and Yield Components of Fodder Beet (Beta vulgaris L. var. rapacea Koch.) Cultivars under the Konya Region Conditions

Authors: A. Ozkose

Abstract:

This study was conducted to determination of yield and yield components of some fodder beet types (Amarilla Barres, Feldherr, Kyros, Magnum, and Rota) under the Konya region conditions. Fodder beet was obtained from the Selcuk University, Faculty of Agriculture, at 2006-2007 season and the experiment was established in a randomized complete block design with three replicates. Differences among the averages of the fodder beet cultivars are statistically important in terms of all the characteristics investigated. Leaf attitude value was 1.2–2.2 (1=erect; 5= prostrate), root shape scale value was (1=spheroidal – 9=cylindrical), root diameter 11.0–12.2 cm, remaining part of root on the ground was 6.3–13.7 cm, root length was 21.4 – 29.6 cm, leaf yield 1592 – 1917 kg/da, root yield was 10083–12258 kg/da, root dry matter content was %8.2– 18.6 and root dry matter yield was 889–1887 kg/da. As a result of the study, it was determined that fodder beet cultivars are different conditions in terms of yield and yield components. Therefore, determination of appropriate cultivars for each region affect crop yield importantly.

Keywords: fedder beet, root yield, yield components, Konya, agriculture

Procedia PDF Downloads 484
30527 Analysis of the Effective Components on the Performance of the Public Sector in Iran

Authors: Mahsa Habibzadeh

Abstract:

The function is defined as the process of systematic and systematic measurement of the components of how each task is performed and determining their potential for improvement in accordance with the specific standards of each component. Hence, evaluation is the basis for the improvement of organizations' functional excellence and the move towards performance excellence depends on performance improvement planning. Because of the past two decades, the public sector system has undergone dramatic changes. The purpose of such developments is often to overcome the barriers of the bureaucratic system, which impedes the efficient use of limited resources. Implementing widespread changes in the public sector of developed and even developing countries has led the process of developments to be addressed by many researchers. In this regard, the present paper has been carried out with the approach of analyzing the components that affect the performance of the public sector in Iran. To achieve this goal, indicators that affect the performance of the public sector and the factors affecting the improvement of its accountability have been identified. The research method in this research is descriptive and analytical. A statistical population of 120 people consists of managers and employees of the public sector in Iran. The questionnaires were distributed among them and analyzed using SPSS and LISREL software. The obtained results indicate that the results of the research findings show that between responsibilities there is a significant relationship between participation of managers and employees, legality, justice and transparency of specialty and competency, participation in public sector functions. Also, the significant coefficient for the liability variable is 3.31 for justice 2.89 for transparency 1.40 for legality of 2.27 for specialty and competence 2.13 and 5.17 for participation 5.17. Implementing indicators that affect the performance of the public sector can lead to satisfaction of the audience.

Keywords: performance, accountability system, public sector, components

Procedia PDF Downloads 226
30526 Corrosion Analysis of Brazed Copper-Based Conducts in Particle Accelerator Water Cooling Circuits

Authors: A. T. Perez Fontenla, S. Sgobba, A. Bartkowska, Y. Askar, M. Dalemir Celuch, A. Newborough, M. Karppinen, H. Haalien, S. Deleval, S. Larcher, C. Charvet, L. Bruno, R. Trant

Abstract:

The present study investigates the corrosion behavior of copper (Cu) based conducts predominantly brazed with Sil-Fos (self-fluxing copper-based filler with silver and phosphorus) within various cooling circuits of demineralized water across different particle accelerator components at CERN. The study covers a range of sample service time, from a few months to fifty years, and includes various accelerator components such as quadrupoles, dipoles, and bending magnets. The investigation comprises the established sample extraction procedure, examination methodology including non-destructive testing, evaluation of the corrosion phenomena, and identification of commonalities across the studied components as well as analysis of the environmental influence. The systematic analysis included computed microtomography (CT) of the joints that revealed distributed defects across all brazing interfaces. Some defects appeared to result from areas not wetted by the filler during the brazing operation, displaying round shapes, while others exhibited irregular contours and radial alignment, indicative of a network or interconnection. The subsequent dry cutting performed facilitated access to the conduct's inner surface and the brazed joints for further inspection through light and electron microscopy (SEM) and chemical analysis via Energy Dispersive X-ray spectroscopy (EDS). Brazing analysis away from affected areas identified the expected phases for a Sil-Fos alloy. In contrast, the affected locations displayed micrometric cavities propagating into the material, along with selective corrosion of the bulk Cu initiated at the conductor-braze interface. Corrosion product analysis highlighted the consistent presence of sulfur (up to 6 % in weight), whose origin and role in the corrosion initiation and extension is being further investigated. The importance of this study is paramount as it plays a crucial role in comprehending the underlying factors contributing to recently identified water leaks and evaluating the extent of the issue. Its primary objective is to provide essential insights for the repair of impacted brazed joints when accessibility permits. Moreover, the study seeks to contribute to the improvement of design and manufacturing practices for future components, ultimately enhancing the overall reliability and performance of magnet systems within CERN accelerator facilities.

Keywords: accelerator facilities, brazed copper conducts, demineralized water, magnets

Procedia PDF Downloads 46
30525 Effect of Pre-treatment with Salicylic Acid on Vegetative Growth and Yield Components of Wheat under Salinity

Authors: Saad M. Howladar, Mike Dennett

Abstract:

At first harvest, results showed that salinity (tap water, 100 and 200 mM NaCl) induced a significant decrease in all growth parameters in both Yecora Rojo and Paragon cultivars. The greatest effect of salinity was a decrease in leaf area. The same tendency was observed with specific leaf area, and total fresh and dry weights and their components. Green leaf and tiller numbers were reduced by the same extent in both cultivars. The corresponding final harvest, all growth parameters also reduced with increased salinity. Yield and yield components were also reduced by salinity with similar effects in both cultivars. Chlorophyll fluorescence, expressed as Fv/Fm, and gas exchange parameters were decreased significantly with increase in salinity in both cultivars. In contrast, seed protein content was increased significantly with increase in salinity. Salicylic acid (SA) application induced no significant improvements in growth parameters and yield components.

Keywords: salinity, salicylic acid, growth, chlorophyll fluorescence, gas exchange, yield

Procedia PDF Downloads 471
30524 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis

Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu

Abstract:

Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.

Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing

Procedia PDF Downloads 138
30523 Determination of Verapamil Hydrochloride in Tablets and Injection Solutions With the Verapamil-Selective Electrode and Possibilities of Application in Pharmaceutical Analysis

Authors: Faisal A. Salih

Abstract:

Verapamil hydrochloride (Ver) is a drug used in medicine for arrythmia, angina and hypertension as a calcium channel blocker. For the quantitative determination of Ver in dosage forms, the HPLC method is most often used. A convenient alternative to the chromatographic method is potentiometry using a Verselective electrode, which does not require expensive equipment, can be used without separation from the matrix components, which significantly reduces the analysis time, and does not use toxic organic solvents, being a "green", "environmentally friendly" technique. It has been established in this study that the rational choice of the membrane plasticizer and the preconditioning and measurement algorithms, which prevent nonexchangeable extraction of Ver into the membrane phase, makes it possible to achieve excellent analytical characteristics of Ver-selective electrodes based on commercially available components. In particular, an electrode with the following membrane composition: PVC (32.8 wt %), ortho-nitrophenyloctyl ether (66.6 wt %), and tetrakis-4-chlorophenylborate (0.6 wt % or 0.01 M) have the lower detection limit 4 × 10−8 M and potential reproducibility 0.15–0.22 mV. Both direct potentiometry (DP) and potentiometric titration (PT) methods can be used for the determination of Ver in tablets and injection solutions. Masses of Ver per average tablet weight determined by the methods of DP and PT for the same set of 10 tablets were (80.4±0.2 and80.7±0.2) mg, respectively. The masses of Ver in solutions for injection, determined by DP for two ampoules from one set, were (5.00±0.015 and 5.004±0.006) mg. In all cases, good reproducibility and excellent correspondence with the declared quantities were observed.

Keywords: verapamil, potentiometry, ion-selective electrode, pharmaceutical analysis

Procedia PDF Downloads 88
30522 Essential Oil Analysis of the Aerial Parts of Sideritis incana and Calamitha hispidula

Authors: Smain Amiraa, Hocine Laouerb, Fatima Benchikh-Amiraa, Guido Flaminic

Abstract:

The aerial parts of Sideritis incana and Calamintha hispidula at the flowering stage were submitted to hydrodistillation in a Clevenger–type apparatus for 3 hours and the chemical composition of the essential oil was analyzed by GC coupled to GC-MS. The essential oil contained a total of 99 constituents for S. incana and 31 for C. hispidula representing 95.7% and 99.6 of the total oils, rerspectively. The mains components of S. incana oil were linalool (25.2), cedrol (13.7%), geraniol (7%) and α-terpineol (5.4%). The chemical constituents of the oil from C. hispidula were predominated by pulegone (43.2%), isomenthone (36%), piperitone (3.2%), limonene (2.6%) and 4-terpineol (2.5%). The results revealed that the oil of the plants is characterized by the presence of many important components which could be applied in food, pharmaceutical and perfume industry.

Keywords: essential oils, Calamintha hispidula, Sideritis incana, chemical and molecular engineering

Procedia PDF Downloads 246
30521 Determining a Suitable Maintenance Measure for Gentelligent Components Using Case-Based Reasoning

Authors: Maximilian Winkens, Peter Nyhuis

Abstract:

Components with sensory properties such as gentelligent components developed at the Collaborative Research Center 653 offer a new angle on the full utilization of the remaining service life in case of a preventive maintenance. The developed methodology of component status driven maintenance analyses the stress data obtained during the component's useful life and on the basis of this knowledge assesses the type of maintenance called for in this case. The procedure is derived from the case-based reasoning method and will be elucidated in detail. The method's functionality is demonstrated with real-life data obtained during test runs of a racing car prototype.

Keywords: gentelligent component, preventive maintenance, case-based reasoning, sensory

Procedia PDF Downloads 362
30520 Effect of Pre-Treatment with Salicylic Acid on Vegetative Growth and Yield Components of Saudi’s Wheat under Salinity

Authors: Saad Howladar, Mike Dennett

Abstract:

At first harvest, results showed that salinity (tap water, 100 and 200 mM NaCl) induced a significant decrease in all growth parameters in both Yecora Rojo and Paragon cultivars. The greatest effect of salinity was a decrease in leaf area. The same tendency was observed with specific leaf area, and total fresh and dry weights and their components. Green leaf and tiller numbers were reduced by the same extent in both cultivars. The corresponding final harvest, all growth parameters also reduced with increased salinity. Yield and yield components were also reduced by salinity with similar effects in both cultivars. Chlorophyll fluorescence, expressed as Fv/Fm, and gas exchange parameters were decreased significantly with increase in salinity in both cultivars. In contrast, seed protein content was increased significantly with increase in salinity. Salicylic acid (SA) application induced no significant improvements in growth parameters and yield components.

Keywords: salinity, salicylic acid, growth, chlorophyll fluorescence, gas exchange, yield

Procedia PDF Downloads 423