Search results for: foundations on thermal insulation layer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6219

Search results for: foundations on thermal insulation layer

5769 Investigate and Control Thermal Spectra in Nanostructures and 2D Van der Waals Materials

Authors: Joon Sang Kang, Ming Ke, Yongjie Hu

Abstract:

Controlling heat transfer and thermal properties of materials is important to many fields such as energy efficiency and thermal management of integrated circuits. Significant progress over the past decade has been made to improve material performance through structuring at the nanoscale, however a clear relationship between structure dimensions, interfaces, and thermal properties remains to be established. The main challenge comes from the unknown intrinsic spectral contribution from different phonons. Here, we describe our current progress on quantifying and controlling thermal spectra based on our recently developed technical approach using ultrafast optical spectroscopy. Our work brings further the promise of rational material design to achieve high performance through a synergistic experimental-modeling approach. This approach can be broadly applicable to a wide range of materials and energy systems. In particular, we demonstrate in-situ characterization and tunable thermal properties of 2D van der waals materials through ionic intercalations. The significant impacts of this research in improving the efficiency of thermal energy conversion and management will also be illustrated.

Keywords: energy, mean free path, nanoscale heat transfer, nanostructure, phonons, TDTR, thermoelectrics, 2D materials

Procedia PDF Downloads 284
5768 Thermal Comfort Characteristics in an Enclosure with a Radiant Ceiling Heating and Floor Air Heating System

Authors: Seung-Ho Yoo, Jong-Ryeul Sohn

Abstract:

An environmental friendly or efficient heating & cooling systems attract a great attention, due to the energy or environmental problems. Especially the heat balance of human body is about 50% influenced by radiation exchange in built environment. Therefore, a thermal comfort characteristics in a radiant built environment need to be accessed through the development of an efficient evaluation method. Almost of Korean housings use traditionally the radiant floor heating system. A radiant cooling system attracts also many attention nowadays in the viewpoint of energy conservation and comfort. Thermal comfort characteristics in an enclosure with a radiant heating and cooling system are investigated by experiment, thermal sensation vote analysis and mean radiant temperature simulation. Asymmetric radiation between radiant heating ceiling and air heating system in 9 points of room is compared with each other.

Keywords: radiant heating and cooling ceiling, asymmetric radiation, thermal comfort, thermal sensation vote

Procedia PDF Downloads 508
5767 Field-observed Thermal Fractures during Reinjection and Its Numerical Simulation

Authors: Wen Luo, Phil J. Vardon, Anne-Catherine Dieudonne

Abstract:

One key process that partly controls the success of geothermal projects is fluid reinjection, which benefits in dealing with waste water, maintaining reservoir pressure, and supplying heat-exchange media, etc. Thus, sustaining the injectivity is of great importance for the efficiency and sustainability of geothermal production. However, the injectivity is sensitive to the reinjection process. Field experiences have illustrated that the injectivity can be damaged or improved. In this paper, the focus is on how the injectivity is improved. Since the injection pressure is far below the formation fracture pressure, hydraulic fracturing cannot be the mechanism contributing to the increase in injectivity. Instead, thermal stimulation has been identified as the main contributor to improving the injectivity. For low-enthalpy geothermal reservoirs, which are not fracture-controlled, thermal fracturing, instead of thermal shearing, is expected to be the mechanism for increasing injectivity. In this paper, field data from the sedimentary low-enthalpy geothermal reservoirs in the Netherlands were analysed to show the occurrence of thermal fracturing due to the cooling shock during reinjection. Injection data were collected and compared to show the effects of the thermal fractures on injectivity. Then, a thermo-hydro-mechanical (THM) model for the near field formation was developed and solved by finite element method to simulate the observed thermal fractures. It was then compared with the HM model, decomposed from the THM model, to illustrate the thermal effects on thermal fracturing. Finally, the effects of operational parameters, i.e. injection temperature and pressure, on the changes in injectivity were studied on the basis of the THM model. The field data analysis and simulation results illustrate that the thermal fracturing occurred during reinjection and contributed to the increase in injectivity. The injection temperature was identified as a key parameter that contributes to thermal fracturing.

Keywords: injectivity, reinjection, thermal fracturing, thermo-hydro-mechanical model

Procedia PDF Downloads 210
5766 Experimental Study of Vibration Isolators Made of Expanded Cork Agglomerate

Authors: S. Dias, A. Tadeu, J. Antonio, F. Pedro, C. Serra

Abstract:

The goal of the present work is to experimentally evaluate the feasibility of using vibration isolators made of expanded cork agglomerate. Even though this material, also known as insulation cork board (ICB), has mainly been studied for thermal and acoustic insulation purposes, it has strong potential for use in vibration isolation. However, the adequate design of expanded cork blocks vibration isolators will depend on several factors, such as excitation frequency, static load conditions and intrinsic dynamic behavior of the material. In this study, transmissibility tests for different static and dynamic loading conditions were performed in order to characterize the material. Since the material’s physical properties can influence the vibro-isolation performance of the blocks (in terms of density and thickness), this study covered four mass density ranges and four block thicknesses. A total of 72 expanded cork agglomerate specimens were tested. The test apparatus comprises a vibration exciter connected to an excitation mass that holds the test specimen. The test specimens under characterization were loaded successively with steel plates in order to obtain results for different masses. An accelerometer was placed at the top of these masses and at the base of the excitation mass. The test was performed for a defined frequency range, and the amplitude registered by the accelerometers was recorded in time domain. For each of the signals (signal 1- vibration of the excitation mass, signal 2- vibration of the loading mass) a fast Fourier transform (FFT) was applied in order to obtain the frequency domain response. For each of the frequency domain signals, the maximum amplitude reached was registered. The ratio between the amplitude (acceleration) of signal 2 and the amplitude of signal 1, allows the calculation of the transmissibility for each frequency. Repeating this procedure allowed us to plot a transmissibility curve for a certain frequency range. A number of transmissibility experiments were performed to assess the influence of changing the mass density and thickness of the expanded cork blocks and the experimental conditions (static load and frequency of excitation). The experimental transmissibility tests performed in this study showed that expanded cork agglomerate blocks are a good option for mitigating vibrations. It was concluded that specimens with lower mass density and larger thickness lead to better performance, with higher vibration isolation and a larger range of isolated frequencies. In conclusion, the study of the performance of expanded cork agglomerate blocks presented herein will allow for a more efficient application of expanded cork vibration isolators. This is particularly relevant since this material is a more sustainable alternative to other commonly used non-environmentally friendly products, such as rubber.

Keywords: expanded cork agglomerate, insulation cork board, transmissibility tests, sustainable materials, vibration isolators

Procedia PDF Downloads 329
5765 Influence of Channel Depth on the Performance of Wavy Fin Absorber Solar Air Heater

Authors: Abhishek Priyam, Prabha Chand

Abstract:

Channel depth is an important design parameter to be fixed in designing a solar air heater. In this paper, a mathematical model has been developed to study the influence of channel duct on the thermal performance of solar air heaters. The channel depth has been varied from 1.5 cm to 3.5 cm for the mass flow range 0.01 to 0.11 kg/s. Based on first law of thermodynamics, the channel depth of 1.5 cm shows better thermal performance for all the mass flow range. Also, better thermohydraulic performance has been found up to 0.05 kg/s, and beyond this, thermohydraulic efficiency starts decreasing. It has been seen that, with the increase in the mass flow rate, the difference between thermal and thermohydraulic efficiency increases because of the increase in pressure drop. At lower mass flow rate, 0.01 kg/s, the thermal and thermohydraulic efficiencies for respective channel depth remain the same.

Keywords: channel depth, thermal efficiency, wavy fin, thermohydraulic efficiency

Procedia PDF Downloads 370
5764 Valorization of Plastic and Cork Wastes in Design of Composite Materials

Authors: Svetlana Petlitckaia, Toussaint Barboni, Paul-Antoine Santoni

Abstract:

Plastic is a revolutionary material. However, the pollution caused by plastics damages the environment, human health and the economy of different countries. It is important to find new ways to recycle and reuse plastic material. The use of waste materials as filler and as a matrix for composite materials is receiving increasing attention as an approach to increasing the economic value of streams. In this study, a new composite material based on high-density polyethylene (HDPE) and polypropylene (PP) wastes from bottle caps and cork powder from unused cork (virgin cork), which has a high capacity for thermal insulation, was developed. The composites were prepared with virgin and modified cork. The composite materials were obtained through twin-screw extrusion and injection molding. The composites were produced with proportions of 0 %, 5 %, 10 %, 15 %, and 20 % of cork powder in a polymer matrix with and without coupling agent and flame retardant. These composites were investigated in terms of mechanical, structural and thermal properties. The effect of cork fraction, particle size and the use of flame retardant on the properties of composites were investigated. The properties of samples elaborated with the polymer and the cork were compared to them with the coupling agent and commercial flame retardant. It was observed that the morphology of HDPE/cork and PP/cork composites revealed good distribution and dispersion of cork particles without agglomeration. The results showed that the addition of cork powder in the polymer matrix reduced the density of the composites. However, the incorporation of natural additives doesn’t have a significant effect on water adsorption. Regarding the mechanical properties, the value of tensile strength decreases with the addition of cork powder, ranging from 30 MPa to 19 MPa for PP composites and from 19 MPa to 17 MPa for HDPE composites. The value of thermal conductivity of composites HDPE/cork and PP/ cork is about 0.230 W/mK and 0.170 W/mK, respectively. Evaluation of the flammability of the composites was performed using a cone calorimeter. The results of thermal analysis and fire tests show that it is important to add flame retardants to improve fire resistance. The samples elaborated with the coupling agent and flame retardant have better mechanical properties and fire resistance. The feasibility of the composites based on cork and PP and HDPE wastes opens new ways of valorizing plastic waste and virgin cork. The formulation of composite materials must be optimized.

Keywords: composite materials, cork and polymer wastes, flammability, modificated cork

Procedia PDF Downloads 78
5763 Development of an Instrument for Measurement of Thermal Conductivity and Thermal Diffusivity of Tropical Fruit Juice

Authors: T. Ewetumo, K. D. Adedayo, Festus Ben

Abstract:

Knowledge of the thermal properties of foods is of fundamental importance in the food industry to establish the design of processing equipment. However, for tropical fruit juice, there is very little information in literature, seriously hampering processing procedures. This research work describes the development of an instrument for automated thermal conductivity and thermal diffusivity measurement of tropical fruit juice using a transient thermal probe technique based on line heat principle. The system consists of two thermocouple sensors, constant current source, heater, thermocouple amplifier, microcontroller, microSD card shield and intelligent liquid crystal. A fixed distance of 6.50mm was maintained between the two probes. When heat is applied, the temperature rise at the heater probe measured with time at time interval of 4s for 240s. The measuring element conforms as closely as possible to an infinite line source of heat in an infinite fluid. Under these conditions, thermal conductivity and thermal diffusivity are simultaneously measured, with thermal conductivity determined from the slope of a plot of the temperature rise of the heating element against the logarithm of time while thermal diffusivity was determined from the time it took the sample to attain a peak temperature and the time duration over a fixed diffusivity distance. A constant current source was designed to apply a power input of 16.33W/m to the probe throughout the experiment. The thermal probe was interfaced with a digital display and data logger by using an application program written in C++. Calibration of the instrument was done by determining the thermal properties of distilled water. Error due to convection was avoided by adding 1.5% agar to the water. The instrument has been used for measurement of thermal properties of banana, orange and watermelon. Thermal conductivity values of 0.593, 0.598, 0.586 W/m^o C and thermal diffusivity values of 1.053 ×〖10〗^(-7), 1.086 ×〖10〗^(-7), and 0.959 ×〖10〗^(-7) 〖m/s〗^2 were obtained for banana, orange and water melon respectively. Measured values were stored in a microSD card. The instrument performed very well as it measured the thermal conductivity and thermal diffusivity of the tropical fruit juice samples with statistical analysis (ANOVA) showing no significant difference (p>0.05) between the literature standards and estimated averages of each sample investigated with the developed instrument.

Keywords: thermal conductivity, thermal diffusivity, tropical fruit juice, diffusion equation

Procedia PDF Downloads 348
5762 Improving Access to Palliative Care for Heart Failure Patients in England Using a Health Systems Approach

Authors: Alex Hughes

Abstract:

Patients with advanced heart failure develop specific palliative care needs due to the progressive symptom burden and unpredictable disease trajectory. NICE guidance advises that palliative care should be provided to patients with both cancer and non-cancer conditions as and when required. However, there is some way to go before this guidance is consistently and effectively implemented nationwide in conditions such as heart failure. The Ambitions for Palliative and End of Life Care: A national framework for local action in England provides a set of foundations and ambitions which outline a vision for what high-quality palliative and end-of-life care look like in England. This poster aims to critically consider how to improve access to palliative care for heart failure patients in England by analysing the foundations taken from this framework to generate specific recommendations using Soft Systems Methodology (SSM). The eight foundations analysed are: ‘Personalised care planning’, ‘Shared records’, ‘Evidence and information’, ‘Involving, supporting and caring for those important to the dying Person’, ‘Education and training’, ‘24/7 access’, ‘Co-design’ and ‘Leadership.’ A number of specific recommendations have been generated which highlight a need to close the evidence-policy gap and implement policy with sufficient evidence. These recommendations, alongside the creation of an evidence-based national strategy for palliative care and heart failure, should improve access to palliative care for heart failure patients in England. Once implemented, it will be necessary to evaluate the effect of these proposals to understand if access to palliative care for heart failure patients actually improves.

Keywords: access, health systems, heart failure, palliative care

Procedia PDF Downloads 126
5761 Manufacturing Process of Rubber Cement Composite Paver Block

Authors: Ratnadip Natwarbhai Bhoi

Abstract:

The objective of this research paper is to study waste tire crumb rubber granules as a partial concrete replacement by the different percentages of facing layer thickness and without facing layer in the production of rubber cement composite paver block. The physical properties of RCCRP compressive strength, flexural strength, abrasion strength density, and water absorption testing by the IS 15658:2006 method. All these physical properties depend upon the ratio of crumb rubber uses. The result showed that the with facing layer at 15 mm, 25 mm, totally rubberized and without facing layer had little effect on compressive strength, flexural strength and abrasion resistance properties. Water absorption is also important for the service life of the product. The crumb rubber paver block also performed quite well in both compressive strength and abrasion resistance. The rubber cement composite rubber paver block is suitable for nonstructural purposes, such as being lightweight and easy installation for the walkway, sidewalks, and playing area applications.

Keywords: rubber cement, crumb rubber, composite, layer

Procedia PDF Downloads 93
5760 The Investigation of Cracking on the Shell of Dryers (tag No. 2DR-1745 and DR-1402) in Shahid Tondguyan Petrochemical Company (STPC)

Authors: Ali Haghiri

Abstract:

This research has been to investigate the cause of the stress corrosion cracking on dryer equipment (2DR-1745 and DR-1402) in Shahid Tondguyan Petrochemical Company (STPC). These dryers are as a drying powder Terphetalic acid in CTA2 and CTA1 unit. After passing through RVF equipment, wet cake moisture content of about 14% and temperature of 90C changed into a dry cake with a moisture content of less than 0.1% and the final temperature of about 140C and sent out Final Silo (FS-1820). After the declaration of the operation department concerning the observation of acid leakage under the primary insulation was decided that at the first opportunity, this issue must be investigated. So, after the shutdown of a unit at the date 2012/10/20 (2DR-1745) and 2021/11/24 (DR-1402) and after washing the dryer wall, insulation around the wall opened and it was found to crack and leakage from some points.

Keywords: stress corrosion cracking, residual stress, austenitic stainless steel, Br- ion

Procedia PDF Downloads 153
5759 Thermal Effect in Power Electrical for HEMTs Devices with InAlN/GaN

Authors: Zakarya Kourdi, Mohammed Khaouani, Benyounes Bouazza, Ahlam Guen-Bouazza, Amine Boursali

Abstract:

In this paper, we have evaluated the thermal effect for high electron mobility transistors (HEMTs) heterostructure InAlN/GaN with a gate length 30nm high-performance. It also shows the analysis and simulated these devices, and how can be used in different application. The simulator Tcad-Silvaco software has used for predictive results good for the DC, AC and RF characteristic, Devices offered max drain current 0.67A; transconductance is 720 mS/mm the unilateral power gain of 180 dB. A cutoff frequency of 385 GHz, and max frequency 810 GHz These results confirm the feasibility of using HEMTs with InAlN/GaN in high power amplifiers, as well as thermal places.

Keywords: HEMT, Thermal Effect, Silvaco, InAlN/GaN

Procedia PDF Downloads 463
5758 A Key Parameter in Ocean Thermal Energy Conversion Plant Design and Operation

Authors: Yongjian Gu

Abstract:

Ocean thermal energy is one of the ocean energy sources. It is a renewable, sustainable, and green energy source. Ocean thermal energy conversion (OTEC) applies the ocean temperature gradient between the warmer surface seawater and the cooler deep seawater to run a heat engine and produce a useful power output. Unfortunately, the ocean temperature gradient is not big. Even in the tropical and equatorial regions, the surface water temperature can only reach up to 28oC and the deep water temperature can be as low as 4oC. The thermal efficiency of the OTEC plants, therefore, is low. In order to improve the plant thermal efficiency by using the limited ocean temperature gradient, some OTEC plants use the method of adding more equipment for better heat recovery, such as heat exchangers, pumps, etc. Obviously, the method will increase the plant's complexity and cost. The more important impact of the method is the additional equipment needs to consume power too, which may have an adverse effect on the plant net power output, in turn, the plant thermal efficiency. In the paper, the author first describes varied OTEC plants and the practice of using the method of adding more equipment for improving the plant's thermal efficiency. Then the author proposes a parameter, plant back works ratio ϕ, for measuring if the added equipment is appropriate for the plant thermal efficiency improvement. Finally, in the paper, the author presents examples to illustrate the application of the back work ratio ϕ as a key parameter in the OTEC plant design and operation.

Keywords: ocean thermal energy, ocean thermal energy conversion (OTEC), OTEC plant, plant back work ratio ϕ

Procedia PDF Downloads 190
5757 Improvement of Thermal Stability in Ethylene Methyl Acrylate Composites for Gasket Application

Authors: Pemika Ketsuwan, Pitt Supaphol, Manit Nithitanakul

Abstract:

A typical used of ethylene methyl acrylate (EMA) gasket is in the manufacture of optical lens, and often, they are deteriorated rapidly due to high temperature during the process. The objective of this project is to improve the thermal stability of the EMA copolymer gasket by preparing EMA with cellulose and silica composites. Hydroxy propyl methyl cellulose (HPMC) and Carboxy methyl cellulose (CMC) were used in preparing of EMA/cellulose composites and fumed silica (SiO2) was used in preparing EMA/silica composites with different amounts of filler (3, 5, 7, 10, 15 wt.%), using a twin screw extruder at 160 °C and the test specimens were prepared by the injection molding machine. The morphology and dispersion of fillers in the EMA matrix were investigated by field emission scanning electron microscopy (FESEM). The thermal stability of the composite was determined by thermal gravimetric analysis (TGA), and differential scanning calorimeter (DSC). Mechanical properties were evaluated by tensile testing. The developed composites were found to enhance thermal and mechanical properties when compared to that of the EMA copolymer alone.

Keywords: ethylene methyl acrylate, HPMC, Silica, Thermal stability

Procedia PDF Downloads 116
5756 Fabrication of Cylindrical Silicon Nanowire-Embedded Field Effect Transistor Using Al2O3 Transfer Layer

Authors: Sang Hoon Lee, Tae Il Lee, Su Jeong Lee, Jae Min Myoung

Abstract:

In order to manufacture short gap single Si nanowire (NW) field effect transistor (FET) by imprinting and transferring method, we introduce the method using Al2O3 sacrificial layer. The diameters of cylindrical Si NW addressed between Au electrodes by dielectrophoretic (DEP) alignment method are controlled to 106, 128, and 148 nm. After imprinting and transfer process, cylindrical Si NW is embedded in PVP adhesive and dielectric layer. By curing transferred cylindrical Si NW and Au electrodes on PVP-coated p++ Si substrate with 200nm-thick SiO2, 3μm gap Si NW FET fabrication was completed. As the diameter of embedded Si NW increases, the mobility of FET increases from 80.51 to 121.24 cm2/V•s and the threshold voltage moves from –7.17 to –2.44 V because the ratio of surface to volume gets reduced.

Keywords: Al2O3 sacrificial transfer layer, cylindrical silicon nanowires, dielectrophorestic alignment, field effect transistor

Procedia PDF Downloads 451
5755 An Integrated Approach for Optimal Selection of Machining Parameters in Laser Micro-Machining Process

Authors: A. Gopala Krishna, M. Lakshmi Chaitanya, V. Kalyana Manohar

Abstract:

In the existent analysis, laser micro machining (LMM) of Silicon carbide (SiCp) reinforced Aluminum 7075 Metal Matrix Composite (Al7075/SiCp MMC) was studied. While machining, Because of the intense heat generated, A layer gets formed on the work piece surface which is called recast layer and this layer is detrimental to the surface quality of the component. The recast layer needs to be as small as possible for precise applications. Therefore, The height of recast layer and the depth of groove which are conflicting in nature were considered as the significant manufacturing criteria, Which determines the pursuit of a machining process obtained in LMM of Al7075/10%SiCp composite. The present work formulates the depth of groove and height of recast layer in relation to the machining parameters using the Response Surface Methodology (RSM) and correspondingly, The formulated mathematical models were put to use for optimization. Since the effect of machining parameters on the depth of groove and height of recast layer was contradictory, The problem was explicated as a multi objective optimization problem. Moreover, An evolutionary Non-dominated sorting genetic algorithm (NSGA-II) was employed to optimize the model established by RSM. Subsequently this algorithm was also adapted to achieve the Pareto optimal set of solutions that provide a detailed illustration for making the optimal solutions. Eventually experiments were conducted to affirm the results obtained from RSM and NSGA-II.

Keywords: Laser Micro Machining (LMM), depth of groove, Height of recast layer, Response Surface Methodology (RSM), non-dominated sorting genetic algorithm

Procedia PDF Downloads 341
5754 Improved Ohmic Contact by Li Doping in Electron Transport Layers

Authors: G. Sivakumar, T. Pratyusha, D. Gupta, W. Shen

Abstract:

To get ohmic contact between the cathode and organic semiconductor, transport layers are introduced between the active layer and the electrodes. Generally zinc oxide or titanium dioxide are used as electron transport layer. When electron transport layer is doped with lithium, the resultant film exhibited superior electronic properties, which enables faster electron transport. Doping is accomplished by heat treatment of films with Lithium salts. Li-doped films. We fabricated organic solar cell using PTB7(poly(3-hexylthiopene-2,5- diyl):PCBM(phenyl-C61-butyric acid methyl ester) and found that the solar cells prepared using Li doped films had better performance in terms of efficiency when compared to the undoped transport layers.

Keywords: electron transport layer, higher efficiency, lithium doping, ohmic contact

Procedia PDF Downloads 498
5753 Performance of Partially Covered N Number of Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Series Connected Water Heating System

Authors: Rohit Tripathi, Sumit Tiwari, G. N. Tiwari

Abstract:

In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, India. Energy and exergy performance of N - partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Water collector system has been compared for two cases: (i) 25% area of water collector covered by PV module, (ii) 75% area of water collector covered by PV module. It is observed that case (i) has been best suited for thermal performance and case (ii) for electrical energy as well as overall exergy.

Keywords: compound parabolic concentrator, energy, photovoltaic thermal, temperature dependent electrical efficiency

Procedia PDF Downloads 401
5752 Determination of Thermophysical Properties of Water Based Magnetic Nanofluids

Authors: Eyüphan Manay, Bayram Sahin, Emre Mandev, Ibrahim Ates, Tuba Yetim

Abstract:

In this study, it was aimed to determine the thermophysical properties of two different magnetic nanofluids (NiFe2O4-water and CoFe2O4-water). Magnetic nanoparticles were dispersed into the pure water at different volume fractions from 0 vol.% to 4 vol.%. The measurements were performed in the temperature range of 15 oC-55 oC. In order to get better idea on the temperature dependent thermophysical properties of magnetic nanofluids (MNFs), viscosity and thermal conductivity measurements were made. SEM images of both NiFe2O4 and CoFe2O4 nanoparticles were used in order to confirm the average dimensions. The measurements showed that the thermal conductivity of MNFs increased with an increase in the volume fraction as well as viscosity. Increase in the temperature of both MNFs resulted in an increase in the thermal conductivity and a decrease in the viscosity. Based on the measured data, the correlations for both the viscosity and the thermal conductivity were presented with respect to solid volume ratio and temperature. Effective thermal conductivity of the prepared MNFs was also calculated. The results indicated that water based NiFe2O4 nanofluid had higher thermal conductivity than that of the CoFe2O4. Once the viscosity values of both MNFs were compared, almost no difference was observed.

Keywords: magnetic nanofluids, thermal conductivity, viscosity, nife2o4-water, cofe2o4-water

Procedia PDF Downloads 254
5751 Study of the Physical Aging of Polyvinyl Chloride (PVC)

Authors: Mohamed Ouazene

Abstract:

The insulating properties of the polymers are widely used in electrical engineering for the production of insulators and various supports, as well as for the insulation of electric cables for medium and high voltage, etc. These polymeric materials have significant advantages both technically and economically. However, although the insulation with polymeric materials has advantages, there are also certain disadvantages such as the influence of the heat which can have a detrimental effect on these materials. Polyvinyl chloride (PVC) is one of the polymers used in a plasticized state in the cable insulation to medium and high voltage. The studied material is polyvinyl chloride (PVC 4000 M) from the Algerian national oil company whose formula is: Industrial PVC 4000 M is in the form of white powder. The test sample is a pastille of 1 mm thick and 1 cm in diameter. The consequences of increasing the temperature of a polymer are modifications; some of them are reversible and others irreversible [1]. The reversible changes do not affect the chemical composition of the polymer, or its structure. They are characterized by transitions and relaxations. The glass transition temperature is an important feature of a polymer. Physical aging of PVC is to maintain the material for a longer or shorter time to its glass transition temperature. The aim of this paper is to study this phenomenon by the method of thermally stimulated depolarization currents. Relaxations within the polymer have been recorded in the form of current peaks. We have found that the intensity decreases for more residence time in the polymer along its glass transition temperature. Furthermore, it is inferred from this work that the phenomenon of physical aging can have important consequences on the properties of the polymer. It leads to a more compact rearrangement of the material and a reconstruction or reinforcement of structural connections.

Keywords: depolarization currents, glass transition temperature, physical aging, polyvinyl chloride (PVC)

Procedia PDF Downloads 384
5750 Co-Alignment of Comfort and Energy Saving Objectives for U.S. Office Buildings and Restaurants

Authors: Lourdes Gutierrez, Eric Williams

Abstract:

Post-occupancy research shows that only 11% of commercial buildings met the ASHRAE thermal comfort standard. Many buildings are too warm in winter and/or too cool in summer, wasting energy and not providing comfort. In this paper, potential energy savings in U.S. offices and restaurants if thermostat settings are calculated according the updated ASHRAE 55-2013 comfort model that accounts for outdoor temperature and clothing choice for different climate zones. eQUEST building models are calibrated to reproduce aggregate energy consumption as reported in the U.S. Commercial Building Energy Consumption Survey. Changes in energy consumption due to the new settings are analyzed for 14 cities in different climate zones and then the results are extrapolated to estimate potential national savings. It is found that, depending on the climate zone, each degree increase in the summer saves 0.6 to 1.0% of total building electricity consumption. Each degree the winter setting is lowered saves 1.2% to 8.7% of total building natural gas consumption. With new thermostat settings, national savings are 2.5% of the total consumed in all office buildings and restaurants, summing up to national savings of 69.6 million GJ annually, comparable to all 2015 total solar PV generation in US. The goals of improved comfort and energy/economic savings are thus co-aligned, raising the importance of thermostat management as an energy efficiency strategy.

Keywords: energy savings quantifications, commercial building stocks, dynamic clothing insulation model, operation-focused interventions, energy management, thermal comfort, thermostat settings

Procedia PDF Downloads 302
5749 Application of Fractional Model Predictive Control to Thermal System

Authors: Aymen Rhouma, Khaled Hcheichi, Sami Hafsi

Abstract:

The article presents an application of Fractional Model Predictive Control (FMPC) to a fractional order thermal system using Controlled Auto Regressive Integrated Moving Average (CARIMA) model obtained by discretization of a continuous fractional differential equation. Moreover, the output deviation approach is exploited to design the K -step ahead output predictor, and the corresponding control law is obtained by solving a quadratic cost function. Experiment results onto a thermal system are presented to emphasize the performances and the effectiveness of the proposed predictive controller.

Keywords: fractional model predictive control, fractional order systems, thermal system, predictive control

Procedia PDF Downloads 406
5748 Depth Estimation in DNN Using Stereo Thermal Image Pairs

Authors: Ahmet Faruk Akyuz, Hasan Sakir Bilge

Abstract:

Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.

Keywords: thermal stereo matching, deep neural networks, CNN, Depth estimation

Procedia PDF Downloads 269
5747 Energy Conservation in Heat Exchangers

Authors: Nadia Allouache

Abstract:

Energy conservation is one of the major concerns in the modern high tech era due to the limited amount of energy resources and the increasing cost of energy. Predicting an efficient use of energy in thermal systems like heat exchangers can only be achieved if the second law of thermodynamics is accounted for. The performance of heat exchangers can be substantially improved by many passive heat transfer augmentation techniques. These letters permit to improve heat transfer rate and to increase exchange surface, but on the other side, they also increase the friction factor associated with the flow. This raises the question of how to employ these passive techniques in order to minimize the useful energy. The objective of this present study is to use a porous substrate attached to the walls as a passive enhancement technique in heat exchangers and to find the compromise between the hydrodynamic and thermal performances under turbulent flow conditions, by using a second law approach. A modified k- ε model is used to simulating the turbulent flow in the porous medium and the turbulent shear flow is accounted for in the entropy generation equation. A numerical modeling, based on the finite volume method is employed for discretizing the governing equations. Effects of several parameters are investigated such as the porous substrate properties and the flow conditions. Results show that under certain conditions of the porous layer thickness, its permeability, and its effective thermal conductivity the minimum rate of entropy production is obtained.

Keywords: second law approach, annular heat exchanger, turbulent flow, porous medium, modified model, numerical analysis

Procedia PDF Downloads 277
5746 Interlocking Passive Brick Set: The Design of Interlocking Building Component with Connecting Air Cavity for Heat Dissipation and Compliment to the Heating Ventilation and Air Conditioning System (HVAC)

Authors: Kongphat Phaiboonnukulkij

Abstract:

This dissertation explores the design and implementation of the ‘Interlocking Passive Brick Set,’ a building component aimed at enhancing thermal efficiency and optimizing the performance of Heating, Ventilation, and Air Conditioning (HVAC) systems. The bricks specially demonstrate a thermal resistance of and a low thermal transmittance, reflecting their ability to manage heat flow and heat dissipation effectively. The research focuses on the interaction between the exterior and interior surfaces of the brick set, where the exterior is exposed to a hot environment, and the interior remains cooler. The design incorporates a central air cavity with lower thermal transmittance than solid surfaces. This cavity facilitates a heat dissipation cycle: hotter air rises and is expelled through the top compartment, while cooler air descends, cooling the space. This convective process enhances the overall thermal regulation within the structure. The data explain the discrepancy between prediction and measurement in the thermal performance of interlocking brick systems and how the integrated air cavity overcomes these issues. Heat-flux measurements were correlated in a general form to enable designers to account for convection at both the interior and exterior surfaces.

Keywords: building envelope, thermal efficient design, energy efficient design, thermal comfort

Procedia PDF Downloads 13
5745 An Integrated Tailoring Method for Thermal Cycling Tests of Spacecraft Electronics

Authors: Xin-Yan Ji, Jing Wang, Chang Liu, Yan-Qiang Bi, Zhong-Xu Xu, Xi-Yuan Li

Abstract:

Thermal tests of electronic units are critically important for the reliability validation and performance demonstration of the spacecraft hard-wares. The tailoring equation in MIL-STD-1540 is based on fatigue of solder date. In the present paper, a new test condition tailoring expression is proposed to fit different thermo-mechanical fatigue and different subsystems, by introducing an integrated evaluating method for the fatigue acceleration exponent. The validate test has been accomplished and the data has been analyzed and compared with that from the MIL-STD-1540 tailoring equations. The results are encouraging and reasonable.

Keywords: thermal cycling test, thermal fatigue, tailoring equation, test condition planning

Procedia PDF Downloads 448
5744 Experimental Research of Corrosion Resistance Desalination Plant Pipe According to Weld Overlay Layers

Authors: Ryu Wonjin, Choi Hyeok, Park Joonhong

Abstract:

Overlay welding for improving surface properties is a method of the surface treatments which improve surface properties of material by welding materials of alloy having corrosion resistance on the basic material surface. Overlay welding affects contents of chemical components and weld hardness from different parts by dilution of the lamination layer thickness, and it determines surface properties. Therefore, overlay welding has to take into account thickness of the lamination layers with the process. As a result in this study examined contents of Fe, weldability of the base metal and monel materials, hardness and surface flatness from different parts according to each the lamination layer parameters by overlay welding monel materials with corrosion resources to the base material of carbon steel. Through this, evaluated effect by the lamination layer parameters of welding and presented decision methods of the lamination layer parameters of the overlay welding by the purpose of use.

Keywords: clad pipe, lamination layer parameters, monel, overlay welding

Procedia PDF Downloads 267
5743 Three Dimensional Analysis of Cubesat Thermal Vacuum Test

Authors: Maged Assem Soliman Mossallam

Abstract:

Thermal vacuum testing target is to qualify the space system and ensure its operability under harsh space environment. The functionality of the cubesat was checked at extreme orbit conditions. Test was performed for operational and nonoperational modes. Analysis is done to simulate the cubesat thermal cycling inside thermal vacuum chamber. Comsol Multiphysics finite element is used to solve three dimensional problem for the cubesat inside TVAC. Three dimensional CAD model is done using Autodesk Inventor program. The boundary conditions were applied from the actual shroud temperature. The input heat load variation with time is considered to solve the transient three dimensional problem. Results show that the simulated temperature profiles are within an acceptable range from the real testing data.

Keywords: cubesat, thermal vacuum test, testing simulation, finite element analysis

Procedia PDF Downloads 142
5742 Degradation of Irradiated UO2 Fuel Thermal Conductivity Calculated by FRAPCON Model Due to Porosity Evolution at High Burn-Up

Authors: B. Roostaii, H. Kazeminejad, S. Khakshournia

Abstract:

The evolution of volume porosity previously obtained by using the existing low temperature high burn-up gaseous swelling model with progressive recrystallization for UO2 fuel is utilized to study the degradation of irradiated UO2 thermal conductivity calculated by the FRAPCON model of thermal conductivity. A porosity correction factor is developed based on the assumption that the fuel morphology is a three-phase type, consisting of the as-fabricated pores and pores due to intergranular bubbles whitin UO2 matrix and solid fission products. The predicted thermal conductivity demonstrates an additional degradation of 27% due to porosity formation at burn-up levels around 120 MWd/kgU which would cause an increase in the fuel temperature accordingly. Results of the calculations are compared with available data.

Keywords: irradiation-induced recrystallization, matrix swelling, porosity evolution, UO₂ thermal conductivity

Procedia PDF Downloads 294
5741 Oblique Radiative Solar Nano-Polymer Gel Coating Heat Transfer and Slip Flow: Manufacturing Simulation

Authors: Anwar Beg, Sireetorn Kuharat, Rashid Mehmood, Rabil Tabassum, Meisam Babaie

Abstract:

Nano-polymeric solar paints and sol-gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics of such sol gels, the present article presents a mathematical and computational study of the steady, two-dimensional, non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol gels under radiative heat flux. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The Tiwari-Das nanofluid model is deployed which features a volume fraction for the nanoparticle concentration. This approach also features a Maxwell-Garnet model for the nanofluid thermal conductivity. The conservation equations for mass, normal and tangential momentum and energy (heat) are normalized via appropriate transformations to generate a multi-degree, ordinary differential, non-linear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge-Kutta-Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a Variational Iterative Method (VIM) utilizing Langrangian multipliers. The impact of key emerging dimensionless parameters i.e. obliqueness parameter, radiation-conduction Rosseland number (Rd), thermal slip parameter (α), viscosity parameter (m), nanoparticles volume fraction (ϕ) on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures. With greater volume fraction of copper nanoparticles temperature and thermal boundary layer thickness is elevated. Streamlines are found to be skewed markedly towards the left with positive obliqueness parameter.

Keywords: non-orthogonal stagnation-point heat transfer, solar nano-polymer coating, MATLAB numerical quadrature, Variational Iterative Method (VIM)

Procedia PDF Downloads 131
5740 A Case for Introducing Thermal-Design Optimisation Using Excel Spreadsheet

Authors: M. M. El-Awad

Abstract:

This paper deals with the introduction of thermal-design optimisation to engineering students by using Microsoft's Excel as a modelling platform. Thermal-design optimisation is an iterative process which involves the evaluation of many thermo-physical properties that vary with temperature and/or pressure. Therefore, suitable modelling software, such as Engineering Equation Solver (EES) or Interactive Thermodynamics (IT), is usually used for this purpose. However, such proprietary applications may not be available to many educational institutions in developing countries. This paper presents a simple thermal-design case that demonstrates how the principles of thermo-fluids and economics can be jointly applied so as to find an optimum solution to a thermal-design problem. The paper describes the solution steps and provides all the equations needed to solve the case with Microsoft Excel. The paper also highlights the advantage of using VBA (Visual Basic for Applications) for developing user-defined functions when repetitive or complex calculations are met. VBA makes Excel a powerful, yet affordable, the computational platform for introducing various engineering principles.

Keywords: engineering education, thermal design, Excel, VBA, user-defined functions

Procedia PDF Downloads 372