Search results for: crisis signals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2181

Search results for: crisis signals

1731 PM Electrical Machines Diagnostic: Methods Selected

Authors: M. Barański

Abstract:

This paper presents a several diagnostic methods designed to electrical machines especially for permanent magnets (PM) machines. Those machines are commonly used in small wind and water systems and vehicles drives. Those methods are preferred by the author in periodic diagnostic of electrical machines. The special attention should be paid to diagnostic method of turn-to-turn insulation and vibrations. Both of those methods were created in Institute of Electrical Drives and Machines Komel. The vibration diagnostic method is the main thesis of author’s doctoral dissertation. This is method of determination the technical condition of PM electrical machine basing on its own signals is the subject of patent application No P.405669. Specific structural properties of machines excited by permanent magnets are used in this method - electromotive force (EMF) generated due to vibrations. There was analysed number of publications which describe vibration diagnostic methods and tests of electrical machines with permanent magnets and there was no method found to determine the technical condition of such machine basing on their own signals.

Keywords: electrical vehicle, generator, main insulation, permanent magnet, thermography, turn-to-traction drive, turn insulation, vibrations

Procedia PDF Downloads 400
1730 Flexible PVC Based Nanocomposites With the Incorporation of Electric and Magnetic Nanofillers for the Shielding Against EMI and Thermal Imaging Signals

Authors: H. M. Fayzan Shakir, Khadija Zubair, Tingkai Zhao

Abstract:

Electromagnetic (EM) waves are being used widely now a days. Cell phone signals, WIFI signals, wireless telecommunications etc everything uses EM waves which then create EM pollution. EM pollution can cause serious effects on both human health and nearby electronic devices. EM waves have electric and magnetic components that disturb the flow of charged particles in both human nervous system and electronic devices. The shielding of both humans and electronic devices are a prime concern today. EM waves can cause headaches, anxiety, suicide and depression, nausea, fatigue and loss of libido in humans and malfunctioning in electronic devices. Polyaniline (PANI) and polypyrrole (PPY) were successfully synthesized using chemical polymerizing using ammonium persulfate and DBSNa as oxidant respectively. Barium ferrites (BaFe) were also prepared using co-precipitation method and calcinated at 10500C for 8h. Nanocomposite thin films with various combinations and compositions of Polyvinylchloride, PANI, PPY and BaFe were prepared. X-ray diffraction technique was first used to confirm the successful fabrication of all nano fillers and particle size analyzer to measure the exact size and scanning electron microscopy is used for the shape. According to Electromagnetic Interference theory, electrical conductivity is the prime property required for the Electromagnetic Interference shielding. 4-probe technique is then used to evaluate DC conductivity of all samples. Samples with high concentration of PPY and PANI exhibit remarkable increased electrical conductivity due to fabrication of interconnected network structure inside the Polyvinylchloride matrix that is also confirmed by SEM analysis. Less than 1% transmission was observed in whole NIR region (700 nm – 2500 nm). Also, less than -80 dB Electromagnetic Interference shielding effectiveness was observed in microwave region (0.1 GHz to 20 GHz).

Keywords: nanocomposites, polymers, EMI shielding, thermal imaging

Procedia PDF Downloads 105
1729 The Impact of the Global Financial Crisis on the Performance of Czech Industrial Enterprises

Authors: Maria Reznakova, Michala Strnadova, Lukas Reznak

Abstract:

The global financial crisis that erupted in 2008 is associated mainly with the debt crisis. It quickly spread globally through financial markets, international banks and trade links, and affected many economic sectors. Measured by the index of the year-on-year change in GDP and industrial production, the consequences of the global financial crisis manifested themselves with some delay also in the Czech economy. This can be considered a result of the overwhelming export orientation of Czech industrial enterprises. These events offer an important opportunity to study how financial and macroeconomic instability affects corporate performance. Corporate performance factors have long been given considerable attention. It is therefore reasonable to ask whether the findings published in the past are also valid in the times of economic instability and subsequent recession. The decisive factor in effective corporate performance measurement is the existence of an appropriate system of indicators that are able to assess progress in achieving corporate goals. Performance measures may be based on non-financial as well as on financial information. In this paper, financial indicators are used in combination with other characteristics, such as the firm size and ownership structure. Financial performance is evaluated based on traditional performance indicators, namely, return on equity and return on assets, supplemented with indebtedness and current liquidity indices. As investments are a very important factor in corporate performance, their trends and importance were also investigated by looking at the ratio of investments to previous year’s sales and the rate of reinvested earnings. In addition to traditional financial performance indicators, the Economic Value Added was also used. Data used in the research were obtained from a questionnaire survey administered in industrial enterprises in the Czech Republic and from AMADEUS (Analyse Major Database from European Sources), from which accounting data of companies were obtained. Respondents were members of the companies’ senior management. Research results unequivocally confirmed that corporate performance dropped significantly in the 2010-2012 period, which can be considered a result of the global financial crisis and a subsequent economic recession. It was reflected mainly in the decreasing values of profitability indicators and the Economic Value Added. Although the total year-on-year indebtedness declined, intercompany indebtedness increased. This can be considered a result of impeded access of companies to bank loans due to the credit crunch. Comparison of the results obtained with the conclusions of previous research on a similar topic showed that the assumption that firms under foreign control achieved higher performance during the period investigated was not confirmed.

Keywords: corporate performance, foreign control, intercompany indebtedness, ratio of investment

Procedia PDF Downloads 332
1728 A Novel RLS Based Adaptive Filtering Method for Speech Enhancement

Authors: Pogula Rakesh, T. Kishore Kumar

Abstract:

Speech enhancement is a long standing problem with numerous applications like teleconferencing, VoIP, hearing aids, and speech recognition. The motivation behind this research work is to obtain a clean speech signal of higher quality by applying the optimal noise cancellation technique. Real-time adaptive filtering algorithms seem to be the best candidate among all categories of the speech enhancement methods. In this paper, we propose a speech enhancement method based on Recursive Least Squares (RLS) adaptive filter of speech signals. Experiments were performed on noisy data which was prepared by adding AWGN, Babble and Pink noise to clean speech samples at -5dB, 0dB, 5dB, and 10dB SNR levels. We then compare the noise cancellation performance of proposed RLS algorithm with existing NLMS algorithm in terms of Mean Squared Error (MSE), Signal to Noise ratio (SNR), and SNR loss. Based on the performance evaluation, the proposed RLS algorithm was found to be a better optimal noise cancellation technique for speech signals.

Keywords: adaptive filter, adaptive noise canceller, mean squared error, noise reduction, NLMS, RLS, SNR, SNR loss

Procedia PDF Downloads 480
1727 The Grievances Theory versus Transnationalism and the Cameroon Anglophone Question, 1961-2017

Authors: Nkatow Mafany Christian

Abstract:

No other period in human history has offered such great opportunities for grievances not only to last long but also to be manifested across international boundaries. This state of affairs is likely a common feature of the advent of social media. The Anglophone Question in Cameroon has been a problem of poor constitutional arrangements that can be traced to 1961 when the former French Cameroon reunified with former British Southern Cameroons following a plebiscite in which the latter overwhelmingly voted to reunify with the former. Though Southern/Anglophone Cameroons complained of perceived marginalization and an attempt by the majority French section to assimilate them, the manifestation was subtle and took place only through protests, petitions, strikes movements and demonstrations. However, with the advent of social media, a new cream of leaders emerged in the diaspora, including the US, Canada, Europe, Asia and the Middle East, to champion the manifestations leading to violence and conflicts that have bedeviled the region since 2017. The feeling of political subjugation, economic exploitation, social suppression and cultural assimilation among Anglophone Cameroonians united them under diaspora leaders against the government of Cameroon, calling for the creation of a separate state for Anglophones. This paper draws from this lead-up to analyze the current Anglophone Crisis in Cameroon in the light of the Grievance Theory and Transnationalism. The paper makes an appeal to field experience, interviews, official sources, documentation, and the internet to succor its central thesis. From the fertility of its sources, the paper submits that social media is a potent source of conflicts and makes nonsense of the principle of sovereignty and territorial integrity by its capacity to promote the transnational manifestation of grievances.

Keywords: grievance, transnationalism, anglophone crisis, Cameroon, crisis and social media

Procedia PDF Downloads 62
1726 An Ultrasonic Signal Processing System for Tomographic Imaging of Reinforced Concrete Structures

Authors: Edwin Forero-Garcia, Jaime Vitola, Brayan Cardenas, Johan Casagua

Abstract:

This research article presents the integration of electronic and computer systems, which developed an ultrasonic signal processing system that performs the capture, adaptation, and analog-digital conversion to later carry out its processing and visualization. The capture and adaptation of the signal were carried out from the design and implementation of an analog electronic system distributed in stages: 1. Coupling of impedances; 2. Analog filter; 3. Signal amplifier. After the signal conditioning was carried out, the ultrasonic information was digitized using a digital microcontroller to carry out its respective processing. The digital processing of the signals was carried out in MATLAB software for the elaboration of A-Scan, B and D-Scan types of ultrasonic images. Then, advanced processing was performed using the SAFT technique to improve the resolution of the Scan-B-type images. Thus, the information from the ultrasonic images was displayed in a user interface developed in .Net with Visual Studio. For the validation of the system, ultrasonic signals were acquired, and in this way, the non-invasive inspection of the structures was carried out and thus able to identify the existing pathologies in them.

Keywords: acquisition, signal processing, ultrasound, SAFT, HMI

Procedia PDF Downloads 105
1725 Handwriting Velocity Modeling by Artificial Neural Networks

Authors: Mohamed Aymen Slim, Afef Abdelkrim, Mohamed Benrejeb

Abstract:

The handwriting is a physical demonstration of a complex cognitive process learnt by man since his childhood. People with disabilities or suffering from various neurological diseases are facing so many difficulties resulting from problems located at the muscle stimuli (EMG) or signals from the brain (EEG) and which arise at the stage of writing. The handwriting velocity of the same writer or different writers varies according to different criteria: age, attitude, mood, writing surface, etc. Therefore, it is interesting to reconstruct an experimental basis records taking, as primary reference, the writing speed for different writers which would allow studying the global system during handwriting process. This paper deals with a new approach of the handwriting system modeling based on the velocity criterion through the concepts of artificial neural networks, precisely the Radial Basis Functions (RBF) neural networks. The obtained simulation results show a satisfactory agreement between responses of the developed neural model and the experimental data for various letters and forms then the efficiency of the proposed approaches.

Keywords: Electro Myo Graphic (EMG) signals, experimental approach, handwriting process, Radial Basis Functions (RBF) neural networks, velocity modeling

Procedia PDF Downloads 440
1724 The Need for Selective Credit Policy Implementation: Case of Croatia

Authors: Drago Jakovcevic, Mihovil Andelinovic, Igor Husak

Abstract:

The aim of this paper is to explore the economic circumstances in which the selective credit policy, the least used instrument of four types of instruments on disposal to central banks, should be used. The most significant example includes the use of selective credit policies in response to the emergence of the global financial crisis by the FED. Specifics of the potential use of selective credit policies as the instigator of economic growth in Croatia, a small open economy, are determined by high euroization of financial system, fixed exchange rate and long-term trend growth of external debt that is related to the need to maintain high levels of foreign reserves. In such conditions, the classic forms of selective credit policies are unsuitable for the introduction. Several alternative approaches to implement selective credit policies are examined in this paper. Also, thorough analysis of distribution of selective monetary policy loans among economic sectors in Croatia is conducted in order to minimize the risk of investing funds and maximize the return, in order to influence the GDP growth.

Keywords: global crisis, selective credit policy, small open economy, Croatia

Procedia PDF Downloads 436
1723 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running

Authors: Elnaz Lashgari, Emel Demircan

Abstract:

Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.

Keywords: electromyography, manifold learning, ISOMAP, Laplacian Eigenmaps, locally linear embedding

Procedia PDF Downloads 360
1722 Analysis of a IncResU-Net Model for R-Peak Detection in ECG Signals

Authors: Beatriz Lafuente Alcázar, Yash Wani, Amit J. Nimunkar

Abstract:

Cardiovascular Diseases (CVDs) are the leading cause of death globally, and around 80% of sudden cardiac deaths are due to arrhythmias or irregular heartbeats. The majority of these pathologies are revealed by either short-term or long-term alterations in the electrocardiogram (ECG) morphology. The ECG is the main diagnostic tool in cardiology. It is a non-invasive, pain free procedure that measures the heart’s electrical activity and that allows the detecting of abnormal rhythms and underlying conditions. A cardiologist can diagnose a wide range of pathologies based on ECG’s form alterations, but the human interpretation is subjective and it is contingent to error. Moreover, ECG records can be quite prolonged in time, which can further complicate visual diagnosis, and deeply retard disease detection. In this context, deep learning methods have risen as a promising strategy to extract relevant features and eliminate individual subjectivity in ECG analysis. They facilitate the computation of large sets of data and can provide early and precise diagnoses. Therefore, the cardiology field is one of the areas that can most benefit from the implementation of deep learning algorithms. In the present study, a deep learning algorithm is trained following a novel approach, using a combination of different databases as the training set. The goal of the algorithm is to achieve the detection of R-peaks in ECG signals. Its performance is further evaluated in ECG signals with different origins and features to test the model’s ability to generalize its outcomes. Performance of the model for detection of R-peaks for clean and noisy ECGs is presented. The model is able to detect R-peaks in the presence of various types of noise, and when presented with data, it has not been trained. It is expected that this approach will increase the effectiveness and capacity of cardiologists to detect divergences in the normal cardiac activity of their patients.

Keywords: arrhythmia, deep learning, electrocardiogram, machine learning, R-peaks

Procedia PDF Downloads 185
1721 Monitoring Saltwater Corrosion on Steel Samples Using Coda Wave Interferometry in MHZ Frequencies

Authors: Maxime Farin, Emmanuel Moulin, Lynda Chehami, Farouk Benmeddour, Pierre Campistron

Abstract:

Assessing corrosion is crucial in the petrochemical and marine industry. Usual ultrasonic methods based on guided waves to detect corrosion can inspect large areas but lack precision. We propose a complementary and sensitive ultrasonic method (~ 10 MHz) based on coda wave interferometry to detect and quantify corrosion at the surface of a steel sample. The method relies on a single piezoelectric transducer, exciting the sample and measuring the scattered coda signals at different instants in time. A laboratory experiment is conducted with a steel sample immersed in salted water for 60~h with parallel coda and temperature measurements to correct coda dependence to temperature variations. Micrometric changes to the sample surface caused by corrosion are detected in the late coda signals, allowing precise corrosion detection. Moreover, a good correlation is found between a parameter quantifying the temperature-corrected stretching of the coda over time with respect to a reference without corrosion and the corrosion surface over the sample recorded with a camera.

Keywords: coda wave interferometry, nondestructive evaluation, corrosion, ultrasonics

Procedia PDF Downloads 232
1720 Selection of Optimal Reduced Feature Sets of Brain Signal Analysis Using Heuristically Optimized Deep Autoencoder

Authors: Souvik Phadikar, Nidul Sinha, Rajdeep Ghosh

Abstract:

In brainwaves research using electroencephalogram (EEG) signals, finding the most relevant and effective feature set for identification of activities in the human brain is a big challenge till today because of the random nature of the signals. The feature extraction method is a key issue to solve this problem. Finding those features that prove to give distinctive pictures for different activities and similar for the same activities is very difficult, especially for the number of activities. The performance of a classifier accuracy depends on this quality of feature set. Further, more number of features result in high computational complexity and less number of features compromise with the lower performance. In this paper, a novel idea of the selection of optimal feature set using a heuristically optimized deep autoencoder is presented. Using various feature extraction methods, a vast number of features are extracted from the EEG signals and fed to the autoencoder deep neural network. The autoencoder encodes the input features into a small set of codes. To avoid the gradient vanish problem and normalization of the dataset, a meta-heuristic search algorithm is used to minimize the mean square error (MSE) between encoder input and decoder output. To reduce the feature set into a smaller one, 4 hidden layers are considered in the autoencoder network; hence it is called Heuristically Optimized Deep Autoencoder (HO-DAE). In this method, no features are rejected; all the features are combined into the response of responses of the hidden layer. The results reveal that higher accuracy can be achieved using optimal reduced features. The proposed HO-DAE is also compared with the regular autoencoder to test the performance of both. The performance of the proposed method is validated and compared with the other two methods recently reported in the literature, which reveals that the proposed method is far better than the other two methods in terms of classification accuracy.

Keywords: autoencoder, brainwave signal analysis, electroencephalogram, feature extraction, feature selection, optimization

Procedia PDF Downloads 112
1719 Application of Local Mean Decomposition for Rolling Bearing Fault Diagnosis Based On Vibration Signals

Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine

Abstract:

Vibration analysis has been frequently applied in the condition monitoring and fault diagnosis of rolling element bearings. Unfortunately, the vibration signals collected from a faulty bearing are generally non stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. The results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.

Keywords: fault diagnosis, condition monitoring, local mean decomposition, rolling element bearing, vibration analysis

Procedia PDF Downloads 396
1718 Tax Avoidance During The Financial Crisis: Role Of Independent Commissioners And External Auditors

Authors: Yasir Ramadhan

Abstract:

This study aims to investigate tax avoidance practices when a financial crisis occurs due to the effects of the COVID-19 pandemic. This study also finds out how the influence of independent commissioners and external auditors on tax avoidance practices during the COVID-19 pandemic. Tax avoidance practices are measured by the current ETR. The role of the independent board of commissioners is measured by the proportion of independent commissioners in the composition of the board of commissioners, while the external auditor is measured by audit quality. In this study, there were 342 observations of companies listed on the Indonesia Stock Exchange from 2019 to 2020. This study used the difference-in-differences (DiD) method in data analysis. The results of this study indicate that companies do tax avoidance during the COVID-19 pandemic. Meanwhile, independent commissioners and qualified audits are not proven to be able to negate tax avoidance practices during the COVID-19 Pandemic. These results also show that a higher proportion of independent commissioners and audit quality are not sufficient for countries with low levels of auditor litigation and investor protection and weak regulatory frameworks.

Keywords: audit, commissioner, tax avoidance, COVID-19 pandemic

Procedia PDF Downloads 145
1717 The Applicability of General Catholic Canon Law during the Ongoing Migration Crisis in Hungary

Authors: Lorand Ujhazi

Abstract:

The vast majority of existing canonical studies about migration are focused on examining the general pastoral and legal regulations of the Catholic Church. The weakness of this approach is that it ignores a number of important factors; like the financial, legal and personal circumstances of a particular church or the canonical position of certain organizations which actually look after the immigrants. This paper is a case study, which analyses the current and historical migration related policies and activities of the Catholic Church in Hungary. To achieve this goal the study uses canon law, historical publications, various instructions and communications issued by church superiors, Hungarian and foreign media reports and the relevant Hungarian legislation. The paper first examines how the Hungarian Catholic Church assisted migrants like Armenians fleeing from the Ottoman Empire, Poles escaping during the Second World War, East German and Romanian citizens in the 1980s and refugees from the former Yugoslavia in the 1990s. These events underline the importance of past historical experience in the development of contemporary pastoral and humanitarian policy of the Catholic Church in Hungary. Then the paper turns to the events of the ongoing crisis by describing the unique challenges faced by churches in transit countries like Hungary. Then the research contrasts these findings with the typical responsibilities of churches in countries which are popular destinations for immigrants. The next part of the case study focuses on the changes to the pre-crisis legal and canonical framework which influenced the actions of hierarchical and charity organizations in Hungary. Afterwards, the paper illustrates the dangers of operating in an unclear legal environment, where some charitable activities of the church like a fundraising campaign may be interpreted as a national security risk by state authorities. Then the paper presents the reactions of Hungarian academics to the current migration crisis and finally it offers some proposals how to improve parts of Canon Law which govern immigration. The conclusion of the paper is that during the formulation of the central refugee policy of the Catholic Church decision makers must take into consideration the peculiar circumstances of its particular churches. This approach may prevent disharmony between the existing central regulations, the policy of the Vatican and the operations of the local church organizations.

Keywords: canon law, Catholic Church, civil law, Hungary, immigration, national security

Procedia PDF Downloads 308
1716 Food Insecurity Assessment, Consumption Pattern and Implications of Integrated Food Security Phase Classification: Evidence from Sudan

Authors: Ahmed A. A. Fadol, Guangji Tong, Wlaa Mohamed

Abstract:

This paper provides a comprehensive analysis of food insecurity in Sudan, focusing on consumption patterns and their implications, employing the Integrated Food Security Phase Classification (IPC) assessment framework. Years of conflict and economic instability have driven large segments of the population in Sudan into crisis levels of acute food insecurity according to the (IPC). A substantial number of people are estimated to currently face emergency conditions, with an additional sizeable portion categorized under less severe but still extreme hunger levels. In this study, we explore the multifaceted nature of food insecurity in Sudan, considering its historical, political, economic, and social dimensions. An analysis of consumption patterns and trends was conducted, taking into account cultural influences, dietary shifts, and demographic changes. Furthermore, we employ logistic regression and random forest analysis to identify significant independent variables influencing food security status in Sudan. Random forest clearly outperforms logistic regression in terms of area under curve (AUC), accuracy, precision and recall. Forward projections of the IPC for Sudan estimate that 15 million individuals are anticipated to face Crisis level (IPC Phase 3) or worse acute food insecurity conditions between October 2023 and February 2024. Of this, 60% are concentrated in Greater Darfur, Greater Kordofan, and Khartoum State, with Greater Darfur alone representing 29% of this total. These findings emphasize the urgent need for both short-term humanitarian aid and long-term strategies to address Sudan's deepening food insecurity crisis.

Keywords: food insecurity, consumption patterns, logistic regression, random forest analysis

Procedia PDF Downloads 72
1715 Field-Programmable Gate Array-Based Baseband Signals Generator of X-Band Transmitter for Micro Satellite/CubeSat

Authors: Shih-Ming Wang, Chun-Kai Yeh, Ming-Hwang Shie, Tai-Wei Lin, Chieh-Fu Chang

Abstract:

This paper introduces a FPGA-based baseband signals generator (BSG) of X-band transmitter developed by National Space Organization (NSPO), Taiwan, for earth observation. In order to gain more flexibility for various applications, a number of modulation schemes, QPSK, DeQPSK and 8PSK 4D-TCM are included. For micro satellite scenario, the maximum symbol rate is up to 150Mbsps, and the EVM is as low as 1.9%. For CubeSat scenario, the maximum symbol rate is up to 60Mbsps, and the EVM is less than 1.7%. The maximum data rates are 412.5Mbps and 165Mbps, respectively. Besides, triple modular redundancy (TMR) scheme is implemented in order to reduce single event effect (SEE) induced by radiation. Finally, the theoretical error performance is provided based on comprehensive analysis, especially when BER is lower and much lower than 10⁻⁶ due to low error bit requirement of modern high-resolution earth remote-sensing instruments.

Keywords: X-band transmitter, FPGA (Field-Programmable Gate Array), CubeSat, micro satellite

Procedia PDF Downloads 293
1714 A Quality Index Optimization Method for Non-Invasive Fetal ECG Extraction

Authors: Lucia Billeci, Gennaro Tartarisco, Maurizio Varanini

Abstract:

Fetal cardiac monitoring by fetal electrocardiogram (fECG) can provide significant clinical information about the healthy condition of the fetus. Despite this potentiality till now the use of fECG in clinical practice has been quite limited due to the difficulties in its measuring. The recovery of fECG from the signals acquired non-invasively by using electrodes placed on the maternal abdomen is a challenging task because abdominal signals are a mixture of several components and the fetal one is very weak. This paper presents an approach for fECG extraction from abdominal maternal recordings, which exploits the characteristics of pseudo-periodicity of fetal ECG. It consists of devising a quality index (fQI) for fECG and of finding the linear combinations of preprocessed abdominal signals, which maximize these fQI (quality index optimization - QIO). It aims at improving the performances of the most commonly adopted methods for fECG extraction, usually based on maternal ECG (mECG) estimating and canceling. The procedure for the fECG extraction and fetal QRS (fQRS) detection is completely unsupervised and based on the following steps: signal pre-processing; maternal ECG (mECG) extraction and maternal QRS detection; mECG component approximation and canceling by weighted principal component analysis; fECG extraction by fQI maximization and fetal QRS detection. The proposed method was compared with our previously developed procedure, which obtained the highest at the Physionet/Computing in Cardiology Challenge 2013. That procedure was based on removing the mECG from abdominal signals estimated by a principal component analysis (PCA) and applying the Independent component Analysis (ICA) on the residual signals. Both methods were developed and tuned using 69, 1 min long, abdominal measurements with fetal QRS annotation of the dataset A provided by PhysioNet/Computing in Cardiology Challenge 2013. The QIO-based and the ICA-based methods were compared in analyzing two databases of abdominal maternal ECG available on the Physionet site. The first is the Abdominal and Direct Fetal Electrocardiogram Database (ADdb) which contains the fetal QRS annotations thus allowing a quantitative performance comparison, the second is the Non-Invasive Fetal Electrocardiogram Database (NIdb), which does not contain the fetal QRS annotations so that the comparison between the two methods can be only qualitative. In particular, the comparison on NIdb was performed defining an index of quality for the fetal RR series. On the annotated database ADdb the QIO method, provided the performance indexes Sens=0.9988, PPA=0.9991, F1=0.9989 overcoming the ICA-based one, which provided Sens=0.9966, PPA=0.9972, F1=0.9969. The comparison on NIdb was performed defining an index of quality for the fetal RR series. The index of quality resulted higher for the QIO-based method compared to the ICA-based one in 35 records out 55 cases of the NIdb. The QIO-based method gave very high performances with both the databases. The results of this study foresees the application of the algorithm in a fully unsupervised way for the implementation in wearable devices for self-monitoring of fetal health.

Keywords: fetal electrocardiography, fetal QRS detection, independent component analysis (ICA), optimization, wearable

Procedia PDF Downloads 278
1713 A 'German Europe' Emerged from the Euro Crisis: A Study through the Portuguese Quality Press

Authors: Ana Luísa Mouro

Abstract:

When the financial crisis exploded in 2008 in the United States, unleashed by the collapse of Lehman Brothers, and contaminated the economies of the European periphery, Germany appeared as the anchor of the stability of all European institutions and countries in difficulty. The solutions provided by the German government have triggered a deep political debate about the key position Germany has conquered at the heart of Europe - a new “German question” has been created. Some say Germany has achieved by peaceful means what was not able to get through military conquest - the domination of Europe – and many fear Germany’s economic power. This debate about the new role of Germany in Europe has received special attention in the European media and Portugal has not been the exception. The present study has been based on the survey, selection and critical analysis of news reporting, opinion articles, interviews and editorials, published in the weekly Expresso and in the daily Público, between 2008 and 2015 (year of the 25th anniversary of Germany’s unification). The findings of this study will show the paradox of German power and its relevance for Europe’s future.

Keywords: Euro crises, German Europe, intercultural hermeneutics, Portuguese quality press

Procedia PDF Downloads 237
1712 Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data

Authors: M. Kharrat, G. Moreau, Z. Aboura

Abstract:

The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals.

Keywords: acoustic emission, classifier, damage mechanisms, first damage threshold, interlock composite materials, pattern recognition

Procedia PDF Downloads 154
1711 Vibration-Based Data-Driven Model for Road Health Monitoring

Authors: Guru Prakash, Revanth Dugalam

Abstract:

A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.

Keywords: SVM, data-driven, road health monitoring, pot-hole

Procedia PDF Downloads 84
1710 Hierarchical Scheme for Detection of Rotating Mimo Visible Light Communication Systems Using Mobile Phone Camera

Authors: Shih-Hao Chen, Chi-Wai Chow

Abstract:

Multiple-input and multiple-output (MIMO) scheme can extend the transmission capacity for the light-emitting-diode (LED) visible light communication (VLC) system. The MIMO VLC system using the popular mobile-phone camera as the optical receiver (Rx) to receive MIMO signal from n x n Red-Green-Blue (RGB) LED array is desirable. The key step of decoding the received RGB LED array signals is detecting the direction of received array signals. If the LED transmitter (Tx) is rotated, the signal may not be received correctly and cause an error in the received signal. In this work, we propose and demonstrate a novel hierarchical transmission scheme which can reduce the computation complexity of rotation detection in LED array VLC system. We use the n x n RGB LED array as the MIMO Tx. A novel two dimension Hadamard coding scheme is proposed and demonstrated. The detection correction rate is above 95% in the indoor usage distance. Experimental results confirm the feasibility of the proposed scheme.

Keywords: Visible Light Communication (VLC), Multiple-input and multiple-output (MIMO), Red-Green-Blue (RGB), Hadamard coding scheme

Procedia PDF Downloads 418
1709 Electroencephalography-Based Intention Recognition and Consensus Assessment during Emergency Response

Authors: Siyao Zhu, Yifang Xu

Abstract:

After natural and man-made disasters, robots can bypass the danger, expedite the search, and acquire unprecedented situational awareness to design rescue plans. The hands-free requirement from the first responders excludes the use of tedious manual control and operation. In unknown, unstructured, and obstructed environments, natural-language-based supervision is not amenable for first responders to formulate, and is difficult for robots to understand. Brain-computer interface is a promising option to overcome the limitations. This study aims to test the feasibility of using electroencephalography (EEG) signals to decode human intentions and detect the level of consensus on robot-provided information. EEG signals were classified using machine-learning and deep-learning methods to discriminate search intentions and agreement perceptions. The results show that the average classification accuracy for intention recognition and consensus assessment is 67% and 72%, respectively, proving the potential of incorporating recognizable users’ bioelectrical responses into advanced robot-assisted systems for emergency response.

Keywords: consensus assessment, electroencephalogram, emergency response, human-robot collaboration, intention recognition, search and rescue

Procedia PDF Downloads 91
1708 Legal Initiatives for Afghan Humanitarian Crisis

Authors: Fereshteh Ganjavi, Rachel Schaffer, Varsha Jorawar

Abstract:

Elena’s Light is a non-profit organization focused on building brighter futures for refugees, especially women and children. Our mission is to empower refugee women and children by addressing social, legal, and public health issues that predominantly concern them. Elena’s Light offers a range of services that support refugees from structural disadvantages, cultural and social stress, marginalization, and other stressors related to migration. Using a three-pronged approach, our programs focus on legal advocacy, English language acquisition, and health and wellness. Following the Afghan humanitarian crisis, Elena’s Light has developed and intensified advocacy efforts in the legal realm to address the influx of refugees who desperately need assistance. We developed and hosted a Know Your Rights presentation with local immigration lawyers and professionals in February 2022 on the Afghan Humanitarian Parole, which was very successful with over 100 attendees. Elena’s Light is hosting the second Know Your Rights session in early August 2022 on immigration options for Afghans, including Temporary Protected Status (TPS), asylum, Special Immigrant Visa (SIV), and humanitarian parole. Lastly, EL is also leading the local initiative to develop a pro-bono committee to respond to the overwhelming need for lawyers to work on legal cases for Afghan during this crisis. Furthermore, through our other services, we provide free, in-home customizable ESL tutoring sessions to refugee women with a focus on driver’s education, facilitating acculturation, and improving employment opportunities. We also provide in-home maternal, pediatric, and mental health education and wellness services that are aimed at addressing the explicit and implicit barriers to healthcare for refugee populations. Elena’s Light’s diverse community aims to counter the structural disadvantages and anxiety-inducing emotions and experiences related to being a refugee. We would like to join this International Conference on Refugee Law since protecting refugee rights is our mission. We would like to share what we have learned from our legal initiatives for refugee rights. We would also like to listen, learn from, and discuss with experts and researchers how to better understand and advocate for refugee rights. We hope to improve our understanding of how to provide better legal aid for our clients through this conference.

Keywords: legal, advocacy, Afghan humanitarian crisis, policy, pro-bono

Procedia PDF Downloads 133
1707 Theory and Practice of Wavelets in Signal Processing

Authors: Jalal Karam

Abstract:

The methods of Fourier, Laplace, and Wavelet Transforms provide transfer functions and relationships between the input and the output signals in linear time invariant systems. This paper shows the equivalence among these three methods and in each case presenting an application of the appropriate (Fourier, Laplace or Wavelet) to the convolution theorem. In addition, it is shown that the same holds for a direct integration method. The Biorthogonal wavelets Bior3.5 and Bior3.9 are examined and the zeros distribution of their polynomials associated filters are located. This paper also presents the significance of utilizing wavelets as effective tools in processing speech signals for common multimedia applications in general, and for recognition and compression in particular. Theoretically and practically, wavelets have proved to be effective and competitive. The practical use of the Continuous Wavelet Transform (CWT) in processing and analysis of speech is then presented along with explanations of how the human ear can be thought of as a natural wavelet transformer of speech. This generates a variety of approaches for applying the (CWT) to many paradigms analysing speech, sound and music. For perception, the flexibility of implementation of this transform allows the construction of numerous scales and we include two of them. Results for speech recognition and speech compression are then included.

Keywords: continuous wavelet transform, biorthogonal wavelets, speech perception, recognition and compression

Procedia PDF Downloads 415
1706 Migration Law in Republic of Panama

Authors: Ronel Solis, Leonardo Collado

Abstract:

Migration law in the Republic of Panama has been regulated mainly by the executive branch. This has created a crisis not only institutional but also social because the evolution of these norms has rested greatly from the discretion of the government in office. This has created instability in immigration regulation and more now, with the migration crisis of which Panama is also part. Different migration policies have been established. The most recent is that of the controlled migration flow, in which, for humanitarian reasons, migrants move from the border with Colombia to the border with Costa Rica. Unfortunately, such control is not enough, and in some cases, unprotected migrants have been confined for months, their passports have been withheld, and no recognition of their rights is offered. The Inter-American Court of Human Rights has condemned Panama for the unfair detention of an irregular migrant, who was detained for two years in Panamanian prisons, without having committed a crime and without accessing a just defense. This is the case Vélez Loor vs. the Republic of Panama. Uncontrollable migration has been putting pressure on Panamanian public health services. The recent denunciation of HIV-related NGOs that warns that there are hundreds of foreigners who receive expensive antiretroviral therapy in Panama is serious, and several of them are irregular migrants. On the other hand, there are no border control posts with the Republic of Colombia, because it is a jungle area and migrants are exposed to arms and drug trafficking, and unfortunately, also to prostitution. Government entities such as the border police service have provided humanitarian support to migrants on the border with Colombia, although it is not their administrative function, and various entities discuss who should address this crisis. However, few economic resources are allocated by the government to solve this problem, especially with the recent mass migration of Venezuelans who have fled their country. The establishment of a migratory normative code is necessary to establish uniformity in the recognition and application of migratory rights. In this way, dependence on the changing migration policies of the different Panamanian governments would be eliminated, and the rights of migrants and nationals would be guaranteed.

Keywords: executive branch, irregular migration, migration code, Republic of Panama

Procedia PDF Downloads 121
1705 Mapping Identity: Algerian Diasporic Voices in Literature

Authors: Salma Kaouthar Letaief

Abstract:

This article investigates the experience of diaspora in the writings of Algerian diasporic writers, namely: Leila Sebbar’s Silence on the Shores (2000), Keltoum Staali’ December’s Mimosa (2012). The study discusses the collective trauma of violence in Algeria and overseas. The experience of displacement of the characters to an alien territory compel their journey with issues related to nostalgia, identity crisis, alienation, racism, and in-betweeness. The focus in this research is, thus, on Algerian immigrants’ experience in the host country and their psychological conflicts. The theories Multiculturalism and Psychoanalysis are used to analyse the novels in this paper. While Multiculturalism examines how characters negotiate and navigate their identities in multicultural settings, Psychoanalysis enables the analysis of how characters in diasporic novels grapple with issues of identity, belonging, and self-discovery. Hence, interweaving multiculturalism and psychoanalysis provides an interdisciplinary framework that addresses both the socio-cultural and psychological aspects of the diasporic experience. Accordingly, this paper is an attempt to examine the diasporic experience and cultural dialectics.

Keywords: diaspora, algerian diasporic writers, trauma, algeria, displacement, identity crisis, cultural dialects

Procedia PDF Downloads 305
1704 Systemic Functional Linguistics in the Rhetorical Strategies of Persuasion: A Longitudinal Study of Transitivity and Ergativity in the Rhetoric of Saras’ Sustainability Reports

Authors: Antonio Piga

Abstract:

This study explores the correlation between Systemic Functional Linguistics (SFL) and Critical Discourse Analysis (CDA) as tools for analysing the evolution of rhetoric in the communicative strategies adopted in a company’s Reports on social and environmental responsibility. In more specific terms, transitivity and ergativity- concepts from Systemic Functional Linguistics (SFL) - through the lenses of CDA, are employed as a theoretical means for the analysis of a longitudinal study in the communicative strategies employed by Saras SpA pre- and during the Covid-19 pandemic crisis. Saras is an Italian joint-stock company operating in oil refining and power generation. The qualitative and quantitative linguistic analysis carried out through the use of Sketch Engine software aims to identify and explain how rhetoric - and ideology - is constructed and presented through language use in Saras SpA Sustainability Reports. Specific focus is given to communication strategies to local and global communities and stakeholders in the years immediately before and during the Covid-19 pandemic. The rationale behind the study lies in the fact that 2020 and 2021 have been among the most difficult years since the end of World War II. Lives were abruptly turned upside down by the pandemic, which had grave negative effects on people’s health and on the economy. The result has been a threefold crisis involving health, the economy and social tension, with the refining sector being one of the hardest hit, since the oil refining industry was one of the most affected industries due to the general reduction in mobility and oil consumption brought about by the virus-fighting measures. Emphasis is placed on the construction of rhetorical strategies pre- and during the pandemic crisis using the representational process of transitivity and ergativity (SFL), thus revealing the close relationship between the use language in terms of Social Actors and semantic roles of syntactic transformation on the one hand, and ideological assumptions on the other. The results show that linguistic decisions regarding transitivity and ergativity choices play a crucial role in how effective writing achieves its rhetorical objectives in terms of spreading and maintaining dominant and implicit ideologies and underlying persuasive actions, and that some ideological motivation is perpetuated – if not actually overtly or subtly strengthened - in social-environmental Reports issued in the midst of the Covid-19 pandemic crisis.

Keywords: systemic functional linguistics, sustainability, critical discourse analysis, transitivity, ergativity

Procedia PDF Downloads 106
1703 Portable System for the Acquisition and Processing of Electrocardiographic Signals to Obtain Different Metrics of Heart Rate Variability

Authors: Daniel F. Bohorquez, Luis M. Agudelo, Henry H. León

Abstract:

Heart rate variability (HRV) is defined as the temporary variation between heartbeats or RR intervals (distance between R waves in an electrocardiographic signal). This distance is currently a recognized biomarker. With the analysis of the distance, it is possible to assess the sympathetic and parasympathetic nervous systems. These systems are responsible for the regulation of the cardiac muscle. The analysis allows health specialists and researchers to diagnose various pathologies based on this variation. For the acquisition and analysis of HRV taken from a cardiac electrical signal, electronic equipment and analysis software that work independently are currently used. This complicates and delays the process of interpretation and diagnosis. With this delay, the health condition of patients can be put at greater risk. This can lead to an untimely treatment. This document presents a single portable device capable of acquiring electrocardiographic signals and calculating a total of 19 HRV metrics. This reduces the time required, resulting in a timelier intervention. The device has an electrocardiographic signal acquisition card attached to a microcontroller capable of transmitting the cardiac signal wirelessly to a mobile device. In addition, a mobile application was designed to analyze the cardiac waveform. The device calculates the RR and different metrics. The application allows a user to visualize in real-time the cardiac signal and the 19 metrics. The information is exported to a cloud database for remote analysis. The study was performed under controlled conditions in the simulated hospital of the Universidad de la Sabana, Colombia. A total of 60 signals were acquired and analyzed. The device was compared against two reference systems. The results show a strong level of correlation (r > 0.95, p < 0.05) between the 19 metrics compared. Therefore, the use of the portable system evaluated in clinical scenarios controlled by medical specialists and researchers is recommended for the evaluation of the condition of the cardiac system.

Keywords: biological signal análisis, heart rate variability (HRV), HRV metrics, mobile app, portable device.

Procedia PDF Downloads 182
1702 Intrinsic Motivational Factor of Students in Learning Mathematics and Science Based on Electroencephalogram Signals

Authors: Norzaliza Md. Nor, Sh-Hussain Salleh, Mahyar Hamedi, Hadrina Hussain, Wahab Abdul Rahman

Abstract:

Motivational factor is mainly the students’ desire to involve in learning process. However, it also depends on the goal towards their involvement or non-involvement in academic activity. Even though, the students’ motivation might be in the same level, but the basis of their motivation may differ. In this study, it focuses on the intrinsic motivational factor which student enjoy learning or feeling of accomplishment the activity or study for its own sake. The intrinsic motivational factor of students in learning mathematics and science has found as difficult to be achieved because it depends on students’ interest. In the Program for International Student Assessment (PISA) for mathematics and science, Malaysia is ranked as third lowest. The main problem in Malaysian educational system, students tend to have extrinsic motivation which they have to score in exam in order to achieve a good result and enrolled as university students. The use of electroencephalogram (EEG) signals has found to be scarce especially to identify the students’ intrinsic motivational factor in learning science and mathematics. In this research study, we are identifying the correlation between precursor emotion and its dynamic emotion to verify the intrinsic motivational factor of students in learning mathematics and science. The 2-D Affective Space Model (ASM) was used in this research in order to identify the relationship of precursor emotion and its dynamic emotion based on the four basic emotions, happy, calm, fear and sad. These four basic emotions are required to be used as reference stimuli. Then, in order to capture the brain waves, EEG device was used, while Mel Frequency Cepstral Coefficient (MFCC) was adopted to be used for extracting the features before it will be feed to Multilayer Perceptron (MLP) to classify the valence and arousal axes for the ASM. The results show that the precursor emotion had an influence the dynamic emotions and it identifies that most students have no interest in mathematics and science according to the negative emotion (sad and fear) appear in the EEG signals. We hope that these results can help us further relate the behavior and intrinsic motivational factor of students towards learning of mathematics and science.

Keywords: EEG, MLP, MFCC, intrinsic motivational factor

Procedia PDF Downloads 364