Search results for: bilinear thickness
1124 Finite Element Analysis for Earing Prediction Incorporating the BBC2003 Material Model with Fully Implicit Integration Method: Derivation and Numerical Algorithm
Authors: Sajjad Izadpanah, Seyed Hadi Ghaderi, Morteza Sayah Irani, Mahdi Gerdooei
Abstract:
In this research work, a sophisticated yield criterion known as BBC2003, capable of describing planar anisotropic behaviors of aluminum alloy sheets, was integrated into the commercial finite element code ABAQUS/Standard via a user subroutine. The complete formulation of the implementation process using a fully implicit integration scheme, i.e., the classic backward Euler method, is presented, and relevant aspects of the yield criterion are introduced. In order to solve nonlinear differential and algebraic equations, the line-search algorithm was adopted in the user-defined material subroutine (UMAT) to expand the convergence domain of the iterative Newton-Raphson method. The developed subroutine was used to simulate a challenging computational problem with complex stress states, i.e., deep drawing of an anisotropic aluminum alloy AA3105. The accuracy and stability of the developed subroutine were confirmed by comparing the numerically predicted earing and thickness variation profiles with the experimental results, which showed an excellent agreement between numerical and experimental earing and thickness profiles. The integration of the BBC2003 yield criterion into ABAQUS/Standard represents a significant contribution to the field of computational mechanics and provides a useful tool for analyzing the mechanical behavior of anisotropic materials subjected to complex loading conditions.Keywords: BBC2003 yield function, plastic anisotropy, fully implicit integration scheme, line search algorithm, explicit and implicit integration schemes
Procedia PDF Downloads 751123 Experimental Optimization in Diamond Lapping of Plasma Sprayed Ceramic Coatings
Authors: S. Gowri, K. Narayanasamy, R. Krishnamurthy
Abstract:
Plasma spraying, from the point of value engineering, is considered as a cost-effective technique to deposit high performance ceramic coatings on ferrous substrates for use in the aero,automobile,electronics and semiconductor industries. High-performance ceramics such as Alumina, Zirconia, and titania-based ceramics have become a key part of turbine blades,automotive cylinder liners,microelectronic and semiconductor components due to their ability to insulate and distribute heat. However, as the industries continue to advance, improved methods are needed to increase both the flexibility and speed of ceramic processing in these applications. The ceramics mentioned were individually coated on structural steel substrate with NiCr bond coat of 50-70 micron thickness with the final thickness in the range of 150 to 200 microns. Optimal spray parameters were selected based on bond strength and porosity. The 'optimal' processed specimens were super finished by lapping using diamond and green SiC abrasives. Interesting results could be observed as follows: The green SiC could improve the surface finish of lapped surfaces almost as that by diamond in case of alumina and titania based ceramics but the diamond abrasives could improve the surface finish of PSZ better than that by green SiC. The conventional random scratches could be absent in alumina and titania ceramics but in PS those marks were found to be less. However, the flatness accuracy could be improved unto 60 to 85%. The surface finish and geometrical accuracy were measured and modeled. The abrasives in the midrange of their particle size could improve the surface quality faster and better than the particles of size in low and high ranges. From the experimental investigations after lapping process, the optimal lapping time, abrasive size, lapping pressure etc could be evaluated.Keywords: atmospheric plasma spraying, ceramics, lapping, surface qulaity, optimization
Procedia PDF Downloads 4151122 Adhesive Bonded Joints Characterization and Crack Propagation in Composite Materials under Cyclic Impact Fatigue and Constant Amplitude Fatigue Loadings
Authors: Andres Bautista, Alicia Porras, Juan P. Casas, Maribel Silva
Abstract:
The Colombian aeronautical industry has stimulated research in the mechanical behavior of materials under different loading conditions aircrafts are generally exposed during its operation. The Calima T-90 is the first military aircraft built in the country, used for primary flight training of Colombian Air Force Pilots, therefore, it may be exposed to adverse operating situations such as hard landings which cause impact loads on the aircraft that might produce the impact fatigue phenomenon. The Calima T-90 structure is mainly manufactured by composites materials generating assemblies and subassemblies of different components of it. The main method of bonding these components is by using adhesive joints. Each type of adhesive bond must be studied on its own since its performance depends on the conditions of the manufacturing process and operating characteristics. This study aims to characterize the typical adhesive joints of the aircraft under usual loads. To this purpose, the evaluation of the effect of adhesive thickness on the mechanical performance of the joint under quasi-static loading conditions, constant amplitude fatigue and cyclic impact fatigue using single lap-joint specimens will be performed. Additionally, using a double cantilever beam specimen, the influence of the thickness of the adhesive on the crack growth rate for mode I delamination failure, as a function of the critical energy release rate will be determined. Finally, an analysis of the fracture surface of the test specimens considering the mechanical interaction between the substrate (composite) and the adhesive, provide insights into the magnitude of the damage, the type of failure mechanism that occurs and its correlation with the way crack propagates under the proposed loading conditions.Keywords: adhesive, composites, crack propagation, fatigue
Procedia PDF Downloads 2041121 Sildenafil Citrate (Viagra) Suppositories Are Promising Approach for Treatment of Unexplained Infertility
Authors: Shahinaz El-Shourbagy El-Shourbagy, Ahmed M. E Ossman Ossman, Ashraf El-Mohamady El-Mohamady
Abstract:
Objective: To investigate if there is a role of sildenafil citrate (Viagra) in the treatment of infertile couples for idiopathic cause. Design: An observational study. Setting: Infertility outpatient clinic of Tanta University Hospital Egypt. Patient(s): 50 unexplained infertility women {endometrial thickness (EM) and the mean resistance index (RI)} compared to 50 fertile control group attended for check-up in the same period and receiving no treatment. Intervention(s): unexplained infertility women were given 25 mg of sildenafil citrate suppositories four times per day for seven days starting from the 5th day of the menstrual cycle for three cycles. Main Outcome Measures: EM and RI of endometrial spiral artery were assessed by transvaginal color-pulsed Doppler ultrasound in unexplained infertility women before and after sildenafil citrate treatment and compared with control. The conception rate and pregnancy outcome were recorded in the two groups. Result(s): Women with unexplained infertility had significantly thinner endometrium and a higher spiral artery resistance index, meaning lower peri-implantation blood flow than the fertile controls. Sildenafil citrate treated women showed a statistically significant increase in endometrial thickness (p < 0.001) and a significant decrease in the mean spiral artery resistance index (p < 0.001) giving a better conception rate. Conclusion: Sildenafil citrate suppositories treatment enhance the endometrial blood flow through decreasing spiral artery resistance index 'RI' and consequently improve endometrial growth and receptivity in cases of unexplained infertility thus giving a better conception rate.Keywords: Unexplained infertility, endometrial blood flow, endome¬trial receptivity, color-pulsed Doppler ultrasound; RI (resis¬tance index, Sildenafil citrate (Viagra)
Procedia PDF Downloads 2181120 Computational Fluid Dynamics Modeling of Physical Mass Transfer of CO₂ by N₂O Analogy Using One Fluid Formulation in OpenFOAM
Authors: Phanindra Prasad Thummala, Umran Tezcan Un, Ahmet Ozan Celik
Abstract:
Removal of CO₂ by MEA (monoethanolamine) in structured packing columns depends highly on the gas-liquid interfacial area and film thickness (liquid load). CFD (computational fluid dynamics) is used to find the interfacial area, film thickness and their impact on mass transfer in gas-liquid flow effectively in any column geometry. In general modeling approaches used in CFD derive mass transfer parameters from standard correlations based on penetration or surface renewal theories. In order to avoid the effect of assumptions involved in deriving the correlations and model the mass transfer based solely on fluid properties, state of art approaches like one fluid formulation is useful. In this work, the one fluid formulation was implemented and evaluated for modeling the physical mass transfer of CO₂ by N₂O analogy in OpenFOAM CFD software. N₂O analogy avoids the effect of chemical reactions on absorption and allows studying the amount of CO₂ physical mass transfer possible in a given geometry. The computational domain in the current study was a flat plate with gas and liquid flowing in the countercurrent direction. The effect of operating parameters such as flow rate, the concentration of MEA and angle of inclination on the physical mass transfer is studied in detail. Liquid side mass transfer coefficients obtained by simulations are compared to the correlations available in the literature and it was found that the one fluid formulation was effectively capturing the effects of interface surface instabilities on mass transfer coefficient with higher accuracy. The high mesh refinement near the interface region was found as a limiting reason for utilizing this approach on large-scale simulations. Overall, the one fluid formulation is found more promising for CFD studies involving the CO₂ mass transfer.Keywords: one fluid formulation, CO₂ absorption, liquid mass transfer coefficient, OpenFOAM, N₂O analogy
Procedia PDF Downloads 2201119 Advancement in Scour Protection with Flexible Solutions: Interpretation of Hydraulic Tests Data for Reno Mattresses in Open Channel Flow
Authors: Paolo Di Pietro, Matteo Lelli, Kinjal Parmar
Abstract:
Water hazards are consistently identified as among the highest global risks in terms of impact. Riverbank protection plays a key role in flood risk management. For erosion control and scour protection, flexible solutions like gabions & mattresses are being used since quite some time now. The efficacy of erosion control systems depends both on the ability to prevent soil loss underneath, as well as to maintain their integrity under the effects of the water flow. The paper presents the results of a research carried out at the Colorado State University on the performance of double twisted wire mesh products, known as Reno Mattresses, used as soil erosion control system. Mattresses were subjected to various flow conditions on a 10m long flume where they were placed on a 0.30 m thick soil layer. The performance against erosion was evaluated by assessing the effect of the stone motion inside the mattress combined with the condition of incipient soil erosion underneath, in relationship to the mattress thickness, the filling stone properties and under variable hydraulic flow regimes. While confirming the stability obtained using a conventional design approach (commonly referred to tractive force theories), the results of the research allowed to introduce a new performance limit based on incipient soil erosion underneath the revetment. Based on the research results, the authors propose to express the shear resistance of mattresses used as soil erosion control system as a function of the size of the filling stones, their uniformity, their unit weight, the thickness of the mattress, and the presence of vertical connecting elements between the mattress lid and bottom.Keywords: Reno Mattress, riverbank protection, hydraulics, full scale tests
Procedia PDF Downloads 271118 The Current Practices of Analysis of Reinforced Concrete Panels Subjected to Blast Loading
Authors: Palak J. Shukla, Atul K. Desai, Chentankumar D. Modhera
Abstract:
For any country in the world, it has become a priority to protect the critical infrastructure from looming risks of terrorism. In any infrastructure system, the structural elements like lower floors, exterior columns, walls etc. are key elements which are the most susceptible to damage due to blast load. The present study revisits the state of art review of the design and analysis of reinforced concrete panels subjected to blast loading. Various aspects in association with blast loading on structure, i.e. estimation of blast load, experimental works carried out previously, the numerical simulation tools, various material models, etc. are considered for exploring the current practices adopted worldwide. Discussion on various parametric studies to investigate the effect of reinforcement ratios, thickness of slab, different charge weight and standoff distance is also made. It was observed that for the simulation of blast load, CONWEP blast function or equivalent numerical equations were successfully employed by many researchers. The study of literature indicates that the researches were carried out using experimental works and numerical simulation using well known generalized finite element methods, i.e. LS-DYNA, ABAQUS, AUTODYN. Many researchers recommended to use concrete damage model to represent concrete and plastic kinematic material model to represent steel under action of blast loads for most of the numerical simulations. Most of the studies reveal that the increase reinforcement ratio, thickness of slab, standoff distance was resulted in better blast resistance performance of reinforced concrete panel. The study summarizes the various research results and appends the present state of knowledge for the structures exposed to blast loading.Keywords: blast phenomenon, experimental methods, material models, numerical methods
Procedia PDF Downloads 1581117 Aerosol - Cloud Interaction with Summer Precipitation over Major Cities in Eritrea
Authors: Samuel Abraham Berhane, Lingbing Bu
Abstract:
This paper presents the spatiotemporal variability of aerosols, clouds, and precipitation within the major cities in Eritrea and it investigates the relationship between aerosols, clouds, and precipitation concerning the presence of aerosols over the study region. In Eritrea, inadequate water supplies will have both direct and indirect adverse impacts on sustainable development in areas such as health, agriculture, energy, communication, and transport. Besides, there exists a gap in the knowledge on suitable and potential areas for cloud seeding. Further, the inadequate understanding of aerosol-cloud-precipitation (ACP) interactions limits the success of weather modification aimed at improving freshwater sources, storage, and recycling. Spatiotemporal variability of aerosols, clouds, and precipitation involve spatial and time series analysis based on trend and anomaly analysis. To find the relationship between aerosols and clouds, a correlation coefficient is used. The spatiotemporal analysis showed larger variations of aerosols within the last two decades, especially in Assab, indicating that aerosol optical depth (AOD) has increased over the surrounding Red Sea region. Rainfall was significantly low but AOD was significantly high during the 2011 monsoon season. Precipitation was high during 2007 over most parts of Eritrea. The correlation coefficient between AOD and rainfall was negative over Asmara and Nakfa. Cloud effective radius (CER) and cloud optical thickness (COT) exhibited a negative correlation with AOD over Nakfa within the June–July–August (JJA) season. The hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) model that is used to find the path and origin of the air mass of the study region showed that the majority of aerosols made their way to the study region via the westerly and the southwesterly winds.Keywords: aerosol-cloud-precipitation, aerosol optical depth, cloud effective radius, cloud optical thickness, HYSPLIT
Procedia PDF Downloads 1341116 Analysis of Pavement Lifespan - Cost and Emissions of Greenhouse Gases: A Comparative Study of 10-year vs 30-year Design
Authors: Claudeny Simone Alves Santana, Alexandre Simas De Medeiros, Marcelino Aurélio Vieira Da Silva
Abstract:
The aim of the study was to assess the performance of pavements over time, considering the principles of Life Cycle Assessment (LCA) and the ability to withstand vehicle loads and associated environmental impacts. Within the study boundary, pavement design was conducted using the Mechanistic-Empirical Method, adopting criteria based on pavement cracking and wheel path rutting while also considering factors such as soil characteristics, material thickness, and the distribution of forces exerted by vehicles. The Ecoinvent® 3.6 database and SimaPro® software were employed to calculate emissions, and SICRO 3 information was used to estimate costs. Consequently, the study sought to identify the service that had the greatest impact on greenhouse gas emissions. The results were compared for design life periods of 10 and 30 years, considering structural performance and load-bearing capacity. Additionally, environmental impacts in terms of CO2 emissions per standard axle and construction costs in dollars per standard axle were analyzed. Based on the conducted analyses, it was possible to determine which pavement exhibited superior performance over time, considering technical, environmental, and economic criteria. One of the findings indicated that the mechanical characteristics of the soils used in the pavement layer directly influence the thickness of the pavement and the quantity of greenhouse gases, with a difference of approximately 7000 Kg CO2 Eq. The transportation service was identified as having the most significant negative impact. Other notable observations are that the study can contribute to future project guidelines and assist in decision-making regarding the selection of the most suitable pavement in terms of durability, load-bearing capacity, and sustainability.Keywords: life cycle assessment, greenhouse gases, urban paving, service cost
Procedia PDF Downloads 751115 Geometry of the Right Ventricular Outflow Tract - Clinical Significance in Electrocardiological Procedures
Authors: Marcin Jakiel, Maria Kurek, Karolina Gutkowska, Sylwia Sanakiewicz, Dominika Stolarczyk, Jakub Batko, Rafał Jakiel, Mateusz K. Hołda
Abstract:
The geometry of RVOT is extremely complicated. It is an irregular block with an ellipsoidal cross-section, whose dimensions decrease toward the pulmonary valve and measure 33.82 (IQR 30,51-39,36), 28.82 (IQR 26,11-32,22), 27.95 ± 4,11 for width [mm] and 33.41 ± 6,14, 26.99 ± 4,41, 26.91 ± 4,00 [mm] for depth, in the basal, middle and subpulmonary parts, respectively. In a sagittal section view, the RVOT heads upward and slightly backward. Its anterior perimeter has an average length of 41.96 mm and inclines to the transverse plane at an angle of 50.77° (IQR 46,53°-58,70°). In the posterior region, the RVOT is shorter (18.17mm) and flexes anteriorly. Therefore, the slope of the upper part of the rear wall to the transverse plane is an acute angle (open toward the rear) of 44,58° (IQR 37,30°-51,25°), while in the lower part it is an angle close to a right angle of 94,30°±15,44°. In addition, the thickness of the RVOT wall in the diastolic phase, at the posterior perimeter at the base, in the middle of the length and subpulmonary measure 3,80 mm ± 0,88 mm, 3,56 mm ± 0,73 mm, 3,56 mm ± 0,65 mm, respectively. In frontal cross-section, the RVOT rises on the interventricular septum, which makes it possible to distinguish the septal and supraseptal parts on its left periphery. The angles (facing the vertices to the right) of the inclination of these parts to the transverse plane are 75.5° (IQR 66,44°-81,11°) and 107.01° (IQR 99,09 – 115,23°), respectively, which allows us to conclude that the direction of the RVOT long axis changes from left to right. The above analysis shows that there is no single RVOT axis. Two axes can be distinguished, the one for the upper RVOT being more backward and leftward. The aforementioned forward deflection of the posterior wall and the RVOT's elevation over the interventricular septum, suggest that access to the subpulmonary region may be difficult. It should be emphasized that this area is often the target for ablation of ventricular arrhythmias. The small thickness of the RVOT posterior wall, with its difficult geometry, may favor its perforation into the pericardium or ascending aorta.Keywords: angle, geometry, operation access, position, RVOT, shape
Procedia PDF Downloads 1111114 A Research on the Effect of Soil-Structure Interaction on the Dynamic Response of Symmetrical Reinforced Concrete Buildings
Authors: Adinew Gebremeskel Tizazu
Abstract:
The effect of soil-structure interaction on the dynamic response of reinforced concrete buildings of regular and symmetrical geometry are considered in this study. The structures are presumed to be generally embedded in a homogenous soil formation underlain by very stiff material or bedrock. The structure-foundation–soil system is excited at the base by an earthquake ground motion. The superstructure is idealized as a system with lumped masses concentrated at the floor levels, and coupled with the substructure. The substructure system, which comprises of the foundation and soil, is represented, and replaced by springs and dashpots. Frequency-dependent impedances of the foundation system are incorporated in the discrete model in terms of the springs and dashpots coefficients. The excitation applied to the model is field ground motions of actual earthquake records. Modal superposition principle is employed to transform the equations of motion in geometrical coordinates to modal coordinates. However, the modal equations remain coupled with respect to damping terms due to the difference in damping mechanisms of the superstructure and the soil. Hence, proportional damping for the coupled structural system may not be assumed. An iterative approach is adopted and programmed to solve the system of coupled equations of motion in modal coordinates to obtain the displacement responses of the system. Parametric studies for responses of building structures with regular and symmetric plans of different structural properties and heights are made for fixed and flexible base conditions, for different soil conditions encountered in Addis Ababa. The displacement, base shear and base overturning moments are used in the comparison of different types of structures for various foundation embedment depths, site conditions and height of structures. These values are compared against those of fixed base structure. The study shows that the flexible base structures, generally exhibit different responses from those structures with fixed base. Basically, the natural circular frequencies, the base shears and the inter-story displacements for the flexible base are less than those of the fixed base structures. This trend is particularly evident when the flexible soil has large thickness. In contrast, the trend becomes less predictable, when the thickness of the flexible soil decreases. Moreover, in the latter case, the iteration undulates significantly making the prediction difficult. This is attributed to the highly jagged nature of the impedance functions of frequencies for such formations. In this case, it is difficult to conclude whether the conventional fixed-base approach yields conservative design forces, as is the case for soil formations of large thickness.Keywords: effect of soil structure, dynamic response corroborated, the modal superposition principle, parametric studies
Procedia PDF Downloads 351113 Structure Domains Tuning Magnetic Anisotropy and Motivating Novel Electric Behaviors in LaCoO₃ Films
Authors: Dechao Meng, Yongqi Dong, Qiyuan Feng, Zhangzhang Cui, Xiang Hu, Haoliang Huang, Genhao Liang, Huanhua Wang, Hua Zhou, Hawoong Hong, Jinghua Guo, Qingyou Lu, Xiaofang Zhai, Yalin Lu
Abstract:
Great efforts have been taken to reveal the intrinsic origins of emerging ferromagnetism (FM) in strained LaCoO₃ (LCO) films. However, some macro magnetic performances of LCO are still not well understood and even controversial, such as magnetic anisotropy. Determining and understanding magnetic anisotropy might help to find the true causes of FM in turn. Perpendicular magnetic anisotropy (PMA) was the first time to be directly observed in high-quality LCO films with different thickness. The in-plane (IP) and out of plane (OOP) remnant magnetic moment ratio of 30 unit cell (u.c.) films is as large as 20. The easy axis lays in the OOP direction with an IP/OOP coercive field ratio of 10. What's more, the PMA could be simply tuned by changing the thickness. With the thickness increases, the IP/OOP magnetic moment ratio remarkably decrease with magnetic easy axis changing from OOP to IP. Such a huge and tunable PMA performance exhibit strong potentials in fundamental researches or applications. What causes PMA is the first concern. More OOP orbitals occupation may be one of the micro reasons of PMA. A cluster-like magnetic domain pattern was found in 30 u.c. with no obvious color contrasts, similar to that of LaAlO₃/SrTiO₃ films. And the nanosize domains could not be totally switched even at a large OOP magnetic field of 23 T. It indicates strong IP characters or none OOP magnetism of some clusters. The IP magnetic domains might influence the magnetic performance and help to form PMA. Meanwhile some possible nonmagnetic clusters might be the reason why the measured moments of LCO films are smaller than the calculated values 2 μB/Co, one of the biggest confusions in LCO films.What tunes PMA seems much more interesting. Totally different magnetic domain patterns were found in 180 u.c. films with cluster magnetic domains surrounded by < 110 > cross-hatch lines. These lines were regarded as structure domain walls (DWs) determined by 3D reciprocal space mapping (RSM). Two groups of in-plane features with fourfold symmetry were observed near the film diffraction peaks in (002) 3D-RSM. One is along < 110 > directions with a larger intensity, which is well match the lines on the surfaces. The other is much weaker and along < 100 > directions, which is from the normal lattice titling of films deposited on cubic substrates. The < 110 > domain features obtained from (103) and (113) 3D-RSMs exhibit similar evolution of the DWs percentages and magnetic behavior. Structure domains and domain walls are believed to tune PMA performances by transform more IP magnetic moments to OOP. Last but not the least, thick films with lots of structure domains exhibit different electrical transport behaviors. A metal-to-insulator transition (MIT) and an angular dependent negative magnetic resistivity were observed near 150 K, higher than FM transition temperature but similar to that of spin-orbital coupling related 1/4 order diffraction peaks.Keywords: structure domain, magnetic anisotropy, magnetic domain, domain wall, 3D-RSM, strain
Procedia PDF Downloads 1531112 Characteristics and Challenges of Post-Burn Contractures in Adults and Children: A Descriptive Study
Authors: Hardisiswo Soedjana, Inne Caroline
Abstract:
Deep dermal or full thickness burns are inevitably lead to post-burn contractures. These contractures remain to be one of the most concerning late complications of burn injuries. Surgical management includes releasing the contracture followed by resurfacing the defect accompanied by post-operative rehabilitation. Optimal treatment of post-burn contractures depends on the characteristics of the contractures. This study is aimed to describe clinical characteristics, problems, and management of post-burn contractures in adults and children. A retrospective analysis was conducted from medical records of patients suffered from contractures after burn injuries admitted to Hasan Sadikin general hospital between January 2016 and January 2018. A total of 50 patients with post burn contractures were included in the study. There were 17 adults and 33 children. Most patients were male, whose age range within 15-59 years old and 5-9 years old. Educational background was mostly senior high school among adults, while there was only one third of children who have entered school. Etiology of burns was predominantly flame in adults (82.3%); whereas flame and scald were the leading cause of burn injury in children (11%). Based on anatomical regions, hands were the most common affected both in adults (35.2%) and children (48.5%). Contractures were identified in 6-12 months since the initial burns. Most post-burn hand contractures were resurfaced with full-thickness skin graft (FTSG) both in adults and children. There were 11 patients who presented with recurrent contracture after previous history of contracture release. Post-operative rehabilitation was conducted for all patients; however, it is important to highlight that it is still challenging to control splinting and exercise when patients are discharged and especially the compliance in children. In order to improve quality of life in patients with history of deep burn injuries, prevention of contractures should begin right after acute care has been established. Education for the importance of splinting and exercise should be administered as comprehensible as possible for adult patients and parents of pediatric patients.Keywords: burn, contracture, education, exercise, splinting
Procedia PDF Downloads 1301111 The High Quality Colored Wind Chimes by Anodization on Aluminum Alloy
Authors: Chia-Chih Wei, Yun-Qi Li, Ssu-Ying Chen, Hsuan-Jung Chen, Hsi-Wen Yang, Chih-Yuan Chen, Chien-Chon Chen
Abstract:
In this paper we used high quality anodization technique to make colored wind chime with a nano-tube structure anodic film, which controls the length to diameter ratio of an aluminum rod and controls the oxide film structure on the surface of the aluminum rod by anodizing method. The research experiment used hard anodization to grow a controllable thickness of anodic film on aluminum alloy surface. The hard anodization film has high hardness, high insulation, high temperature resistance, good corrosion resistance, colors, and mass production properties can be further applied to transportation, electronic products, biomedical fields, or energy industry applications. This study also in-depth research and detailed discussion in the related process of aluminum alloy surface hard anodizing including pre-anodization, anodization, and post-anodization. The experiment parameters of anodization including using a mixed acid solution of sulfuric acid and oxalic acid as an anodization electrolyte, and control the temperature, time, current density, and final voltage to obtain the anodic film. In the experiments results, the properties of anodic film including thickness, hardness, insulation, and corrosion characteristics, microstructure of the anode film were measured and the hard anodization efficiency was calculated. Thereby obtaining different transmission speeds of sound in the aluminum rod and different audio sounds can be presented on the aluminum rod. Another feature of the present invention is the use of anodizing method dyeing method, laser engraving patterning and electrophoresis method to make colored aluminum wind chimes.Keywords: anodization, colored, high quality, wind chime, nano-tube
Procedia PDF Downloads 2451110 Numerical Investigation of Gas Leakage in RCSW-Soil Combinations
Authors: Mahmoud Y. M. Ahmed, Ahmed Konsowa, Mostafa Sami, Ayman Mosallam
Abstract:
Fukushima nuclear accident (Japan 2011) has drawn attention to the issue of gas leakage from hazardous facilities through building boundaries. The rapidly increasing investments in nuclear stations have made the ability to predict, and prevent, gas leakage a rather crucial issue both environmentally and economically. Leakage monitoring for underground facilities is rather complicated due to the combination of Reinforced Concrete Shear Wall (RCSW) and soil. In the framework of a recent research conducted by the authors, the gas insulation capabilities of RCSW-soil combination have been investigated via a lab-scale experimental work. Despite their accuracy, experimental investigations are expensive, time-consuming, hazardous, and lack for flexibility. Numerically simulating the gas leakage as a fluid flow problem based on Computational Fluid Dynamics (CFD) modeling approach can provide a potential alternative. This novel implementation of CFD approach is the topic of the present paper. The paper discusses the aspects of modeling the gas flow through porous media that resemble the RCSW both isolated and combined with the normal soil. A commercial CFD package is utilized in simulating this fluid flow problem. A fixed RCSW layer thickness is proposed, air is taken as the leaking gas, whereas the soil layer is represented as clean sand with variable properties. The variable sand properties include sand layer thickness, fine fraction ratio, and moisture content. The CFD simulation results almost demonstrate what has been found experimentally. A soil layer attached next to a cracked reinforced concrete section plays a significant role in reducing the gas leakage from that cracked section. This role is found to be strongly dependent on the soil specifications.Keywords: RCSW, gas leakage, Pressure Decay Method, hazardous underground facilities, CFD
Procedia PDF Downloads 4191109 Experimental Study of Energy Absorption Efficiency (EAE) of Warp-Knitted Spacer Fabric Reinforced Foam (WKSFRF) Under Low-Velocity Impact
Authors: Amirhossein Dodankeh, Hadi Dabiryan, Saeed Hamze
Abstract:
Using fabrics to reinforce composites considerably leads to improved mechanical properties, including resistance to the impact load and the energy absorption of composites. Warp-knitted spacer fabrics (WKSF) are fabrics consisting of two layers of warp-knitted fabric connected by pile yarns. These connections create a space between the layers filled by pile yarns and give the fabric a three-dimensional shape. Today because of the unique properties of spacer fabrics, they are widely used in the transportation, construction, and sports industries. Polyurethane (PU) foams are commonly used as energy absorbers, but WKSF has much better properties in moisture transfer, compressive properties, and lower heat resistance than PU foam. It seems that the use of warp-knitted spacer fabric reinforced PU foam (WKSFRF) can lead to the production and use of composite, which has better properties in terms of energy absorption from the foam, its mold formation is enhanced, and its mechanical properties have been improved. In this paper, the energy absorption efficiency (EAE) of WKSFRF under low-velocity impact is investigated experimentally. The contribution of the effect of each of the structural parameters of the WKSF on the absorption of impact energy has also been investigated. For this purpose, WKSF with different structures such as two different thicknesses, small and large mesh sizes, and position of the meshes facing each other and not facing each other were produced. Then 6 types of composite samples with different structural parameters were fabricated. The physical properties of samples like weight per unit area and fiber volume fraction of composite were measured for 3 samples of any type of composites. Low-velocity impact with an initial energy of 5 J was carried out on 3 samples of any type of composite. The output of the low-velocity impact test is acceleration-time (A-T) graph with a lot deviation point, in order to achieve the appropriate results, these points were removed using the FILTFILT function of MATLAB R2018a. Using Newtonian laws of physics force-displacement (F-D) graph was drawn from an A-T graph. We know that the amount of energy absorbed is equal to the area under the F-D curve. Determination shows the maximum energy absorption is 2.858 J which is related to the samples reinforced with fabric with large mesh, high thickness, and not facing of the meshes relative to each other. An index called energy absorption efficiency was defined, which means absorption energy of any kind of our composite divided by its fiber volume fraction. With using this index, the best EAE between the samples is 21.6 that occurs in the sample with large mesh, high thickness, and meshes facing each other. Also, the EAE of this sample is 15.6% better than the average EAE of other composite samples. Generally, the energy absorption on average has been increased 21.2% by increasing the thickness, 9.5% by increasing the size of the meshes from small to big, and 47.3% by changing the position of the meshes from facing to non-facing.Keywords: composites, energy absorption efficiency, foam, geometrical parameters, low-velocity impact, warp-knitted spacer fabric
Procedia PDF Downloads 1711108 Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate
Authors: Shingo Murakami, Shinichi Enoki
Abstract:
In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield stress of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigate that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole.Keywords: stress concentration, patch, out-of-plane deformation, Finite Element Analysis
Procedia PDF Downloads 2681107 Comparative Performance of Standing Whole Body Monitor and Shielded Chair Counter for In-vivo Measurements
Authors: M. Manohari, S. Priyadharshini, K. Bajeer Sulthan, R. Santhanam, S. Chandrasekaran, B. Venkatraman
Abstract:
In-vivo monitoring facility at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, caters to the monitoring of internal exposure of occupational radiation workers from various radioactive facilities of IGCAR. Internal exposure measurement is done using Na(Tl) based Scintillation detectors. Two types of whole-body counters, namely Shielded Chair Counter (SC) and Standing Whole-Body Monitor (SWBM), are being used. The shielded Chair is based on a NaI detector of 20.3 cm diameter and 10.15 cm thick. The chair of the system is shielded using lead shots of 10 cm lead equivalent and the detector with 8 cm lead bricks. Counting geometry is sitting geometry. Calibration is done using 95 percentile BOMAB phantom. The minimum Detectable Activity (MDA) for 137Cs for the 60s is 1150 Bq. Standing Wholebody monitor (SWBM) has two NaI(Tl) detectors of size 10.16 x 10.16 x 40.64 cm3 positioned serially, one over the other. It has a shielding thickness of 5cm lead equivalent. Counting is done in standup geometry. Calibration is done with the help of Ortec Phantom, having a uniform distribution of mixed radionuclides for the thyroid, thorax and pelvis. The efficiency of SWBM is 2.4 to 3.5 times higher than that of the shielded chair in the energy range of 279 to 1332 keV. MDA of 250 Bq for 137Cs can be achieved with a counting time of 60s. MDA for 131I in the thyroid was estimated as 100 Bq from the MDA of whole-body for one-day post intake. Standing whole body monitor is better in terms of efficiency, MDA and ease of positioning. In case of emergency situations, the optimal MDAs for in-vivo monitoring service are 1000 Bq for 137Cs and 100 Bq for 131I. Hence, SWBM is more suitable for the rapid screening of workers as well as the public in the case of an emergency. While a person reports for counting, there is a potential for external contamination. In SWBM, there is a feasibility to discriminate them as the subject can be counted in anterior or posterior geometry which is not possible in SC.Keywords: minimum detectable activity, shielded chair, shielding thickness, standing whole body monitor
Procedia PDF Downloads 461106 Gluability of Bambusa balcooa and Bambusa vulgaris for Development of Laminated Panels
Authors: Daisy Biswas, Samar Kanti Bose, M. Mozaffar Hossain
Abstract:
The development of value added composite products from bamboo with the application of gluing technology can play a vital role in economic development and also in forest resource conservation of any country. In this study, the gluability of Bambusa balcooa and Bambusa vulgaris, two locally grown bamboo species of Bangladesh was assessed. As the culm wall thickness of bamboos decreases from bottom to top, a culm portion of up to 5.4 m and 3.6 m were used from the base of B. balcooa and B. vulgaris, respectively, to get rectangular strips of uniform thickness. The color of the B. vulgaris strips was yellowish brown and that of B. balcooa was reddish brown. The strips were treated in borax-boric, bleaching and carbonization for extending the service life of the laminates. The preservative treatments changed the color of the strips. Borax–boric acid treated strips were reddish brown. When bleached with hydrogen peroxide, the color of the strips turned into whitish yellow. Carbonization produced dark brownish strips having coffee flavor. Chemical constituents for untreated and treated strips were determined. B. vulgaris was more acidic than B. balcooa. Then the treated strips were used to develop three-layered bamboo laminated panel. Urea formaldehyde (UF) and polyvinyl acetate (PVA) were used as binder. The shear strength and abrasive resistance of the panel were evaluated. It was found that the shear strength of the UF-panel was higher than the PVA-panel for all treatments. Between the species, gluability of B. vulgaris was better and in some cases better than hardwood species. The abrasive resistance of B. balcooa is slightly higher than B. vulgaris; however, the latter was preferred as it showed well gluability. The panels could be used as structural panel, floor tiles, flat pack furniture component, and wall panel etc. However, further research on durability and creep behavior of the product in service condition is warranted.Keywords: Bambusa balcooa, Bambusa vulgaris, polyvinyl acetate, urea formaldehyde
Procedia PDF Downloads 2631105 Electroless Nickel Boron Deposition onto the SiC and B4C Ceramic Reinforced Materials
Authors: I. Kerti, G. Sezen, S. Daglilar
Abstract:
This present work is focused on studying to improve low wetting behaviour between liquid metal and ceramic particles. Ceramic particles like SiC and B4C have attracted great attention because of their usability as reinforcement for composite materials. However, poor wettability of particles is one of the major drawbacks of metal matrix composite production. Various methods have been studied to enhance the wetting properties between ceramic materials and metal substrates during ceramic reinforced metal matrix composites. Among these methods, autocatalytic nickel deposition is a unique process for the enhancement of the surface properties of ceramic particles. In fact, it is difficult to obtain continuous and uniform metallic coating on ceramic powders. In this study deposition of nickel boron layer on ceramic particles via autocatalytic plating in borohydride baths were investigated. Firstly, powders with different particle sizes were sensitized and activated respectively in order to ensure catalytic properties. Following the pre-treatment operations, particles were transferred into the coating bath containing nickel sulphate or nickel chloride as the Ni2+ source. The results show that a better bonding and uniform coating layer were obtained for Ni-B coatings with the Ni2+ source of NiCl2.6H2O as compared to NiSO4.6H2O. With the progress of the time, both particle surfaces are completely covered by a continuous and thin nickel boron layer. The surface morphology of the coatings that were analysed using scanning electron microscopy (SEM) show that SiC and B4C particles both distributed and different thickness of Ni-B nanolayers have been successfully coated onto the particles. The particles were mounted into a polimeric resin and polished in order to observe the thickness and the continuity of the coating layer. The composition of the coating layers were also evaluated by EDS analyses. The SEM morphologies and the EDS results of the coatings at different reaction times were adopted for detailed discussion of the Ni-B electroless plating mechanism.Keywords: boron carbide, electroless coating, nickel boron deposition, silicon carbide
Procedia PDF Downloads 3481104 A Comparative Study of Linearly Graded and without Graded Photonic Crystal Structure
Authors: Rajeev Kumar, Angad Singh Kushwaha, Amritanshu Pandey, S. K. Srivastava
Abstract:
Photonic crystals (PCs) have attracted much attention due to its electromagnetic properties and potential applications. In PCs, there is certain range of wavelength where electromagnetic waves are not allowed to pass are called photonic band gap (PBG). A localized defect mode will appear within PBG, due to change in the interference behavior of light, when we create a defect in the periodic structure. We can also create different types of defect structures by inserting or removing a layer from the periodic layered structure in two and three-dimensional PCs. We can design microcavity, waveguide, and perfect mirror by creating a point defect, line defect, and palanar defect in two and three- dimensional PC structure. One-dimensional and two-dimensional PCs with defects were reported theoretically and experimentally by Smith et al.. in conventional photonic band gap structure. In the present paper, we have presented the defect mode tunability in tilted non-graded photonic crystal (NGPC) and linearly graded photonic crystal (LGPC) using lead sulphide (PbS) and titanium dioxide (TiO2) in the infrared region. A birefringent defect layer is created in NGPC and LGPC using potassium titany phosphate (KTP). With the help of transfer matrix method, the transmission properties of proposed structure is investigated for transverse electric (TE) and transverse magnetic (TM) polarization. NGPC and LGPC without defect layer is also investigated. We have found that a photonic band gap (PBG) arises in the infrared region. An additional defect layer of KTP is created in NGPC and LGPC structure. We have seen that an additional transmission mode appers in PBG region. It is due to the addition of defect layer. We have also seen the effect, linear gradation in thickness, angle of incidence, tilt angle, and thickness of defect layer, on PBG and additional transmission mode. We have observed that the additional transmission mode and PBG can be tuned by changing the above parameters. The proposed structure may be used as channeled filter, optical switches, monochromator, and broadband optical reflector.Keywords: defect modes, graded photonic crystal, photonic crystal, tilt angle
Procedia PDF Downloads 3761103 Combined Effect of Roughness and Suction on Heat Transfer in a Laminar Channel Flow
Authors: Marzieh Khezerloo, Lyazid Djenidi
Abstract:
Owing to wide range of the micro-device applications, the problems of mixing at small scales is of significant interest. Also, because most of the processes produce heat, it is needed to develop and implement strategies for heat removal in these devices. There are many studies which focus on the effect of roughness or suction on heat transfer performance, separately, although it would be useful to take advantage of these two methods to improve heat transfer performance. Unfortunately, there is a gap in this area. The present numerical study is carried to investigate the combined effects of roughness and wall suction on heat transfer performance of a laminar channel flow; suction is applied on the top and back faces of the roughness element, respectively. The study is carried out for different Reynolds numbers, different suction rates, and various locations of suction area on the roughness. The flow is assumed two dimensional, incompressible, laminar, and steady state. The governing Navier-Stokes equations are solved using ANSYS-Fluent 18.2 software. The present results are tested against previous theoretical results. The results show that by adding suction, the local Nusselt number is enhanced in the channel. In addition, it is shown that by applying suction on the bottom section of the roughness back face, one can reduce the thickness of thermal boundary layer, which leads to an increase in local Nusselt number. This indicates that suction is an effective means for improving the heat transfer rate (suction by controls the thickness of thermal boundary layer). It is also shown that the size and intensity of vortical motion behind the roughness element, decreased with an increasing suction rate, which leads to higher local Nusselt number. So, it can be concluded that by using suction, strategically located on the roughness element, one can control both the recirculation region and the heat transfer rate. Further results will be presented at the conference for coefficient of drag and the effect of adding more roughness elements.Keywords: heat transfer, laminar flow, numerical simulation, roughness, suction
Procedia PDF Downloads 1151102 Characteristics of Smoked Edible Film Made from Myofibril, Collagen and Carrageenan
Authors: Roike Iwan Montolalu, Henny Adeleida Dien, Feny Mentang, Kristhina P. Rahael, Tomy Moga, Ayub Meko, Siegfried Berhimpon
Abstract:
In the last 20 years, packaging materials derived from petrochemicals polymers were widely used as packaging materials. This due to various advantages such as flexible, strong, transparent, and the price is relatively cheap. However, the plastic polymer also has various disadvantages, such as the transmission monomer contamination into the material to be packed, and waste is non-biodegradable. Edible film (EF) is an up to date materials, generated after the biodegradable packaging materials. The advantages of the EF materials, is the materials can be eat together with food, and the materials can be applied as a coating materials for a widely kind of foods especially snack foods. The aims of this research are to produce and to analyze the characteristics of smoked EF made from carrageenan, myofibril and collagen of Black Marlin (Makaira indica) industrial waste. Smoked EF made with an addition of 0.8 % smoke liquid. Three biopolymers i.e. carrageenan, myofibril, and collagen were used as treatments, and homogenate for 1 hours at speed of 1500 rpm. The analysis carried out on the pH and physical properties i.e. thickness, solubility, tensile strength, % elongation, and water vapor transmission rate (WVTR), as well as on the sensory characteristics of texture i.e. wateriness, firmness, elasticity, hardness, and juiciness of the coated products. The result shown that the higher the concentration the higher the thickness of EF, where as for myofibril proteins appeared higher than carrageenan and collagen. Both of collagen and myofibril shown that concentration of 6% was most soluble, while for carrageenan were in concentration of 2 to 2.5%. For tensile strength, carrageenan was significantly higher than myofibril and collagen; while for elongation, collagen film more elastic than carragenan and myofibril protein. Water vapor transmission rate, shown that myofibril protein film lower than carrageenan and collagen film. From sensory assessment of texture, carrageenan has a high elasticity and juiciness, while collagen and myofibril have a high in firmness and hardness.Keywords: edible film, collagen, myofibril, carrageenan
Procedia PDF Downloads 4301101 Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate with a Circular Hole
Authors: Shingo Murakami, Shinichi Enoki
Abstract:
In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield load of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigated that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole.Keywords: stress concentration, patch, out-of-plane deformation, Finite Element Analysis
Procedia PDF Downloads 3011100 Enhancing of Laser Imaging by Using Ultrasound Effect
Authors: Hayder Raad Hafuze, Munqith Saleem Dawood, Jamal Abdul Jabbar
Abstract:
The effect of using both ultrasounds with laser in medical imaging of the biological tissue has been studied in this paper. Different wave lengths of incident laser light (405 nm, 532 nm, 650 nm, 808 nm and 1064 nm) were used with different ultrasound frequencies (1MHz and 3.3MHz). The results showed that, the change of acoustic intensity enhance the laser penetration of the tissue for different thickness. The existence of the ideal Raman-Nath diffraction pattern were investigated in terms of phase delay and incident angle.Keywords: tissue, laser, ultrasound, effect, imaging
Procedia PDF Downloads 4341099 Performance Analysis of Microelectromechanical Systems-Based Piezoelectric Energy Harvester
Authors: Sanket S. Jugade, Swapneel U. Naphade, Satyabodh M. Kulkarni
Abstract:
Microscale energy harvesters can be used to convert ambient mechanical vibrations to electrical energy. Such devices have great applications in low powered electronics in remote environments like powering wireless sensor nodes of Internet of Things, lightings on highways or in ships, etc. In this paper, a Microelectromechanical systems (MEMS) based energy harvester has been modeled using Analytical and Finite Element Method (FEM). The device consists of a microcantilever with a proof mass attached to its free end and a Polyvinylidene Fluoride (PVDF) piezoelectric thin film deposited on the surface of microcantilever in a unimorph or bimorph configuration. For the analytical method, the energy harvester was modeled as an equivalent electrical system in SIMULINK. The Finite element model was developed and analyzed using the commercial package COMSOL Multiphysics. The modal analysis was performed first to find the fundamental natural frequency and its variation with geometrical parameters of the system. Then the harmonic analysis was performed to find the input mechanical power, output electrical voltage, and power for a range of excitation frequencies and base acceleration values. The variation of output power with load resistance, PVDF film thickness, and damping values was also found out. The results from FEM were then validated with that of the analytical model. Finally, the performance of the device was optimized with respect to various electro-mechanical parameters. For a unimorph configuration consisting of single crystal silicon microcantilever of dimensions 8mm×2mm×80µm and proof mass of 9.32 mg with optimal values of the thickness of PVDF film and load resistance as 225 µm and 20 MΩ respectively, the maximum electrical power generated for base excitation of 0.2g at 630 Hz is 0.9 µW.Keywords: bimorph, energy harvester, FEM, harmonic analysis, MEMS, PVDF, unimorph
Procedia PDF Downloads 1901098 Flexural Performance of the Sandwich Structures Having Aluminum Foam Core with Different Thicknesses
Authors: Emre Kara, Ahmet Fatih Geylan, Kadir Koç, Şura Karakuzu, Metehan Demir, Halil Aykul
Abstract:
The structures obtained with the use of sandwich technologies combine low weight with high energy absorbing capacity and load carrying capacity. Hence, there is a growing and markedly interest in the use of sandwiches with aluminium foam core because of very good properties such as flexural rigidity and energy absorption capability. The static (bending and penetration) and dynamic (dynamic bending and low velocity impact) tests were already performed on the aluminum foam cored sandwiches with different types of outer skins by some of the authors. In the current investigation, the static three-point bending tests were carried out on the sandwiches with aluminum foam core and glass fiber reinforced polymer (GFRP) skins at different values of support span distances (L= 55, 70, 80, 125 mm) aiming the analyses of their flexural performance. The influence of the core thickness and the GFRP skin type was reported in terms of peak load, energy absorption capacity and energy efficiency. For this purpose, the skins with two different types of fabrics ([0°/90°] cross ply E-Glass Woven and [0°/90°] cross ply S-Glass Woven which have same thickness value of 1.5 mm) and the aluminum foam core with two different thicknesses (h=10 and 15 mm) were bonded with a commercial polyurethane based flexible adhesive in order to combine the composite sandwich panels. The GFRP skins fabricated via Vacuum Assisted Resin Transfer Molding (VARTM) technique used in the study can be easily bonded to the aluminum foam core and it is possible to configure the base materials (skin, adhesive and core), fiber angle orientation and number of layers for a specific application. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, energy efficiency, collapse mechanisms and the effect of the support span length and core thickness. The results of the experimental study showed that the sandwich with the skins made of S-Glass Woven fabrics and with the thicker foam core presented higher mechanical values such as load carrying and energy absorption capacities. The increment of the support span distance generated the decrease of the mechanical values for each type of panels, as expected, because of the inverse proportion between the force and span length. The most common failure types of the sandwiches are debonding of the upper or lower skin and the core shear. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry (automotive, aerospace, shipbuilding and marine industry), where the problems of collision and crash have increased in the last years.Keywords: aluminum foam, composite panel, flexure, transport application
Procedia PDF Downloads 3391097 Study of the Relationship between the Civil Engineering Parameters and the Floating of Buoy Model Which Made from Expanded Polystyrene-Mortar
Authors: Panarat Saengpanya
Abstract:
There were five objectives in this study including the study of housing type with water environment, the physical and mechanical properties of the buoy material, the mechanical properties of the buoy models, the floating of the buoy models and the relationship between the civil engineering parameters and the floating of the buoy. The buoy examples made from Expanded Polystyrene (EPS) covered by 5 mm thickness of mortar with the equal thickness on each side. Specimens are 0.05 m cubes tested at a displacement rate of 0.005 m/min. The existing test method used to assess the parameters relationship is ASTM C 109 to provide comparative results. The results found that the three type of housing with water environment were Stilt Houses, Boat House, and Floating House. EPS is a lightweight material that has been used in engineering applications since at least the 1950s. Its density is about a hundredth of that of mortar, while the mortar strength was found 72 times of EPS. One of the advantage of composite is that two or more materials could be combined to take advantage of the good characteristics of each of the material. The strength of the buoy influenced by mortar while the floating influenced by EPS. Results showed the buoy example compressed under loading. The Stress-Strain curve showed the high secant modulus before reached the peak value. The failure occurred within 10% strain then the strength reduces while the strain was continuing. It was observed that the failure strength reduced by increasing the total volume of examples. For the buoy examples with same area, an increase of the failure strength is found when the high dimension is increased. The results showed the relationship between five parameters including the floating level, the bearing capacity, the volume, the high dimension and the unit weight. The study found increases in high of buoy lead to corresponding decreases in both modulus and compressive strength. The total volume and the unit weight had relationship with the bearing capacity of the buoy.Keywords: floating house, buoy, floating structure, EPS
Procedia PDF Downloads 1461096 Basic Evaluation for Polyetherimide Membrane Using Spectroscopy Techniques
Authors: Hanan Alenezi
Abstract:
Membrane performance depends on the kind of solvent used in preparation. A membrane made by Polyetherimide (PEI) was evaluated for gas separation using X-Ray Diffraction (XRD), Scanning electron microscope (SEM), and Energy Dispersive X-Ray Spectroscopy (EDS). The purity and the thickness are detected to evaluate the membrane in order to optimize PEI membrane preparation.Keywords: Energy Dispersive X-Ray Spectroscopy (EDS), Membrane, Polyetherimide PEI, Scanning electron microscope (SEM), Solvent, X-Ray Diffraction (XRD)
Procedia PDF Downloads 1841095 Influence of Chelators, Zn Sulphate and Silicic Acid on Productivity and Meat Quality of Fattening Pigs
Authors: A. Raceviciute-Stupeliene, V. Sasyte, V. Viliene, V. Slausgalvis, J. Al-Saifi, R. Gruzauskas
Abstract:
The objective of this study was to investigate the influence of special additives such as chelators, zinc sulphate and silicic acid on productivity parameters, carcass characteristics and meat quality of fattening pigs. The test started with 40 days old fattening pigs (mongrel (mother) and Yorkshire (father)) and lasted up to 156 days of age. During the fattening period, 32 pigs were divided into 2 groups (control and experimental) with 4 replicates (total of 8 pens). The pigs were fed for 16 weeks’ ad libitum with a standard wheat-barley-soybean meal compound (Control group) supplemented with chelators, zinc sulphate and silicic acid (dosage 2 kg/t of feed, Experimental group). Meat traits in live pigs were measured by ultrasonic equipment Piglog 105. The results obtained throughout the experimental period suggest that supplementation of chelators, zinc sulphate and silicic acid tend to positively affect average daily gain and feed conversion ratio of pigs for fattening (p < 0.05). Pigs’ evaluation with Piglog 105 showed that thickness of fat in the first and second point was by 4% and 3% respectively higher in comparison to the control group (p < 0.05). Carcass weight, yield, and length, also thickness of fat showed no significant difference among the groups. The water holding capacity of meat in Experimental group was lower by 5.28%, and tenderness – lower by 12% compared with that of the pigs in the Control group (p < 0.05). Regarding pigs’ meat chemical composition of the experimental group, a statistically significant difference comparing with the data of the control group was not determined. Cholesterol concentration in muscles of pigs fed diets supplemented with chelators, zinc sulphate and silicic acid was lower by 7.93 mg/100 g of muscle in comparison to that of the control group. These results suggest that supplementation of chelators, zinc sulphate and silicic acid in the feed for fattening pigs had significant effect on pigs growing performance and meat quality.Keywords: silicic acid, chelators, meat quality, pigs, zinc sulphate
Procedia PDF Downloads 180