Search results for: antibiotics detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3904

Search results for: antibiotics detection

3454 Determination of Chemical Contaminants in UHT Milk Consumed in Sharjah, UAE

Authors: Adem Rama, Rabiha Seboussi, Mahmoud Muhamadin, Sultan Alzarooni, Fatima Mohamed, Khuloud Al Ali

Abstract:

To assess public health hazards associated with the occurrence of Antibiotics and AFM1 residues in UHT milk, a survey was carried out in Sharjah, UAE. In the present study, a total of 42 UHT milk samples analyzed were from different commercial brands manufactured in industrial dairy units in the UAE and from foreign producers. Milk samples were collected for four months (January to April 2020). The occurrence and concentration range of Antibiotics (Streptomycin and Gentamycin) and AFM1 in the samples were investigated by applying the ELISA method. According to the methodology used in this study, in total, 2 (5%) out of 42(95%) samples tested positive on the presence of AFM1. While, 1(2.4%) out of 41(97.6%) positive samples were found to contain Streptomycin and Gentamycin, respectively. The positive incidence of AFM1 in the UHT milk samples ranged from 58.8 to 1074 µg/L, for Streptomycin from up to 1004 µg/L, and Gentamycin up to 6909 µg/L. There were no positive samples found in locally produced UHT milk. AFM1 and antibiotic levels in positive samples UHT milk samples exceeded the maximum tolerable limits as set by the European Union - EC guidelines/standards. These levels in the samples show a presence of contaminants that might constitute a human health risk in Sharjah. The results of this study imply that more emphasis should be given to the routine inspection of milk and dairy products in the Sharjah region.

Keywords: milk, contaminant residues, ELISA, public health, Sharjah

Procedia PDF Downloads 116
3453 Surface Hole Defect Detection of Rolled Sheets Based on Pixel Classification Approach

Authors: Samira Taleb, Sakina Aoun, Slimane Ziani, Zoheir Mentouri, Adel Boudiaf

Abstract:

Rolling is a pressure treatment technique that modifies the shape of steel ingots or billets between rotating rollers. During this process, defects may form on the surface of the rolled sheets and are likely to affect the performance and quality of the finished product. In our study, we developed a method for detecting surface hole defects using a pixel classification approach. This work includes several steps. First, we performed image preprocessing to delimit areas with and without hole defects on the sheet image. Then, we developed the histograms of each area to generate the gray level membership intervals of the pixels that characterize each area. As we noticed an intersection between the characteristics of the gray level intervals of the images of the two areas, we finally performed a learning step based on a series of detection tests to refine the membership intervals of each area, and to choose the defect detection criterion in order to optimize the recognition of the surface hole.

Keywords: classification, defect, surface, detection, hole

Procedia PDF Downloads 15
3452 Minimizing the Impact of Covariate Detection Limit in Logistic Regression

Authors: Shahadut Hossain, Jacek Wesolowski, Zahirul Hoque

Abstract:

In many epidemiological and environmental studies covariate measurements are subject to the detection limit. In most applications, covariate measurements are usually truncated from below which is known as left-truncation. Because the measuring device, which we use to measure the covariate, fails to detect values falling below the certain threshold. In regression analyses, it causes inflated bias and inaccurate mean squared error (MSE) to the estimators. This paper suggests a response-based regression calibration method to correct the deleterious impact introduced by the covariate detection limit in the estimators of the parameters of simple logistic regression model. Compared to the maximum likelihood method, the proposed method is computationally simpler, and hence easier to implement. It is robust to the violation of distributional assumption about the covariate of interest. In producing correct inference, the performance of the proposed method compared to the other competing methods has been investigated through extensive simulations. A real-life application of the method is also shown using data from a population-based case-control study of non-Hodgkin lymphoma.

Keywords: environmental exposure, detection limit, left truncation, bias, ad-hoc substitution

Procedia PDF Downloads 236
3451 Comparing UV-based and O₃-Based AOPs for Removal of Emerging Contaminants from Food Processing Digestate Sludge

Authors: N. Moradi, C. M. Lopez-Vazquez, H. Garcia Hernandez, F. Rubio Rincon, D. Brdanovic, Mark van Loosdrecht

Abstract:

Advanced oxidation processes have been widely used for disinfection, removal of residual organic material, and for the removal of emerging contaminants from drinking water and wastewater. Yet, the application of these technologies to sludge treatment processes has not gained enough attention, mostly, considering the complexity of the sludge matrix. In this research, ozone and UV/H₂O₂ treatment were applied for the removal of emerging contaminants from a digestate supernatant. The removal of the following compounds was assessed:(i) salicylic acid (SA) (a surrogate of non-stradiol anti-inflammatory drugs (NSAIDs)), and (ii) sulfamethoxazole (SMX), sulfamethazine (SMN), and tetracycline (TCN) (the most frequent human and animal antibiotics). The ozone treatment was carried out in a plexiglass bubble column reactor with a capacity of 2.7 L; the system was equipped with a stirrer and a gas diffuser. The UV and UV/H₂O₂ treatments were done using a LED set-up (PearlLab beam device) dosing H₂O₂. In the ozone treatment evaluations, 95 % of the three antibiotics were removed during the first 20 min of exposure time, while an SA removal of 91 % occurred after 8 hours of exposure time. In the UV treatment evaluations, when adding the optimum dose of hydrogen peroxide (H₂O₂:COD molar ratio of 0.634), 36% of SA, 82% of TCN, and more than 90 % of both SMX and SMN were removed after 8 hours of exposure time. This study concluded that O₃ was more effective than UV/H₂O₂ in removing emerging contaminants from the digestate supernatant.

Keywords: digestate sludge, emerging contaminants, ozone, UV-AOP

Procedia PDF Downloads 102
3450 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine

Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour

Abstract:

Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.

Keywords: decision tree, feature selection, intrusion detection system, support vector machine

Procedia PDF Downloads 265
3449 Developing an Accurate AI Algorithm for Histopathologic Cancer Detection

Authors: Leah Ning

Abstract:

This paper discusses the development of a machine learning algorithm that accurately detects metastatic breast cancer (cancer has spread elsewhere from its origin part) in selected images that come from pathology scans of lymph node sections. Being able to develop an accurate artificial intelligence (AI) algorithm would help significantly in breast cancer diagnosis since manual examination of lymph node scans is both tedious and oftentimes highly subjective. The usage of AI in the diagnosis process provides a much more straightforward, reliable, and efficient method for medical professionals and would enable faster diagnosis and, therefore, more immediate treatment. The overall approach used was to train a convolution neural network (CNN) based on a set of pathology scan data and use the trained model to binarily classify if a new scan were benign or malignant, outputting a 0 or a 1, respectively. The final model’s prediction accuracy is very high, with 100% for the train set and over 70% for the test set. Being able to have such high accuracy using an AI model is monumental in regard to medical pathology and cancer detection. Having AI as a new tool capable of quick detection will significantly help medical professionals and patients suffering from cancer.

Keywords: breast cancer detection, AI, machine learning, algorithm

Procedia PDF Downloads 91
3448 Collision Detection Algorithm Based on Data Parallelism

Authors: Zhen Peng, Baifeng Wu

Abstract:

Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.

Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability

Procedia PDF Downloads 289
3447 Root Mean Square-Based Method for Fault Diagnosis and Fault Detection and Isolation of Current Fault Sensor in an Induction Machine

Authors: Ahmad Akrad, Rabia Sehab, Fadi Alyoussef

Abstract:

Nowadays, induction machines are widely used in industry thankful to their advantages comparing to other technologies. Indeed, there is a big demand because of their reliability, robustness and cost. The objective of this paper is to deal with diagnosis, detection and isolation of faults in a three-phase induction machine. Among the faults, Inter-turn short-circuit fault (ITSC), current sensors fault and single-phase open circuit fault are selected to deal with. However, a fault detection method is suggested using residual errors generated by the root mean square (RMS) of phase currents. The application of this method is based on an asymmetric nonlinear model of Induction Machine considering the winding fault of the three axes frame state space. In addition, current sensor redundancy and sensor fault detection and isolation (FDI) are adopted to ensure safety operation of induction machine drive. Finally, a validation is carried out by simulation in healthy and faulty operation modes to show the benefit of the proposed method to detect and to locate with, a high reliability, the three types of faults.

Keywords: induction machine, asymmetric nonlinear model, fault diagnosis, inter-turn short-circuit fault, root mean square, current sensor fault, fault detection and isolation

Procedia PDF Downloads 198
3446 Optimizing Machine Learning Through Python Based Image Processing Techniques

Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash

Abstract:

This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.

Keywords: image processing, machine learning applications, template matching, emotion detection

Procedia PDF Downloads 13
3445 Self-Organizing Maps for Credit Card Fraud Detection

Authors: ChunYi Peng, Wei Hsuan CHeng, Shyh Kuang Ueng

Abstract:

This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.

Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies

Procedia PDF Downloads 57
3444 On the Representation of Actuator Faults Diagnosis and Systems Invertibility

Authors: F. Sallem, B. Dahhou, A. Kamoun

Abstract:

In this work, the main problem considered is the detection and the isolation of the actuator fault. A new formulation of the linear system is generated to obtain the conditions of the actuator fault diagnosis. The proposed method is based on the representation of the actuator as a subsystem connected with the process system in cascade manner. The designed formulation is generated to obtain the conditions of the actuator fault detection and isolation. Detectability conditions are expressed in terms of the invertibility notions. An example and a comparative analysis with the classic formulation illustrate the performances of such approach for simple actuator fault diagnosis by using the linear model of nuclear reactor.

Keywords: actuator fault, Fault detection, left invertibility, nuclear reactor, observability, parameter intervals, system inversion

Procedia PDF Downloads 405
3443 A Procedure for Post-Earthquake Damage Estimation Based on Detection of High-Frequency Transients

Authors: Aleksandar Zhelyazkov, Daniele Zonta, Helmut Wenzel, Peter Furtner

Abstract:

In the current research structural health monitoring is considered for addressing the critical issue of post-earthquake damage detection. A non-standard approach for damage detection via acoustic emission is presented - acoustic emissions are monitored in the low frequency range (up to 120 Hz). Such emissions are termed high-frequency transients. Further a damage indicator defined as the Time-Ratio Damage Indicator is introduced. The indicator relies on time-instance measurements of damage initiation and deformation peaks. Based on the time-instance measurements a procedure for estimation of the maximum drift ratio is proposed. Monitoring data is used from a shaking-table test of a full-scale reinforced concrete bridge pier. Damage of the experimental column is successfully detected and the proposed damage indicator is calculated.

Keywords: acoustic emission, damage detection, shaking table test, structural health monitoring

Procedia PDF Downloads 231
3442 The Investigation of the Antimicrobial Activities of Piper betle L.

Authors: Disaya Jaroensattayatham

Abstract:

Nowadays, infectious diseases are prevalent and severe health problems as they render the increment of casualty, illness, and global economic recession. Along with the emergence of antimicrobial resistance, the potency of typically used antibiotics can be affected to a considerable degree. As a result, unorthodox antibiotics have become an urgent issue in the pharmaceutical field. Piper betle L., known as betle leaf, has been used for many purposes, such as a traditional home remedy, and has shown its ability in inhibiting bacteria as well as fungus. Thus, in this study, the investigation of antimicrobial activities of the Piper betle L. extracts was carried out using the Agar disk-diffusion method and Broth microdilution, aiming to evaluate and determine its efficacy to inhibit bacterial and fungal growth of Staphylococcus aureus, Salmonella typhi, and Candida albicans. In the agar disk-diffusion test, the extracts of Piper betle L. gave the maximum zone of inhibition of 15.1 mm (S. aureus), 7.7 mm (S. typhi), and 11.7 mm (C. albicans), while its MIC values were 1000 µg/ml in S. aureus and greater than 2000 µg/ml in S. typhi and C. albicans. According to the results, the Piper betle L. obtains an antimicrobial activity and shows a higher effect towards gram-positive bacteria than gram-negative bacteria. To determine the mechanism behind its ability, more research is needed to be performed in the future.

Keywords: antimicrobial activity, Candida albicans, Piper betle L., Salmonella typhi, Staphylococcus aureus

Procedia PDF Downloads 178
3441 The Biology of Persister Cells and Antibiotic Resistance

Authors: Zikora K. G. Anyaegbunam, Annabel A. Nnawuihe, Ngozi J. Anyaegbunam, Emmanuel A. Eze

Abstract:

The discovery and production of new antibiotics is unavoidable in the fight against drug-resistant bacteria. However, this is only part of the problem; we have never really had medications that could completely eradicate an infection. All pathogens create a limited number of dormant persister cells that are resistant to antibiotic treatment. When the concentration of antibiotics decreases, surviving persisters repopulate the population, resulting in a recurrent chronic infection. Bacterial populations have an alternative survival strategy to withstand harsh conditions or antibiotic exposure, in addition to the well-known methods of antibiotic resistance and biofilm formation. Persister cells are a limited subset of transiently antibiotic-tolerant phenotypic variations capable of surviving high-dose antibiotic therapy. Persisters that flip back to a normal phenotype can restart growth when antibiotic pressure drops, assuring the bacterial population's survival. Persister cells have been found in every major pathogen, and they play a role in antibiotic tolerance in biofilms as well as the recalcitrance of chronic infections. Persister cells has been implicated to play a role in the establishment of antibiotic resistance, according to growing research. Thusthe need to basically elucidate the biology of persisters and how they are linked to antibiotic resistance, and as well it's link to diseases.

Keywords: persister cells, phenotypic variations, repopulation, mobile genetic transfers, antibiotic resistance

Procedia PDF Downloads 209
3440 Self-Organizing Maps for Credit Card Fraud Detection and Visualization

Authors: Peng Chun-Yi, Chen Wei-Hsuan, Ueng Shyh-Kuang

Abstract:

This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.

Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies

Procedia PDF Downloads 59
3439 Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings

Authors: Houda Najeh, Stéphane Ploix, Mahendra Pratap Singh, Karim Chabir, Mohamed Naceur Abdelkrim

Abstract:

Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors.

Keywords: building system, time series, diagnosis, outliers, delay, data gap

Procedia PDF Downloads 245
3438 A Dynamic Neural Network Model for Accurate Detection of Masked Faces

Authors: Oladapo Tolulope Ibitoye

Abstract:

Neural networks have become prominent and widely engaged in algorithmic-based machine learning networks. They are perfect in solving day-to-day issues to a certain extent. Neural networks are computing systems with several interconnected nodes. One of the numerous areas of application of neural networks is object detection. This is a prominent area due to the coronavirus disease pandemic and the post-pandemic phases. Wearing a face mask in public slows the spread of the virus, according to experts’ submission. This calls for the development of a reliable and effective model for detecting face masks on people's faces during compliance checks. The existing neural network models for facemask detection are characterized by their black-box nature and large dataset requirement. The highlighted challenges have compromised the performance of the existing models. The proposed model utilized Faster R-CNN Model on Inception V3 backbone to reduce system complexity and dataset requirement. The model was trained and validated with very few datasets and evaluation results shows an overall accuracy of 96% regardless of skin tone.

Keywords: convolutional neural network, face detection, face mask, masked faces

Procedia PDF Downloads 68
3437 Multi-Vehicle Detection Using Histogram of Oriented Gradients Features and Adaptive Sliding Window Technique

Authors: Saumya Srivastava, Rina Maiti

Abstract:

In order to achieve a better performance of vehicle detection in a complex environment, we present an efficient approach for a multi-vehicle detection system using an adaptive sliding window technique. For a given frame, image segmentation is carried out to establish the region of interest. Gradient computation followed by thresholding, denoising, and morphological operations is performed to extract the binary search image. Near-region field and far-region field are defined to generate hypotheses using the adaptive sliding window technique on the resultant binary search image. For each vehicle candidate, features are extracted using a histogram of oriented gradients, and a pre-trained support vector machine is applied for hypothesis verification. Later, the Kalman filter is used for tracking the vanishing point. The experimental results show that the method is robust and effective on various roads and driving scenarios. The algorithm was tested on highways and urban roads in India.

Keywords: gradient, vehicle detection, histograms of oriented gradients, support vector machine

Procedia PDF Downloads 124
3436 Concentric Circle Detection based on Edge Pre-Classification and Extended RANSAC

Authors: Zhongjie Yu, Hancheng Yu

Abstract:

In this paper, we propose an effective method to detect concentric circles with imperfect edges. First, the gradient of edge pixel is coded and a 2-D lookup table is built to speed up normal generation. Then we take an accumulator to estimate the rough center and collect plausible edges of concentric circles through gradient and distance. Later, we take the contour-based method, which takes the contour and edge intersection, to pre-classify the edges. Finally, we use the extended RANSAC method to find all the candidate circles. The center of concentric circles is determined by the two circles with the highest concentricity. Experimental results demonstrate that the proposed method has both good performance and accuracy for the detection of concentric circles.

Keywords: concentric circle detection, gradient, contour, edge pre-classification, RANSAC

Procedia PDF Downloads 130
3435 Electrochemical Bioassay for Haptoglobin Quantification: Application in Bovine Mastitis Diagnosis

Authors: Soledad Carinelli, Iñigo Fernández, José Luis González-Mora, Pedro A. Salazar-Carballo

Abstract:

Mastitis is the most relevant inflammatory disease in cattle, affecting the animal health and causing important economic losses on dairy farms. This disease takes place in the mammary gland or udder when some opportunistic microorganisms, such as Staphylococcus aureus, Streptococcus agalactiae, Corynebacterium bovis, etc., invade the teat canal. According to the severity of the inflammation, mastitis can be classified as sub-clinical, clinical and chronic. Standard methods for mastitis detection include counts of somatic cells, cell culture, electrical conductivity of the milk, and California test (evaluation of “gel-like” matrix consistency after cell lysed with detergents). However, these assays present some limitations for accurate detection of subclinical mastitis. Currently, haptoglobin, an acute phase protein, has been proposed as novel and effective biomarker for mastitis detection. In this work, an electrochemical biosensor based on polydopamine-modified magnetic nanoparticles (MNPs@pDA) for haptoglobin detection is reported. Thus, MNPs@pDA has been synthesized by our group and functionalized with hemoglobin due to its high affinity to haptoglobin protein. The protein was labeled with specific antibodies modified with alkaline phosphatase enzyme for its electrochemical detection using an electroactive substrate (1-naphthyl phosphate) by differential pulse voltammetry. After the optimization of assay parameters, the haptoglobin determination was evaluated in milk. The strategy presented in this work shows a wide range of detection, achieving a limit of detection of 43 ng/mL. The accuracy of the strategy was determined by recovery assays, being of 84 and 94.5% for two Hp levels around the cut off value. Milk real samples were tested and the prediction capacity of the electrochemical biosensor was compared with a Haptoglobin commercial ELISA kit. The performance of the assay has demonstrated this strategy is an excellent and real alternative as screen method for sub-clinical bovine mastitis detection.

Keywords: bovine mastitis, haptoglobin, electrochemistry, magnetic nanoparticles, polydopamine

Procedia PDF Downloads 173
3434 Application of Hybrid Honey Bees Mating Optimization Algorithm in Multiuser Detection of Wireless Communication Systems

Authors: N. Larbi, F. Debbat

Abstract:

Wireless communication systems have changed dramatically and shown spectacular evolution over the past two decades. These radio technologies are engaged in a quest endless high-speed transmission coupled to a constant need to improve transmission quality. Various radio communication systems being developed use code division multiple access (CDMA) technique. This work analyses a hybrid honey bees mating optimization algorithm (HBMO) applied to multiuser detection (MuD) in CDMA communication systems. The HBMO is a swarm-based optimization algorithm, which simulates the mating process of real honey bees. We apply a hybridization of HBMO with simulated annealing (SA) in order to improve the solution generated by the HBMO. Simulation results show that the detection based on Hybrid HBMO, in term of bit error rate (BER), is viable option when compared with the classic detectors from literature under Rayleigh flat fading channel.

Keywords: BER, DS-CDMA multiuser detection, genetic algorithm, hybrid HBMO, simulated annealing

Procedia PDF Downloads 435
3433 Computer Assisted Strategies Help to Pharmacist

Authors: Komal Fizza

Abstract:

All around the world in every field professionals are taking great support from their computers. Computer assisted strategies not only increase the efficiency of the professionals but also in case of healthcare they help in life-saving interventions. The background of this current research is aimed towards two things; first to find out if computer assisted strategies are useful for Pharmacist for not and secondly how much these assist a Pharmacist to do quality interventions. Shifa International Hospital is a 500 bedded hospital, and it is running Antimicrobial Stewardship, during their stewardship rounds pharmacists observed that a lot of wrong doses of antibiotics were coming at times those were being overlooked by the other pharmacist even. So, with the help of MIS team the patients were categorized into adult and peads depending upon their age. Minimum and maximum dose of every single antibiotic present in the pharmacy that could be dispensed to the patient was developed. These were linked to the order entry window. So whenever pharmacist would type any order and the dose would be below or above the therapeutic limit this would give an alert to the pharmacist. Whenever this message pop-up this was recorded at the back end along with the antibiotic name, pharmacist ID, date, and time. From 14th of January 2015 and till 14th of March 2015 the software stopped different users 350 times. Out of this 300 were found to be major errors which if reached to the patient could have harmed them to the greater extent. While 50 were due to typing errors and minor deviations. The pilot study showed that computer assisted strategies can be of great help to the pharmacist. They can improve the efficacy and quality of interventions.

Keywords: antibiotics, computer assisted strategies, pharmacist, stewardship

Procedia PDF Downloads 490
3432 Topology-Based Character Recognition Method for Coin Date Detection

Authors: Xingyu Pan, Laure Tougne

Abstract:

For recognizing coins, the graved release date is important information to identify precisely its monetary type. However, reading characters in coins meets much more obstacles than traditional character recognition tasks in the other fields, such as reading scanned documents or license plates. To address this challenging issue in a numismatic context, we propose a training-free approach dedicated to detection and recognition of the release date of the coin. In the first step, the date zone is detected by comparing histogram features; in the second step, a topology-based algorithm is introduced to recognize coin numbers with various font types represented by binary gradient map. Our method obtained a recognition rate of 92% on synthetic data and of 44% on real noised data.

Keywords: coin, detection, character recognition, topology

Procedia PDF Downloads 253
3431 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory

Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan

Abstract:

Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.

Keywords: data fusion, Dempster-Shafer theory, data mining, event detection

Procedia PDF Downloads 410
3430 Anticancer Study of Copper and Zinc Complexes with Doxorubicin

Authors: Grzegorz Swiderski, Agata Jablonska-Trypuc, Natalia Popow, Renata Swislocka, Wlodzimierz Lewandowski

Abstract:

Doxorubicin belongs to the group of anthracycline antitumor antibiotics. Because of the wide spectrum of actions, it is one of the most widely used anthracycline antibiotics, including the treatment of breast, ovary, bladder, lung cancers as well as neuroblastoma, lymphoma, leukemia and myeloid leukemia. Antitumor activity of doxorubicin is based on the same mechanisms as for most anthracyclines. Like the metal ions affect the nucleic acids on many biological processes, so the environment of the metal chelates of antibiotics can have a significant effect on the pharmacological properties of drugs. Complexation of anthracyclines with metal ions may contribute to the production of less toxic compounds. In the framework of this study, the composition of complexes obtained in aqueous solutions of doxorubicin with metal ions (Cu2+ and Zn2+). Complexation was analyzed by spectrophotometric titration in aqueous solution at pH 7.0. The pH was adjusted with 0.02M Tris-HCl buffer. The composition of the complexes found was Cu: doxorubicin (1: 2) and a Zn: doxorubicin (1: 1). The effect of Dox, Dox-Cu and Dox-Zn was examined in MCF-7 breast cancer cell line, which were obtained from American Type Culture Collection (ATCC). The compounds were added to the cultured cells for a final concentration in the range of 0,01µM to 0,5µM. The number of MCF-7 cells with division into living and dead, was determined by direct counts of cells with the use of trypan blue dye using LUNA Logos Biosystems cell counter. ApoTox-Glo Triplex Assay (Promega, Madison, Wisconsin, USA) was used according to the manufacturer’s instructions to measure the MCF-7 cells’ viability, cytotoxicity and apoptosis. We observed a decrease in cells proliferation in a dose-dependent manner. An increase in cytotoxicity and decrease in viability in the ApoTox Triplex assay was also showed for all tested compounds. Apoptosis, showed as caspase 3/7 activation, was observed only in Dox treatment. In Dox-Zn and Dox-Cu caspase 3/7 activation was not observed. This work was financially supported by National Science Centre, Poland, under the research project number 2014/13/B/NZ7/02 352.

Keywords: anticancer properties, anthracycline antibiotic, doxorubicine, metal complexes

Procedia PDF Downloads 280
3429 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band

Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman

Abstract:

In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.

Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite

Procedia PDF Downloads 235
3428 Defect Detection for Nanofibrous Images with Deep Learning-Based Approaches

Authors: Gaokai Liu

Abstract:

Automatic defect detection for nanomaterial images is widely required in industrial scenarios. Deep learning approaches are considered as the most effective solutions for the great majority of image-based tasks. In this paper, an edge guidance network for defect segmentation is proposed. First, the encoder path with multiple convolution and downsampling operations is applied to the acquisition of shared features. Then two decoder paths both are connected to the last convolution layer of the encoder and supervised by the edge and segmentation labels, respectively, to guide the whole training process. Meanwhile, the edge and encoder outputs from the same stage are concatenated to the segmentation corresponding part to further tune the segmentation result. Finally, the effectiveness of the proposed method is verified via the experiments on open nanofibrous datasets.

Keywords: deep learning, defect detection, image segmentation, nanomaterials

Procedia PDF Downloads 149
3427 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention

Authors: Avinash Malladhi

Abstract:

Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.

Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory

Procedia PDF Downloads 93
3426 Detection of Autism Spectrum Disorders in Children Aged 4-6 Years by Municipal Maternal and Child Health Physicians: An Educational Intervention Study

Authors: M. Van 'T Hof, R. V. Pasma, J. T. Bailly, H. W. Hoek, W. A. Ester

Abstract:

Background: The transition into primary school can be challenging for children with an autism spectrum disorder (ASD). Due to the new demands that are made to children in this period, their limitations in social functioning and school achievements may manifest and appear faster. Detection of possible ASD signals mainly takes place by parents, teachers and during obligatory municipal maternal and child health centre visits. Physicians of municipal maternal and child health centres have limited education and instruments to detect ASD. Further education on detecting ASD is needed to optimally equip these doctors for this task. Most research aims to increase the early detection of ASD in children aged 0-3 years and shows positive results. However, there is a lack of research on educational interventions to detect ASD in children aged 4-6 years by municipal maternal and child health physicians. Aim: The aim of this study is to explore the effect of the online educational intervention: Detection of ASD in children aged 4-6 years for municipal maternal and child health physicians. This educational intervention is developed within The Reach-Aut Academic Centre for Autism; Transitions in education, and will be available throughout The Netherlands. Methods: Ninety-two participants will follow the educational intervention: Detection of ASD in children aged 4-6 years for municipal maternal and child health centre physicians. The educational intervention consists of three, one and a half hour sessions, which are offered through an online interactive classroom. The focus and content of the course has been developed in collaboration with three groups of stakeholders; autism scientists, clinical practitioners (municipal maternal and child health doctors and ASD experts) and parents of children with ASD. The primary outcome measure is knowledge about ASD: signals, early detection, communication with parents and referrals. The secondary outcome measures are the number of ASD related referrals, the attitude towards the mentally ill (CAMI), perceived competency about ASD knowledge and detection skills, and satisfaction about the educational intervention. Results and Conclusion: The study started in January 2016 and data collection will end mid 2017.

Keywords: ASD, child, detection, educational intervention, physicians

Procedia PDF Downloads 293
3425 Anticoccidial Effects of the Herbal Mixture in Boilers after Eimeria spp. Infection

Authors: Yang-Ho Jang, Soon-Ok Jee, Hae-Chul Park, Jeong-Woo Kang, Byung-Jae So, Sung-Shik Shin, Kyu-Sung Ahn, Kwang-Jick Lee

Abstract:

Introduction: Antibiotics have been used as feed additives for the growth promotion and performance in food-producing animals. However, the possibility of selection of antimicrobial resistance and the concerns of residue in animal products led to ban the use of antibiotics in farm animals at 2011 in Korea. This strategy is also adjusted to anticoccidial drugs soon but these are still allowed for the time being to use in a diet for the treatment and control for the enteric necrosis in poultry. Therefore substantial focus has been given to find alternatives to antimicrobial agents. Several phytogenic materials have been reported to have positive effects on coccidiosis. This study was to evaluate the effects on anti-coccidial effect of oregano oil based herb mixture on Eimeria spp. in poultry. Materials and Methods: A total of one day-old boiler chickens divided into six groups (each group=30 chkckens) were used in this study. The herbal mixture was fed with water freely as follows: two groups, one infected with Eimeria spp. and the other group served as controls without herbal mixture respectively; 0.2ml/L of oregano oil; 0.2ml/L of oregano oil and Sanguisorbae radix; 0.2ml/L of Sanguisorbae radix; last group was fed with dichlazuril diet as positive control. Sporulated Eimeria spp. was infected at 14 day-old. Following infection, survival rate, bloody diarrhea, OPG (oocyst per gram) and feed conversion ratios were determined. The experimental period was lasted for 4 weeks. Results: Herbal mixture feeding groups (Group 3,4,5) showed low feed conversion ratio comparing with negative control. Oregano oil group and positive control group recorded the highest survival rate. The grade of bloody diarrhea was scored 0 to 5. Herbal mixture feeding groups showed 2, 3 and 1 score respectively however, group 2 (infection and no-treatment) showed 4. OPG results in herbal mixture feeding group were 3 to 4 times higher than diclazuril diet feeding group. Conclusions: These results showed that oregano oil and Sanguisorbae radix mixture may have an anti-coccidial effect and also affect chick performance.

Keywords: anticoccidial effects, oregano oil based herb mixture, herbal mixture, antibiotics

Procedia PDF Downloads 554