Search results for: absorption efficiency
7552 Physicochemical and Optical Characterization of Rutile TiO2 Thin Films Grown by APCVD Technique
Authors: Dalila Hocine, Mohammed Said Belkaid, Abderahmane Moussi
Abstract:
In this study, pure rutile TiO2 thin films were directly synthesized on silicon substrates by Atmospheric Pressure Chemical Vapor Deposition technique (APCVD) using TiCl4 as precursor. We studied the physicochemical properties and the optical properties of the produced coatings by means of standard characterization techniques of Fourier Transform Infrared Spectroscopy (FTIR) combined with UV-Vis Reflectance Spectrophotometry. The absorption peaks at 423 cm-1 and 610 cm-1 were observed for the rutile TiO2 thin films, by FTIR measurements. The absorption peak at 739 cm-1 due to the vibration of the Ti-O bonds, was also detected. UV-Vis Reflectance Spectrophotometry is employed for measuring the optical band gap from the measurements of the TiO2 films reflectance. The optical band gap was then extracted from the reflectance data for the TiO2 sample. It was estimated to be 3.05 eV which agrees with the band gap of commercial rutile TiO2 sample.Keywords: titanium dioxide, physicochemical properties, APCVD, FTIR, band gap
Procedia PDF Downloads 3967551 Analysis and Design of Simultaneous Dual Band Harvesting System with Enhanced Efficiency
Authors: Zina Saheb, Ezz El-Masry, Jean-François Bousquet
Abstract:
This paper presents an enhanced efficiency simultaneous dual band energy harvesting system for wireless body area network. A bulk biasing is used to enhance the efficiency of the adapted rectifier design to reduce Vth of MOSFET. The presented circuit harvests the radio frequency (RF) energy from two frequency bands: 1 GHz and 2.4 GHz. It is designed with TSMC 65-nm CMOS technology and high quality factor dual matching network to boost the input voltage. Full circuit analysis and modeling is demonstrated. The simulation results demonstrate a harvester with an efficiency of 23% at 1 GHz and 46% at 2.4 GHz at an input power as low as -30 dBm.Keywords: energy harvester, simultaneous, dual band, CMOS, differential rectifier, voltage boosting, TSMC 65nm
Procedia PDF Downloads 4047550 A Comprehensive Study on CO₂ Capture and Storage: Advances in Technology and Environmental Impact Mitigation
Authors: Oussama Fertaq
Abstract:
This paper investigates the latest advancements in CO₂ capture and storage (CCS) technologies, which are vital for addressing the growing challenge of climate change. The study focuses on multiple techniques for CO₂ capture, including chemical absorption, membrane separation, and adsorption, analyzing their efficiency, scalability, and environmental impact. The research further explores geological storage options such as deep saline aquifers and depleted oil fields, providing insights into the challenges and opportunities presented by each method. This paper emphasizes the importance of integrating CCS with existing industrial processes to reduce greenhouse gas emissions effectively. It also discusses the economic and policy frameworks required to promote wider adoption of CCS technologies. The findings of this study offer a comprehensive view of the potential of CCS in achieving global climate goals, particularly in hard-to-abate sectors such as energy and manufacturing.Keywords: CO₂ capture, carbon storage, climate change mitigation, carbon sequestration, environmental sustainability
Procedia PDF Downloads 117549 Vibration Absorption Strategy for Multi-Frequency Excitation
Authors: Der Chyan Lin
Abstract:
Since the early introduction by Ormondroyd and Den Hartog, vibration absorber (VA) has become one of the most commonly used vibration mitigation strategies. The strategy is most effective for a primary plant subjected to a single frequency excitation. For continuous systems, notable advances in vibration absorption in the multi-frequency system were made. However, the efficacy of the VA strategy for systems under multi-frequency excitation is not well understood. For example, for an N degrees-of-freedom (DOF) primary-absorber system, there are N 'peak' frequencies of large amplitude vibration per every new excitation frequency. In general, the usable range for vibration absorption can be greatly reduced as a result. Frequency modulated harmonic excitation is a commonly seen multi-frequency excitation example: f(t) = cos(ϖ(t)t) where ϖ(t)=ω(1+α sin(δt)). It is known that f(t) has a series expansion given by the Bessel function of the first kind, which implies an infinity of forcing frequencies in the frequency modulated harmonic excitation. For an SDOF system of natural frequency ωₙ subjected to f(t), it can be shown that amplitude peaks emerge at ω₍ₚ,ₖ₎=(ωₙ ± 2kδ)/(α ∓ 1),k∈Z; i.e., there is an infinity of resonant frequencies ω₍ₚ,ₖ₎, k∈Z, making the use of VA strategy ineffective. In this work, we propose an absorber frequency placement strategy for SDOF vibration systems subjected to frequency-modulated excitation. An SDOF linear mass-spring system coupled to lateral absorber systems is used to demonstrate the ideas. Although the mechanical components are linear, the governing equations for the coupled system are nonlinear. We show using N identical absorbers, for N ≫ 1, that (a) there is a cluster of N+1 natural frequencies around every natural absorber frequency, and (b) the absorber frequencies can be moved away from the plant's resonance frequency (ω₀) as N increases. Moreover, we also show the bandwidth of the VA performance increases with N. The derivations of the clustering and bandwidth widening effect will be given, and the superiority of the proposed strategy will be demonstrated via numerical experiments.Keywords: Bessel function, bandwidth, frequency modulated excitation, vibration absorber
Procedia PDF Downloads 1557548 An Investigation into the Impacts of High-Frequency Electromagnetic Fields Utilized in the 5G Technology on Insects
Authors: Veriko Jeladze, Besarion Partsvania, Levan Shoshiashvili
Abstract:
This paper addresses a very topical issue today. The frequency range 2.5-100 GHz contains frequencies that have already been used or will be used in modern 5G technologies. The wavelengths used in 5G systems will be close to the body dimensions of small size biological objects, particularly insects. Because the body and body parts dimensions of insects at these frequencies are comparable with the wavelength, the high absorption of EMF energy in the body tissues can occur(body resonance) and therefore can cause harmful effects, possibly the extinction of some of them. An investigation into the impact of radio-frequency nonionizing electromagnetic field (EMF) utilized in the future 5G on insects is of great importance as a very high number of 5G network components will increase the total EMF exposure in the environment. All ecosystems of the earth are interconnected. If one component of an ecosystem is disrupted, the whole system will be affected (which could cause cascading effects). The study of these problems is an important challenge for scientists today because the existing studies are incomplete and insufficient. Consequently, the purpose of this proposed research is to investigate the possible hazardous impact of RF-EMFs (including 5G EMFs) on insects. The project will study the effects of these EMFs on various insects that have different body sizes through computer modeling at frequencies from 2.5 to 100 GHz. The selected insects are honey bee, wasp, and ladybug. For this purpose, the detailed 3D discrete models of insects are created for EM and thermal modeling through FDTD and will be evaluated whole-body Specific Absorption Rates (SAR) at selected frequencies. All these studies represent a novelty. The proposed study will promote new investigations about the bio-effects of 5G-EMFs and will contribute to the harmonization of safe exposure levels and frequencies of 5G-EMFs'.Keywords: electromagnetic field, insect, FDTD, specific absorption rate (SAR)
Procedia PDF Downloads 907547 Evaluating the Energy Efficiency Measures for an Educational Building in a Hot-Humid Region
Authors: Rafia Akbar
Abstract:
This paper assesses different Energy Efficiency Measures (EEMs) and their impact on energy consumption and carbon footprint of an educational building located in Islamabad. A base case was first developed in accordance with typical construction practices in Pakistan. Several EEMs were separately applied to the baseline design to quantify their impact on operational energy reduction of the building and the resultant carbon emissions. Results indicate that by applying these measures, there is a potential to reduce energy consumption up to 49% as compared to the base case. It was observed that energy efficient ceiling fans and lights, insulation of the walls and roof and an efficient air conditioning system for the building can provide significant energy savings. The results further indicate that the initial investment cost of these energy efficiency measures can be recovered within 6 to 7 years of building’s service life.Keywords: CO2 savings, educational building, energy efficiency measures, payback period
Procedia PDF Downloads 1657546 Stability Enhancement of Supported Ionic Liquid Membranes Using Ion Gels for Gas Separation
Authors: Y. H. Hwang, J. Won, Y. S. Kang
Abstract:
Supported ionic liquid membranes (SILMs) have attracted due to the negligible vapor pressure of ionic liquids (ILs) as well as the high gas selectivity for specific gases such as CO2 or olefin. 1-ethyl-3-methylimidazolium tricyanomethanide ([EMIM][TCM]), 1-butyl-3-methylimidazolium tricyanomethanide ([BMIM][TCM]), show high CO2 solubility, CO2 absorption, rapid CO2 absorption rate and negligible vapor pressure, SILMs using these ILs have been good candidates as CO2 separation membranes. However, SILM has to be operated at a low differential pressure to prevent the solvent from being expelled from the pores of supported membranes. In this paper, we improve the mechanical strength by forming ion gels which provide the stability while it retains the diffusion properties of the liquid stage which affects the gas separation properties. The ion gel was created by the addition of tri-block copolymer, poly(styrene-ethylene oxide-b-styrene) in RTIL. SILM using five different RTILs, are investigated with and without ion gels. The gas permeance were measured and the gas performance with and without the SEOS were investigated.Keywords: ion gel, ionic liquid, membrane, nanostructure
Procedia PDF Downloads 3127545 Investigating the Characteristics of Multi-Plastic Composites Prepared from a Mixture of Silk Fibers and Recycled Polycarbonate
Authors: Razieh Shamsi, Mehdi Faezipour, Ali Abdolkhani
Abstract:
In this research, the characteristics of composites prepared from waste silk fibers and recycled polycarbonate polymer (used compacted boards) at four levels of 0, 10, 20, and 30% (silk fibers) and using 2% N- 2-Aminoethyl-3-Aminopropyltrimethoxysilane was investigated as a coupling agent and melt process method. Silk fibers (carpet weaving waste) with dimensions of 8-18 mm were prepared, and recycled polymer with 9 mesh grading was ground. Production boards in 3 thicknesses, 3 mm (tensile test samples), 5 mm (bending test samples, water absorption, and thickness shrinkage), 7 mm (impact resistance test samples) ) with a specific weight of 1 gram per cubic centimeter, hot pressing time and temperature of 12 minutes and 190 degrees Celsius with a pressure of 130 bar, cold pressing time of 6 minutes with a pressure of 50 bar and using the coupling agent N- (2- Aminoethyl)-3-aminopropyltrimethoxysilane was prepared in a constant amount of 2% of the dry weight of the filler. The results showed that, in general, by adding silk fibers to the base polymer, compared to the control samples (pure recycled polycarbonate polymer) and also by increasing the amount of silk fibers, almost all the resistances increased. The amount of water absorption of the constructed composite increased with the increase in the amount of silk fibers, and the thickness absorption was equal to 0% even after 72 hours of immersion in water. The thermal resistance of the pure recycled polymer was higher than the prepared composites, and by adding silk fibers to the base polymer and also by increasing the amount of silk fibers from 10 to 30%, the thermal resistance of the composites decreased.Keywords: wood composite, recycled polycarbonate, silk fibers, polymer
Procedia PDF Downloads 927544 Investigation of Magnetic Resonance Wireless Charger Efficiency for Mobile Device
Authors: SeungHee Ryu, Junil Moon
Abstract:
The magnetic resonance wireless power transfer system is widely researched due to its benefits such as spatial freedom. In this paper, power transmitting unit and power receiving unit of wireless battery charger for mobile devices is presented. Power transmitting unit efficiency is measured under different test conditions with power receiving units.Keywords: magnetic resonance coupling, wireless power transfer, power transfer efficiency.
Procedia PDF Downloads 5117543 Systematic Approach for Energy-Supply-Orientated Production Planning
Authors: F. Keller, G. Reinhart
Abstract:
The efficient and economic allocation of resources is one main goal in the field of production planning and control. Nowadays, a new variable gains in importance throughout the planning process: Energy. Energy-efficiency has already been widely discussed in literature, but with a strong focus on reducing the overall amount of energy used in production. This paper provides a brief systematic approach, how energy-supply-orientation can be used for an energy-cost-efficient production planning and thus combining the idea of energy-efficiency and energy-flexibility.Keywords: production planning, production control, energy-efficiency, energy-flexibility, energy-supply
Procedia PDF Downloads 6477542 Lateral Heterogeneity of 1/Q in Eastern and Southeastern Anatolia
Authors: Ufuk Aydın
Abstract:
The Coda attenuation and frequency dependency of seismic wave are strongly dependent on the effective stresses structures within the upper crust. In this study, the data of three different stations were used to examine the lateral variation of stress. The tectonic structures of these three areas have been examined comparatively using lateral coda tomography. In the study using the single scatter method, the window length selected to be 20 second. Coda values 80 with 94 and frequency dependency values obtained between 0.69 and 1.21. The 1/QC values for the three regions ranged from 0.0012 to 0.017, highlighting the regional differences in the seismotectonic activity of the crust. The lowest absorption values obtained from Erzurum station when the highest absorption values obtained at the Kemaliye station. The low Qc and high frequency dependency values obtained Kemaliye, which indicates that it has highest tectonic activity than other two regions. The seismo-dynamics data obtained from the study found to be in agreement with the tectonic structure of the region.Keywords: regional coda attenuation, tectonic stress, crustal deformation
Procedia PDF Downloads 1837541 Research on the Effect of the System of General Counsel on the Efficiency of M&As in State-Owned Enterprises
Authors: Mao Ju
Abstract:
The system of general counsel (GC) is an important governance structure designed for the construction of state-owned enterprises (SOEs) under the rule of law. This article is based on the setting of mergers and acquisitions (M&As) and takes the efficiency of M&As to examine the implementation effect of the system of GC for SOEs. Research has found that: (1) companies implementing the system of GC for SOEs have higher efficiency in M&As, manifested in better operational and market performance, and this effect depends on the professional ability and power of the GC. This indicates that the GC of SOEs has played a positive role in the decision-making process of M&As, which helps to improve the efficiency of M&As. (2) The impact of the GC of SOEs on the efficiency of M&As is heterogeneous, and this positive effect is mainly reflected in local and commercial SOEs. (3) The path of this impact is that the GC of SOEs can help reduce ineffective M&As in advance, enhance the ability to integrate M&As after the fact and reduce the risk of goodwill impairment and bankruptcy. This article reveals the impact of the construction of SOEs under the rule of law with the system of GC as the core of M&As activities, providing intuitive evidence for the implementation effect of the GC of SOEs. The research conclusion has important practical guiding value for comprehensively deepening the construction of the rule of SOEs under the rule of law and writing a good chapter on the Chinese path to modernization of SOEs.Keywords: the system of general counsel, merger and acquisition efficiency, state-owned enterprises, mergers and acquisitions
Procedia PDF Downloads 187540 Assessment of Yield and Water Use Efficiency of Soybean under Deficit Irrigation
Authors: Meysam Abedinpour
Abstract:
Water limitation is the main challenge for crop production in a semi-arid environment. Deficit irrigation is a strategy that allows a crop to sustain some degree of water deficit in order to reduce costs and potentially increase income. For this goal, a field experimental carried out at Asrieh fields of Gorgan city in the north of Iran, during summer season 2011. The treatments imposed were different irrigation water regimes (i.e. W1:70, W2:80, W3:90, and W4:100) percent of field capacity (FC). The results showed that there was Significant difference between the yield and (WUE) under different levels of irrigation, excepting of soil moisture content at field capacity (W4) and 90% of field capacity (W3) on yield and water use efficiency (WUE). The seasonal irrigation water applied were (i.e. 375, 338, 300, and 263 mm ha-1) under different irrigation water treatments (100, 90, 80, 80 and 70%) of FC, respectively. Grain yield productions under treatments were 4180, 3955, 3640, and 3355 (kg ha-1) respectively. Furthermore, the results showed that water use efficiency (WUE) at different treatments were 7.67, 7.79, 7.74, and 7.75 Kg mm ha-1 for (100, 90, 80, and 70) per cent of field capacity, therefore the 90 % of FC treatment (W3) is recommended for Soybean irrigation for water saving. Furthermore, the result showed that the treatment of 90 % of filed capacity (W3) seemed to be better adapted to product a high crop yield with acceptable yield coupling with water use efficiency in Golestan province.Keywords: deficit irrigation, water use efficiency, yield, soybean
Procedia PDF Downloads 4677539 Energy Efficiency Retrofitting of Residential Buildings Case Study: Multi-Family Apartment Building in Tripoli, Lebanon
Authors: Yathreb Sabsaby
Abstract:
Energy efficiency retrofitting of existing buildings was long ignored by public authorities who favored energy efficiency policies in new buildings, which are easier to implement. Indeed, retrofitting is more complex and difficult to organize because of the extreme diversity in existing buildings, administrative situations and occupation. Energy efficiency retrofitting of existing buildings has now become indispensable in all economies—even emerging countries—given the constraints imposed by energy security and climate change, and because it represents considerable potential energy savings. Addressing energy efficiency in the existing building stock has been acknowledged as one of the most critical yet challenging aspects of reducing our environmental footprint on the ecosystem. Tripoli, Lebanon chosen as case study area is a typical Mediterranean metropolis in the North Lebanon, where multifamily residential buildings are all around the city. This generally implies that the density of energy demand is extremely high, even the renewable energy facilities are involved, they can just play as a minor energy provider at the current technology level in the single family house. It seems only the low energy design for buildings can be made possible, not the zero energy certainly in developing country. This study reviews the latest research and experience and provides recommendations for deep energy retrofits that aim to save more than 50% of the energy used in a typical Tripoli apartment building.Keywords: energy-efficiency, existing building, multifamily residential building, retrofit
Procedia PDF Downloads 4557538 Energy Efficiency Analysis of Crossover Technologies in Industrial Applications
Authors: W. Schellong
Abstract:
Industry accounts for one-third of global final energy demand. Crossover technologies (e.g. motors, pumps, process heat, and air conditioning) play an important role in improving energy efficiency. These technologies are used in many applications independent of the production branch. Especially electrical power is used by drives, pumps, compressors, and lightning. The paper demonstrates the algorithm of the energy analysis by some selected case studies for typical industrial processes. The energy analysis represents an essential part of energy management systems (EMS). Generally, process control system (PCS) can support EMS. They provide information about the production process, and they organize the maintenance actions. Combining these tools into an integrated process allows the development of an energy critical equipment strategy. Thus, asset and energy management can use the same common data to improve the energy efficiency.Keywords: crossover technologies, data management, energy analysis, energy efficiency, process control
Procedia PDF Downloads 2107537 Influence of Channel Depth on the Performance of Wavy Fin Absorber Solar Air Heater
Authors: Abhishek Priyam, Prabha Chand
Abstract:
Channel depth is an important design parameter to be fixed in designing a solar air heater. In this paper, a mathematical model has been developed to study the influence of channel duct on the thermal performance of solar air heaters. The channel depth has been varied from 1.5 cm to 3.5 cm for the mass flow range 0.01 to 0.11 kg/s. Based on first law of thermodynamics, the channel depth of 1.5 cm shows better thermal performance for all the mass flow range. Also, better thermohydraulic performance has been found up to 0.05 kg/s, and beyond this, thermohydraulic efficiency starts decreasing. It has been seen that, with the increase in the mass flow rate, the difference between thermal and thermohydraulic efficiency increases because of the increase in pressure drop. At lower mass flow rate, 0.01 kg/s, the thermal and thermohydraulic efficiencies for respective channel depth remain the same.Keywords: channel depth, thermal efficiency, wavy fin, thermohydraulic efficiency
Procedia PDF Downloads 3727536 Numerical Response of Planar HPGe Detector for 241Am Contamination of Various Shapes
Authors: M. Manohari, Himanshu Gupta, S. Priyadharshini, R. Santhanam, S. Chandrasekaran, B. Venkatraman
Abstract:
Injection is one of the potential routes of intake in a radioactive facility. The internal dose due to this intake is monitored at the radiation emergency medical centre, IGCAR using a portable planar HPGe detector. The contaminated wound may be having different shapes. In a reprocessing potential of wound contamination with actinide is more. Efficiency is one of the input parameters for estimation of internal dose. Estimating these efficiencies experimentally would be tedious and cumbersome. Numerical estimation can be a supplement to experiment. As an initial step in this study 241Am contamination of different shapes are studied. In this study portable planar HPGe detector was modeled using Monte Carlo code FLUKA and the effect of different parameters like distance of the contamination from the detector, radius of the circular contamination were studied. Efficiency values for point and surface contamination located at different distances were estimated. The effect of efficiency on the radius of the surface source was more predominant when the source is at 1 cm distance compared to when the source to detector distance is 10 cm. At 1 cm the efficiency decreased quadratically as the radius increased and at 10 cm it decreased linearly. The point source efficiency varied exponentially with source to detector distance.Keywords: Planar HPGe, efficiency value, injection, surface source
Procedia PDF Downloads 427535 Fintech Credit and Bank Efficiency Two-way Relationship: A Comparison Study Across Country Groupings
Authors: Tan Swee Liang
Abstract:
This paper studies the two-way relationship between fintech credit and banking efficiency using the Generalized panel Method of Moment (GMM) estimation in structural equation modeling (SEM). Banking system efficiency, defined as its ability to produce the existing level of outputs with minimal inputs, is measured using input-oriented data envelopment analysis (DEA), where the whole banking system of an economy is treated as a single DMU. Banks are considered an intermediary between depositors and borrowers, utilizing inputs (deposits and overhead costs) to provide outputs (increase credits to the private sector and its earnings). Analysis of the interrelationship between fintech credit and bank efficiency is conducted to determine the impact in different country groupings (ASEAN, Asia and OECD), in particular the banking system response to fintech credit platforms. Our preliminary results show that banks do respond to the greater pressure caused by fintech platforms to enhance their efficiency, but differently across the different groups. The author’s earlier research on ASEAN-5 high bank overhead costs (as a share of total assets) as the determinant of economic growth suggests that expenses may not have been channeled efficiently to income-generating activities. One practical implication of the findings is that policymakers should enable alternative financing, such as fintech credit, as a warning or encouragement for banks to improve their efficiency.Keywords: fintech lending, banking efficiency, data envelopment analysis, structural equation modeling
Procedia PDF Downloads 917534 On the Efficiency of the Algerian FRR Sovereign Fund
Authors: Abdelkader Guendouz, Fatima Zohra Adel
Abstract:
Since about two decades, the Algerian government created a new instrument in the field of its fiscal policy, which is the FRR (Fonds de Régulation des Recettes). The FRR is a sovereign fund, which the initial role was saving the surplus generated by the fixation of a referential oil price to establish the state budget in the aim equilibrium between budgetary incomes and public expenditures. After a while, the government turns to use this instrument in boosting the public investment more than keeping for funding a deficit budget in periods of crisis. This lead to ask some justified questions about the efficiency of this sovereign fund and its real role.Keywords: FRR sovereign fund, public expenditures, public investment, efficiency
Procedia PDF Downloads 3377533 Rotational Energy Recovery System
Authors: Vijayendra Anil Menon, Ashwath Narayan Murali
Abstract:
The present day vehicles do not reuse the energy expelled in running the vehicle. The energy used to run the vehicle is expelled immediately.This has remained a constant for many decades. With all the vehicles running on non-renewable resources like fossil fuels, there is an urgent need to improve efficiency of the vehicles until a reliable replacement for fossil fuels is found.Our design is based on the concept of Kinetic energy recovery systems. Though our design lies in principle with the KERS, our design can be used in day-to-day driving. With our design, efficiency of vehicles increases and fuel conservation is possible thereby reducing the carbon footprint.Keywords: KERS, Battery, Wheels, Efficiency.
Procedia PDF Downloads 3937532 Effects of Crushed Waste Aggregate from the Manufacture of Clay Bricks on Rendering Cement Mortar Performance
Authors: Benmalek M. Larbi, R. Harbi, S. Boukor
Abstract:
This paper reports an experimental work that aimed to investigate the effects of clay brick waste, as part of fine aggregate, on rendering mortar performance. The brick, in crushed form, was from a local brick manufacturer that was rejected due to being of-standard. It was used to replace 33.33 %, 50 %, 66.66 % and 100 % by weight of the quarry sand in mortar. Effects of the brick replacement on the mortar key properties intended for wall plastering were investigated; these are workability, compressive strength, flexural strength, linear shrinkage, water absorption by total immersion and by capillary suction. The results showed that as the brick replacement level increased, the mortar workability reduced. The linear shrinkage increases over time and decreases with the introduction of brick waste. The compressive and flexural strengths decrease with the increase of brick waste because of their great water absorption.Keywords: clay brick waste, mortar, properties, quarry sand
Procedia PDF Downloads 2627531 Dy3+ Ions Doped Single and Mixed Alkali Fluoro Tungstunate Tellurite Glasses for Laser and White LED Applications
Authors: Allam Srinivasa Rao, Ch. Annapurna Devi, G. Vijaya Prakash
Abstract:
A new-fangled series of white light emitting 1 mol% of Dy3+ ions doped Single-Alklai and Mixed-Alkai fluoro tungstunate tellurite glasses have been prepared using melt quenching technique and their spectroscopic behaviour was investigated by studying XRD, optical absorption, photoluminescence and lifetime measurements. The bonding parameter studies reveal the ionic nature of the Dy-O bond in the present glasses. From the absorption spectra, the Judd–Ofelt (J-O) intensity parameters have been determined which are used to explore the nature of bonding and symmetry orientation of the Dy–ligand field environment. The evaluated J-O parameters (Ω_4>Ω_2>Ω_6) for all the glasses are following the same trend. The photoluminescence spectra of all the glasses exhibit two intensified peaks in blue and Yellow regions corresponding to the transitions 4F9/2→6H15/2 (483 nm) and 4F9/2→6H13/2 (575 nm) respectively. From the photoluminescence spectra, it is observed that the luminescence intensity is maximum for Dy3+ ion doped potassium combination of fluoro tungstunate tellurite glass (TeWK: 1Dy). The J-O intensity parameters have been used to determine the various radiative properties for the different emission transitions from the 4F9/2 fluorescent level. The highest emission cross-section and branching ratio values observed for the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions suggest the possible laser action in the visible region from these glasses. By using the experimental lifetimes (τ_exp) measured from the decay spectral features and radiative lifetimes (τ_R), the quantum efficiencies (η) for all the glasses have been evaluated. Among all the glasses, the potassium combined fluoro tungstunate tellurite (TeWK:1Dy) glass has the highest quantum efficiency (94.6%). The CIE colour chromaticity coordinates (x, y), (u, v), colour correlated temperature (CCT) and Y/B ratio were also estimated from the photoluminescence spectra for different compositions of glasses. The (x, y) and (u, v) chromaticity colour coordinates fall within the white light region and the white light can be tuned by varying the composition of the glass. From all these studies, we are suggesting that the 1 mol% of Dy3+ ions doped TeWK glass is more suitable for lasing and White-LED applications.Keywords: dysprosium, Judd-Ofelt parameters, photo luminescence, tellurite glasses
Procedia PDF Downloads 2247530 Encapsulation of Volatile Citronella Essential oil by Coacervation: Efficiency and Release Kinetic Study
Authors: Rafeqah Raslan, Mastura AbdManaf, Junaidah Jai, Istikamah Subuki, Ana Najwa Mustapa
Abstract:
The volatile citronella essential oil was encapsulated by simple coacervation and complex coacervation using gum Arabic and gelatin as wall material. Glutaraldehyde was used in the methodology as crosslinking agent. The citronella standard calibration graph was developed with R2 equal to 0.9523 for the accurate determination of encapsulation efficiency and release study. The release kinetic was analyzed based on Fick’s law of diffusion for polymeric system and linear graph of log fraction release over log time was constructed to determine the release rate constant, k and diffusion coefficient, n. Both coacervation methods in the present study produce encapsulation efficiency around 94%. The capsules morphology analysis supported the release kinetic mechanisms of produced capsules for both coacervation process.Keywords: simple coacervation, complex coacervation, encapsulation efficiency, release kinetic study
Procedia PDF Downloads 3167529 Increasing the Efficiency of the Biomass Gasification Technology with Using the Organic Rankin Cycle
Authors: Jaroslav Frantík, Jan Najser
Abstract:
This article deals with increasing the energy efficiency of a plant in terms of optimizing the process. The European Union is striving to achieve the climate-energy package in the area increasing of energy efficiency. The goal of energy efficiency is to reduce primary energy consumption by 20% within the EU until 2020. The objective of saving energy consumption in the Czech Republic was set at 47.84 PJ (13.29 TWh). For reducing electricity consumption, it is possible to choose: a) mandatory increasing of energy efficiency, b) alternative scheme, c) combination of both actions. The Czech Republic has chosen for reducing electricity consumption using-alternative scheme. The presentation is focused on the proposal of a technological unit dealing with the gasification process of processing of biomass with an increase of power in the output. The synthesis gas after gasification of biomass is used as fuel in a cogeneration process of reciprocating internal combustion engine with the classic production of heat and electricity. Subsequently, there is an explanation of the ORC system dealing with the conversion of waste heat to electricity with the using closed cycle of the steam process with organic medium. The arising electricity is distributed to the power grid as a further energy source, or it is used for needs of the partial coverage of the technological unit. Furthermore, there is a presented schematic description of the technology with the identification of energy flows starting from the biomass treatment by drying, through its conversion to gaseous fuel, producing of electricity and utilize of thermal energy with minimizing losses. It has been found that using of ORC system increased the efficiency of the produced electricity by 7.5%.Keywords: biomass, efficiency, gasification, ORC system
Procedia PDF Downloads 2177528 Green Building Practices: Harmonizing Non-Governmental Organizations Roles and Energy Efficiency
Authors: Abimbola A. Adebayo, Kikelomo I. Adebayo
Abstract:
Green buildings provide serious challenges for governments all over the world with regard to achieving energy efficiency in buildings. Energy efficient buildings are needed to keep up with minimal impacts on the environment throughout their cycle and to enhance sustainable development. The lack of awareness and benefits of energy efficient buildings have given rise to NGO’s playing important role in filling data gaps, publicizing information, and undertaking awareness raising and policy engagement activities. However, these roles are countered by concerns about subsidies for evaluations, incentives to facilitate data-sharing, and incentives to finance independent research. On the basis of literature review on experiences with NGO’s involvement in energy efficient buildings, this article identifies governance strategies that stimulate the harmonization of NGO’s roles in green buildings with the objective to increase energy efficiency in buildings.Keywords: energy efficiency, green buildings, NGOs, sustainable development
Procedia PDF Downloads 2397527 The Effect of Computerized Systems of Office Automation on Employees' Productivity Efficiency
Authors: Mohammad Hemmati, Mohammad Taban, Ali Yasini
Abstract:
One of the factors that can play an important role in increasing productivity is the optimal use of information technology, which in this area today has a significant role to play in computer systems of office automation in organizations and companies. Therefore, this research has been conducted with the aim of investigating the effect of the relationship between computerized systems of office automation and the productivity of employees in the municipality of Ilam city. The statistical population of this study was 110 people. Using Cochran formula, the minimum sample size is 78 people. The present research is a descriptive-looking research in terms of the type of objective view. A questionnaire was used to collect data. To assess the reliability of variables, Cornbrash’s alpha coefficient was used, which was equal to 0.85; SPSS19 and Pearson test were used to analyze the data and test the hypothesis of the research. In this research, three hypotheses of the relationship between office automation with efficiency, performance, and effectiveness were investigated. The results showed a direct and positive relationship between the office automation system and the increase in the efficiency, effectiveness, and efficiency of employees, and there was no reason to reject these hypotheses.Keywords: efficiency, performance, effectiveness, automation
Procedia PDF Downloads 2157526 The Effect of Partially Replacing Cement with Metakaolin on the Properties of Concrete
Authors: Gashaw Abebaw
Abstract:
Concrete usage in Ethiopia is expanding at a faster rate than before. Cement is the most important and costly ingredient in this respect. The construction industry is currently challenged by cement scarcity and stock market inflation. Scholars' trays, on the other hand, will use natural pozzolan material to substitute cement. Apart from that, Metakaolin has pozzolanic characteristics. According to the industrial mineral occurrence map, Ethiopia kaolin may be found in abundance. Some of them include Debretabor, so it is good to utilize Metakaolin as cement replacement material. In this study, the capability of Ethiopian Metakaolin as a partial substitute for cement in C-25 concrete production with 0%, 5%, 10%, 15%, and 20% replacement of PPC by MA with 0.49 percent water to cement ratio is investigated. The study examines; the chemical properties of MA, Physical properties of cement paste, workability, compressive strength, water absorption, density and sulfate attack of concrete was investigated. The chemical composition of Metakaolin was examined and the summation of SiO₂, AlO₃, and FeO₃ is 86.25% and the ash was classified class N pozzolan. The normal consistency percent of water increases as the MA replacement amount increase and both initial and final setting time rang increase as the MA replacement amount increase. On the 28th day, the compressive strength of concrete with MA replacement of 5%, 10%, and 15% exceeds the goal mean strength (33.5Mpa) with compressive strength enhancements of 2.23 %, 4.05 %, and 2.23 %, respectively. Similarly, on the 56th day, 5 %, 10%, and 15% replacement enhance concrete strength by 2.06 %, 3.06 %, and 1.2 %, respectively. The MA mixed concrete has improved significantly in terms of water absorption and sulphate attack, with a 15% replacement level. MA content Metakaolin could possibly replace cement up to 15%, according to the studies. The study's findings will help to offset cement price increases while also boosting house affordability without significantly degrading.Keywords: metakaolin, compressive strength, sulphate attack, water absorption, N pozzolan
Procedia PDF Downloads 1197525 Thermohydraulic Performance of Double Flow Solar Air Heater with Corrugated Absorber
Authors: S. P. Sharma, Som Nath Saha
Abstract:
This paper deals with the analytical investigation of thermal and thermohydraulic performance of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater has been presented, and a computer program in C++ language is developed to estimate the outlet temperature of air for the evaluation of thermal and thermohydraulic efficiency by solving the governing equations numerically using relevant correlations for heat transfer coefficients. The results obtained from the mathematical model is compared with the available experimental results and it is found to be reasonably good. The results show that the double flow solar air heaters have higher efficiency than conventional solar air heater, although the double flow corrugated absorber is superior to that of flat plate double flow solar air heater. It is also observed that the thermal efficiency increases with increase in mass flow rate; however, thermohydraulic efficiency increases with increase in mass flow rate up to a certain limit, attains the maximum value, then thereafter decreases sharply.Keywords: corrugated absorber, double flow, solar air heater, thermos-hydraulic efficiency
Procedia PDF Downloads 3147524 Classifying and Predicting Efficiencies Using Interval DEA Grid Setting
Authors: Yiannis G. Smirlis
Abstract:
The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models.Keywords: data envelopment analysis, interval DEA, efficiency classification, efficiency prediction
Procedia PDF Downloads 1647523 Evaluation of Water Efficiency in Farming: Empirical Evidence from a Semi-Arid Region
Authors: Laura Piedra-Munoz, Angeles Godoy-Duran, Emilio Galdeano-Gomez, Juan C. Perez-Mesa
Abstract:
Spain is very sensitive to water management issues due to its climatic characteristics and the deficit of this resource in many areas of its territory. This study examines the characteristics of the family farms that are more efficient in the use of water, focusing on a semi-arid area located in Almeria, southeast of Spain. In the case of irrigated agriculture, water usage efficiency usually indicates water productivity in terms of yield (kg/m³), or in economic terms (euros/m³). These two water usage indicators were considered to analyse water usage efficiency according to other studies on water efficiency in the horticultural area under analysis. This work also takes into account other water usage characteristics such as water supplied, innovative irrigation practices, water-efficient technology, and water-saving practices. The results show that the most water efficient farms have technical advisors and use irrigation on demand, that measures the water needs of the crops and are considered the most technological irrigation system. These farms are more technological and less labor intensive. They are also aware of water scarcity and the need to conserve the environment. This approach allow managers to identify the principal factors and best practices related to water efficiency in order to promote and implement them in inefficient farms and promote sustainability.Keywords: cluster analysis, family farms, Spain, sustainability, water-use efficiency
Procedia PDF Downloads 285