Search results for: X-ray Image detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5742

Search results for: X-ray Image detection

5292 Comparison of Central Light Reflex Width-to-Retinal Vessel Diameter Ratio between Glaucoma and Normal Eyes by Using Edge Detection Technique

Authors: P. Siriarchawatana, K. Leungchavaphongse, N. Covavisaruch, K. Rojananuangnit, P. Boondaeng, N. Panyayingyong

Abstract:

Glaucoma is a disease that causes visual loss in adults. Glaucoma causes damage to the optic nerve and its overall pathophysiology is still not fully understood. Vasculopathy may be one of the possible causes of nerve damage. Photographic imaging of retinal vessels by fundus camera during eye examination may complement clinical management. This paper presents an innovation for measuring central light reflex width-to-retinal vessel diameter ratio (CRR) from digital retinal photographs. Using our edge detection technique, CRRs from glaucoma and normal eyes were compared to examine differences and associations. CRRs were evaluated on fundus photographs of participants from Mettapracharak (Wat Raikhing) Hospital in Nakhon Pathom, Thailand. Fifty-five photographs from normal eyes and twenty-one photographs from glaucoma eyes were included. Participants with hypertension were excluded. In each photograph, CRRs from four retinal vessels, including arteries and veins in the inferotemporal and superotemporal regions, were quantified using edge detection technique. From our finding, mean CRRs of all four retinal arteries and veins were significantly higher in persons with glaucoma than in those without glaucoma (0.34 vs. 0.32, p < 0.05 for inferotemporal vein, 0.33 vs. 0.30, p < 0.01 for inferotemporal artery, 0.34 vs. 0.31, p < 0.01 for superotemporal vein, and 0.33 vs. 0.30, p < 0.05 for superotemporal artery). From these results, an increase in CRRs of retinal vessels, as quantitatively measured from fundus photographs, could be associated with glaucoma.

Keywords: glaucoma, retinal vessel, central light reflex, image processing, fundus photograph, edge detection

Procedia PDF Downloads 325
5291 City Image of Rio De Janeiro as the Host City of 2016 Olympic Games

Authors: Luciana Brandao Ferreira, Janaina de Moura Engracia Giraldi, Fabiana Gondim Mariutti, Marina Toledo de Arruda Lourencao

Abstract:

Developing countries, such as BRICS (Brazil, Russia, India, China and South Africa) are hosting sports mega-events to promote socio-economic development and image enhancement. Thus, this paper aims to verify the image of Rio de Janeiro, in Brazil, as the host city of 2016 Olympic Games, considering the main cognitive and affective image dimensions. The research design uses exploratory factorial analysis to find the most important factors highlighted in the city image dimensions. The data were collected by structured questionnaires with an international respondents sample (n=274) with high international travel experience. The results show that Rio’s image as a sport mega-event host city has two main factors in each dimension: Cognitive ('General Infrastructure'; 'Services and Attractions') and Affective ('Positive Feelings'; 'Negative Feelings'). The most important factor related to cognitive dimension was 'Services and Attractions' which is more related to tourism activities. In the affective dimension 'Positive Feelings' was the most important factor, which means a good result considering that is a city in an emerging country with many unmet social demands.

Keywords: Rio de Janeiro, 2016 olympic games, host city image, cognitive image dimension, affective image dimension

Procedia PDF Downloads 147
5290 The Effectiveness of the Repositioning Campaign of PKO BP Brand on the Basis of Questionnaire Research

Authors: Danuta Szwajca

Abstract:

Image is a very important intangible asset of a contemporary enterprise, especially, in case of a bank as a public trust institution. A positive, demanded image may effectively distinguish the bank among the competition and build the customer confidence and loyalty. PKO BP is the biggest and largest bank functioning on the Polish financial market. Within the years not a very nice image of the bank has been embedded in the customers’ minds as an old-fashioned, stagnant, resistant to changes institution, what result in the customer loss, and ageing. For this reason, in 2010, the bank launched a campaign of radical image change along with a strategy of branches modernization and improvement of the product offer. The objective of the article is to make an attempt of effectiveness assessment of the brand repositioning campaign that lasted three years. The foundations of the assessment are the results of the questionnaire research concerning the way of bank’s perception before and after the campaign.

Keywords: advertising campaign, brand repositioning, image of the bank, repositioning

Procedia PDF Downloads 423
5289 Improve Divers Tracking and Classification in Sonar Images Using Robust Diver Wake Detection Algorithm

Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy

Abstract:

Harbor protection systems are so important. The need for automatic protection systems has increased over the last years. Diver detection active sonar has great significance. It used to detect underwater threats such as divers and autonomous underwater vehicle. To automatically detect such threats the sonar image is processed by algorithms. These algorithms used to detect, track and classify of underwater objects. In this work, divers tracking and classification algorithm is improved be proposing a robust wake detection method. To detect objects the sonar images is normalized then segmented based on fixed threshold. Next, the centroids of the segments are found and clustered based on distance metric. Then to track the objects linear Kalman filter is applied. To reduce effect of noise and creation of false tracks, the Kalman tracker is fine tuned. The tuning is done based on our active sonar specifications. After the tracks are initialed and updated they are subjected to a filtering stage to eliminate the noisy and unstable tracks. Also to eliminate object with a speed out of the diver speed range such as buoys and fast boats. Afterwards the result tracks are subjected to a classification stage to deiced the type of the object been tracked. Here the classification stage is to deice wither if the tracked object is an open circuit diver or a close circuit diver. At the classification stage, a small area around the object is extracted and a novel wake detection method is applied. The morphological features of the object with his wake is extracted. We used support vector machine to find the best classifier. The sonar training images and the test images are collected by ARMELSAN Defense Technologies Company using the portable diver detection sonar ARAS-2023. After applying the algorithm to the test sonar data, we get fine and stable tracks of the divers. The total classification accuracy achieved with the diver type is 97%.

Keywords: harbor protection, diver detection, active sonar, wake detection, diver classification

Procedia PDF Downloads 238
5288 An Improved Image Steganography Technique Based on Least Significant Bit Insertion

Authors: Olaiya Folorunsho, Comfort Y. Daramola, Joel N. Ugwu, Lawrence B. Adewole, Olufisayo S. Ekundayo

Abstract:

In today world, there is a tremendous rise in the usage of internet due to the fact that almost all the communication and information sharing is done over the web. Conversely, there is a continuous growth of unauthorized access to confidential data. This has posed a challenge to information security expertise whose major goal is to curtail the menace. One of the approaches to secure the safety delivery of data/information to the rightful destination without any modification is steganography. Steganography is the art of hiding information inside an embedded information. This research paper aimed at designing a secured algorithm with the use of image steganographic technique that makes use of Least Significant Bit (LSB) algorithm for embedding the data into the bit map image (bmp) in order to enhance security and reliability. In the LSB approach, the basic idea is to replace the LSB of the pixels of the cover image with the Bits of the messages to be hidden without destroying the property of the cover image significantly. The system was implemented using C# programming language of Microsoft.NET framework. The performance evaluation of the proposed system was experimented by conducting a benchmarking test for analyzing the parameters like Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). The result showed that image steganography performed considerably in securing data hiding and information transmission over the networks.

Keywords: steganography, image steganography, least significant bits, bit map image

Procedia PDF Downloads 266
5287 A Comparative Assessment of Industrial Composites Using Thermography and Ultrasound

Authors: Mosab Alrashed, Wei Xu, Stephen Abineri, Yifan Zhao, Jörn Mehnen

Abstract:

Thermographic inspection is a relatively new technique for Non-Destructive Testing (NDT) which has been gathering increasing interest due to its relatively low cost hardware and extremely fast data acquisition properties. This technique is especially promising in the area of rapid automated damage detection and quantification. In collaboration with a major industry partner from the aerospace sector advanced thermography-based NDT software for impact damaged composites is introduced. The software is based on correlation analysis of time-temperature profiles in combination with an image enhancement process. The prototype software is aiming to a) better visualise the damages in a relatively easy-to-use way and b) automatically and quantitatively measure the properties of the degradation. Knowing that degradation properties play an important role in the identification of degradation types, tests and results on specimens which were artificially damaged have been performed and analyzed.

Keywords: NDT, correlation analysis, image processing, damage, inspection

Procedia PDF Downloads 547
5286 Thermal Image Segmentation Method for Stratification of Freezing Temperatures

Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

The study uses an image analysis technique employing thermal imaging to measure the percentage of areas with various temperatures on a freezing surface. An image segmentation method using threshold values is applied to a sequence of image recording the freezing process. The phenomenon is transient and temperatures vary fast to reach the freezing point and complete the freezing process. Freezing salt water is subjected to the salt rejection that makes the freezing point dynamic and dependent on the salinity at the phase interface. For a specific area of freezing, nucleation starts from one side and end to another side, which causes a dynamic and transient temperature in that area. Thermal cameras are able to reveal a difference in temperature due to their sensitivity to infrared radiance. Using Experimental setup, a video is recorded by a thermal camera to monitor radiance and temperatures during the freezing process. Image processing techniques are applied to all frames to detect and classify temperatures on the surface. Image processing segmentation method is used to find contours with same temperatures on the icing surface. Each segment is obtained using the temperature range appeared in the image and correspond pixel values in the image. Using the contours extracted from image and camera parameters, stratified areas with different temperatures are calculated. To observe temperature contours on the icing surface using the thermal camera, the salt water sample is dropped on a cold surface with the temperature of -20°C. A thermal video is recorded for 2 minutes to observe the temperature field. Examining the results obtained by the method and the experimental observations verifies the accuracy and applicability of the method.

Keywords: ice contour boundary, image processing, image segmentation, salt ice, thermal image

Procedia PDF Downloads 320
5285 DCDNet: Lightweight Document Corner Detection Network Based on Attention Mechanism

Authors: Kun Xu, Yuan Xu, Jia Qiao

Abstract:

The document detection plays an important role in optical character recognition and text analysis. Because the traditional detection methods have weak generalization ability, and deep neural network has complex structure and large number of parameters, which cannot be well applied in mobile devices, this paper proposes a lightweight Document Corner Detection Network (DCDNet). DCDNet is a two-stage architecture. The first stage with Encoder-Decoder structure adopts depthwise separable convolution to greatly reduce the network parameters. After introducing the Feature Attention Union (FAU) module, the second stage enhances the feature information of spatial and channel dim and adaptively adjusts the size of receptive field to enhance the feature expression ability of the model. Aiming at solving the problem of the large difference in the number of pixel distribution between corner and non-corner, Weighted Binary Cross Entropy Loss (WBCE Loss) is proposed to define corner detection problem as a classification problem to make the training process more efficient. In order to make up for the lack of Dataset of document corner detection, a Dataset containing 6620 images named Document Corner Detection Dataset (DCDD) is made. Experimental results show that the proposed method can obtain fast, stable and accurate detection results on DCDD.

Keywords: document detection, corner detection, attention mechanism, lightweight

Procedia PDF Downloads 354
5284 TMIF: Transformer-Based Multi-Modal Interactive Fusion for Rumor Detection

Authors: Jiandong Lv, Xingang Wang, Cuiling Shao

Abstract:

The rapid development of social media platforms has made it one of the important news sources. While it provides people with convenient real-time communication channels, fake news and rumors are also spread rapidly through social media platforms, misleading the public and even causing bad social impact in view of the slow speed and poor consistency of artificial rumor detection. We propose an end-to-end rumor detection model-TIMF, which captures the dependencies between multimodal data based on the interactive attention mechanism, uses a transformer for cross-modal feature sequence mapping and combines hybrid fusion strategies to obtain decision results. This paper verifies two multi-modal rumor detection datasets and proves the superior performance and early detection performance of the proposed model.

Keywords: hybrid fusion, multimodal fusion, rumor detection, social media, transformer

Procedia PDF Downloads 244
5283 The Study of Suan Sunandha Rajabhat University’s Image among People in Bangkok

Authors: Sawitree Suvanno

Abstract:

The objective of this study is to investigate the Suan Sunandha Rajabhat University (SSRU) image among people in Bangkok. This study was conducted in the quantitative research and the questionnaires were used to collect data from 360 people of a sample group. Descriptive and inferential statistics were used in data analysis. The result showed that the SSRU’s image among people in Bangkok is in the “rather true” level of questionnaire scale in all aspects measured. The aspect that gains the utmost average is that the university is considered as royal-oriented and conservative; 2) the instructional supplies, buildings and venue promoting Thai art and tradition; 3) the moral and honest university administration; 4) the curriculum and the skillful students as well as graduates. Additional, people in Bangkok with different profession have the different view to the SSRU’s image at the significant level 0.05; there is no significant difference in gender, age and income.

Keywords: Bangkok, demographics, image, Suan Sunandha Rajabhpat University

Procedia PDF Downloads 247
5282 Treatment of Interferograms Image of Perturbation Processes in Metallic Samples by Optical Method

Authors: Daira Radouane, Naim Boudmagh, Hamada Adel

Abstract:

The but of this handling is to use the technique of the shearing with a mechanism lapping machine of image: a prism of Wollaston. We want to characterize this prism in order to be able to employ it later on in an analysis by shearing. A prism of Wollaston is a prism produced in a birefringent material i.e. having two indexes of refraction. This prism is cleaved so as to present the directions associated with these indices in its face with entry. It should be noted that these directions are perpendicular between them.

Keywords: non destructive control, aluminium, interferometry, treatment of image

Procedia PDF Downloads 331
5281 Artificial Intelligence Based Abnormality Detection System and Real Valuᵀᴹ Product Design

Authors: Junbeom Lee, Jaehyuck Cho, Wookyeong Jeong, Jonghan Won, Jungmin Hwang, Youngseok Song, Taikyeong Jeong

Abstract:

This paper investigates and analyzes meta-learning technologies that use multiple-cameras to monitor and check abnormal behavior in people in real-time in the area of healthcare fields. Advances in artificial intelligence and computer vision technologies have confirmed that cameras can be useful for individual health monitoring and abnormal behavior detection. Through this, it is possible to establish a system that can respond early by automatically detecting abnormal behavior of the elderly, such as patients and the elderly. In this paper, we use a technique called meta-learning to analyze image data collected from cameras and develop a commercial product to determine abnormal behavior. Meta-learning applies machine learning algorithms to help systems learn and adapt quickly to new real data. Through this, the accuracy and reliability of the abnormal behavior discrimination system can be improved. In addition, this study proposes a meta-learning-based abnormal behavior detection system that includes steps such as data collection and preprocessing, feature extraction and selection, and classification model development. Various healthcare scenarios and experiments analyze the performance of the proposed system and demonstrate excellence compared to other existing methods. Through this study, we present the possibility that camera-based meta-learning technology can be useful for monitoring and testing abnormal behavior in the healthcare area.

Keywords: artificial intelligence, abnormal behavior, early detection, health monitoring

Procedia PDF Downloads 86
5280 The Effect of the Acquisition and Reconstruction Parameters in Quality of Spect Tomographic Images with Attenuation and Scatter Correction

Authors: N. Boutaghane, F. Z. Tounsi

Abstract:

Many physical and technological factors degrade the SPECT images, both qualitatively and quantitatively. For this, it is not always put into leading technological advances to improve the performance of tomographic gamma camera in terms of detection, collimation, reconstruction and correction of tomographic images methods. We have to master firstly the choice of various acquisition and reconstruction parameters, accessible to clinical cases and using the attenuation and scatter correction methods to always optimize quality image and minimized to the maximum dose received by the patient. In this work, an evaluation of qualitative and quantitative tomographic images is performed based on the acquisition parameters (counts per projection) and reconstruction parameters (filter type, associated cutoff frequency). In addition, methods for correcting physical effects such as attenuation and scatter degrading the image quality and preventing precise quantitative of the reconstructed slices are also presented. Two approaches of attenuation and scatter correction are implemented: the attenuation correction by CHANG method with a filtered back projection reconstruction algorithm and scatter correction by the subtraction JASZCZAK method. Our results are considered as such recommandation, which permits to determine the origin of the different artifacts observed both in quality control tests and in clinical images.

Keywords: attenuation, scatter, reconstruction filter, image quality, acquisition and reconstruction parameters, SPECT

Procedia PDF Downloads 453
5279 Image Retrieval Based on Multi-Feature Fusion for Heterogeneous Image Databases

Authors: N. W. U. D. Chathurani, Shlomo Geva, Vinod Chandran, Proboda Rajapaksha

Abstract:

Selecting an appropriate image representation is the most important factor in implementing an effective Content-Based Image Retrieval (CBIR) system. This paper presents a multi-feature fusion approach for efficient CBIR, based on the distance distribution of features and relative feature weights at the time of query processing. It is a simple yet effective approach, which is free from the effect of features' dimensions, ranges, internal feature normalization and the distance measure. This approach can easily be adopted in any feature combination to improve retrieval quality. The proposed approach is empirically evaluated using two benchmark datasets for image classification (a subset of the Corel dataset and Oliva and Torralba) and compared with existing approaches. The performance of the proposed approach is confirmed with the significantly improved performance in comparison with the independently evaluated baseline of the previously proposed feature fusion approaches.

Keywords: feature fusion, image retrieval, membership function, normalization

Procedia PDF Downloads 345
5278 Exploring the Impact of Dual Brand Image on Continuous Smartphone Usage Intention

Authors: Chiao-Chen Chang, Yang-Chieh Chin

Abstract:

The mobile phone has no longer confined to communication, from the aspect of smartphones, consumers are only willing to pay for the product which the added value has corresponded with their appetites, such as multiple application, upgrade of the camera, and the appearance of the phone and so on. Moreover, as the maturity stage of smartphone industry today, the strategy which manufactures used to gain competitive advantages through hardware as well as software differentiation, is no longer valid. Thus, this research aims to initiate from brand image, to examine exactly whether consumers’ buying intention focus on smartphone brand or operating system, at the same time, perceived value and customer satisfaction will be added between brand image and continuous usage intention to investigate the impact of these two facets toward continuous usage intention. This study verifies the correlation, fitness, and relationship between the variables that lies within the conceptual framework. The result of using structural equation modeling shows that brand image has a positive impact on continuous usage intention. Firms can affect consumer perceived value and customer satisfaction through the creation of the brand image. It also shows that the brand image of smartphone and brand image of the operating system have a positive impact on customer perceived value and customer satisfaction. Furthermore, perceived value also has a positive impact on satisfaction, and so is the relation within satisfaction and perceived value to the continuous usage intention. Last but not least, the brand image of the smartphone has a more remarkable impact on customers than the brand image of the operating system. In addition, this study extends the results to management practice and suggests manufactures to provide fine product design and hardware.

Keywords: smartphone, brand image, perceived value, continuous usage intention

Procedia PDF Downloads 197
5277 Intelligent Grading System of Apple Using Neural Network Arbitration

Authors: Ebenezer Obaloluwa Olaniyi

Abstract:

In this paper, an intelligent system has been designed to grade apple based on either its defective or healthy for production in food processing. This paper is segmented into two different phase. In the first phase, the image processing techniques were employed to extract the necessary features required in the apple. These techniques include grayscale conversion, segmentation where a threshold value is chosen to separate the foreground of the images from the background. Then edge detection was also employed to bring out the features in the images. These extracted features were then fed into the neural network in the second phase of the paper. The second phase is a classification phase where neural network employed to classify the defective apple from the healthy apple. In this phase, the network was trained with back propagation and tested with feed forward network. The recognition rate obtained from our system shows that our system is more accurate and faster as compared with previous work.

Keywords: image processing, neural network, apple, intelligent system

Procedia PDF Downloads 398
5276 The Influence of Noise on Aerial Image Semantic Segmentation

Authors: Pengchao Wei, Xiangzhong Fang

Abstract:

Noise is ubiquitous in this world. Denoising is an essential technology, especially in image semantic segmentation, where noises are generally categorized into two main types i.e. feature noise and label noise. The main focus of this paper is aiming at modeling label noise, investigating the behaviors of different types of label noise on image semantic segmentation tasks using K-Nearest-Neighbor and Convolutional Neural Network classifier. The performance without label noise and with is evaluated and illustrated in this paper. In addition to that, the influence of feature noise on the image semantic segmentation task is researched as well and a feature noise reduction method is applied to mitigate its influence in the learning procedure.

Keywords: convolutional neural network, denoising, feature noise, image semantic segmentation, k-nearest-neighbor, label noise

Procedia PDF Downloads 220
5275 Filtering and Reconstruction System for Grey-Level Forensic Images

Authors: Ahd Aljarf, Saad Amin

Abstract:

Images are important source of information used as evidence during any investigation process. Their clarity and accuracy is essential and of the utmost importance for any investigation. Images are vulnerable to losing blocks and having noise added to them either after alteration or when the image was taken initially, therefore, having a high performance image processing system and it is implementation is very important in a forensic point of view. This paper focuses on improving the quality of the forensic images. For different reasons packets that store data can be affected, harmed or even lost because of noise. For example, sending the image through a wireless channel can cause loss of bits. These types of errors might give difficulties generally for the visual display quality of the forensic images. Two of the images problems: noise and losing blocks are covered. However, information which gets transmitted through any way of communication may suffer alteration from its original state or even lose important data due to the channel noise. Therefore, a developed system is introduced to improve the quality and clarity of the forensic images.

Keywords: image filtering, image reconstruction, image processing, forensic images

Procedia PDF Downloads 365
5274 Comparison of Vessel Detection in Standard vs Ultra-WideField Retinal Images

Authors: Maher un Nisa, Ahsan Khawaja

Abstract:

Retinal imaging with Ultra-WideField (UWF) view technology has opened up new avenues in the field of retinal pathology detection. Recent developments in retinal imaging such as Optos California Imaging Device helps in acquiring high resolution images of the retina to help the Ophthalmologists in diagnosing and analyzing eye related pathologies more accurately. This paper investigates the acquired retinal details by comparing vessel detection in standard 450 color fundus images with the state of the art 2000 UWF retinal images.

Keywords: color fundus, retinal images, ultra-widefield, vessel detection

Procedia PDF Downloads 448
5273 VDGMSISS: A Verifiable and Detectable Multi-Secret Images Sharing Scheme with General Access Structure

Authors: Justie Su-Tzu Juan, Ming-Jheng Li, Ching-Fen Lee, Ruei-Yu Wu

Abstract:

A secret image sharing scheme is a way to protect images. The main idea is dispersing the secret image into numerous shadow images. A secret image sharing scheme can withstand the impersonal attack and achieve the highly practical property of multiuse  is more practical. Therefore, this paper proposes a verifiable and detectable secret image-sharing scheme called VDGMSISS to solve the impersonal attack and to achieve some properties such as encrypting multi-secret images at one time and multi-use. Moreover, our scheme can also be used for any genera access structure.

Keywords: multi-secret image sharing scheme, verifiable, de-tectable, general access structure

Procedia PDF Downloads 126
5272 Interactive Image Search for Mobile Devices

Authors: Komal V. Aher, Sanjay B. Waykar

Abstract:

Nowadays every individual having mobile device with them. In both computer vision and information retrieval Image search is currently hot topic with many applications. The proposed intelligent image search system is fully utilizing multimodal and multi-touch functionalities of smart phones which allows search with Image, Voice, and Text on mobile phones. The system will be more useful for users who already have pictures in their minds but have no proper descriptions or names to address them. The paper gives system with ability to form composite visual query to express user’s intention more clearly which helps to give more precise or appropriate results to user. The proposed algorithm will considerably get better in different aspects. System also uses Context based Image retrieval scheme to give significant outcomes. So system is able to achieve gain in terms of search performance, accuracy and user satisfaction.

Keywords: color space, histogram, mobile device, mobile visual search, multimodal search

Procedia PDF Downloads 367
5271 Application of Unmanned Aerial Vehicle in Urban Rail Transit Intelligent Inspection

Authors: Xinglu Nie, Feifei Tang, Chuntao Wei, Zhimin Ruan, Qianhong Zhu

Abstract:

Current method of manual-style inspection can not fully meet the requirement of the urban rail transit security in China. In this paper, an intelligent inspection method using unmanned aerial vehicle (UAV) is utilized. A series of orthophoto of rail transit monitored area was collected by UAV, image correction and registration were operated among multi-phase images, then the change detection was used to detect the changes, judging the engineering activities and human activities that may become potential threats to the security of urban rail. Not only qualitative judgment, but also quantitative judgment of changes in the security control area can be provided by this method, which improves the objectives and efficiency of the patrol results. The No.6 line of Chongqing Municipality was taken as an example to verify the validation of this method.

Keywords: rail transit, control of protected areas, intelligent inspection, UAV, change detection

Procedia PDF Downloads 369
5270 Algorithm for Improved Tree Counting and Detection through Adaptive Machine Learning Approach with the Integration of Watershed Transformation and Local Maxima Analysis

Authors: Jigg Pelayo, Ricardo Villar

Abstract:

The Philippines is long considered as a valuable producer of high value crops globally. The country’s employment and economy have been dependent on agriculture, thus increasing its demand for the efficient agricultural mechanism. Remote sensing and geographic information technology have proven to effectively provide applications for precision agriculture through image-processing technique considering the development of the aerial scanning technology in the country. Accurate information concerning the spatial correlation within the field is very important for precision farming of high value crops, especially. The availability of height information and high spatial resolution images obtained from aerial scanning together with the development of new image analysis methods are offering relevant influence to precision agriculture techniques and applications. In this study, an algorithm was developed and implemented to detect and count high value crops simultaneously through adaptive scaling of support vector machine (SVM) algorithm subjected to object-oriented approach combining watershed transformation and local maxima filter in enhancing tree counting and detection. The methodology is compared to cutting-edge template matching algorithm procedures to demonstrate its effectiveness on a demanding tree is counting recognition and delineation problem. Since common data and image processing techniques are utilized, thus can be easily implemented in production processes to cover large agricultural areas. The algorithm is tested on high value crops like Palm, Mango and Coconut located in Misamis Oriental, Philippines - showing a good performance in particular for young adult and adult trees, significantly 90% above. The s inventories or database updating, allowing for the reduction of field work and manual interpretation tasks.

Keywords: high value crop, LiDAR, OBIA, precision agriculture

Procedia PDF Downloads 401
5269 HLB Disease Detection in Omani Lime Trees using Hyperspectral Imaging Based Techniques

Authors: Jacintha Menezes, Ramalingam Dharmalingam, Palaiahnakote Shivakumara

Abstract:

In the recent years, Omani acid lime cultivation and production has been affected by Citrus greening or Huanglongbing (HLB) disease. HLB disease is one of the most destructive diseases for citrus, with no remedies or countermeasures to stop the disease. Currently used Polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) HLB detection tests require lengthy and labor-intensive laboratory procedures. Furthermore, the equipment and staff needed to carry out the laboratory procedures are frequently specialized hence making them a less optimal solution for the detection of the disease. The current research uses hyperspectral imaging technology for automatic detection of citrus trees with HLB disease. Omani citrus tree leaf images were captured through portable Specim IQ hyperspectral camera. The research considered healthy, nutrition deficient, and HLB infected leaf samples based on the Polymerase chain reaction (PCR) test. The highresolution image samples were sliced to into sub cubes. The sub cubes were further processed to obtain RGB images with spatial features. Similarly, RGB spectral slices were obtained through a moving window on the wavelength. The resized spectral-Spatial RGB images were given to Convolution Neural Networks for deep features extraction. The current research was able to classify a given sample to the appropriate class with 92.86% accuracy indicating the effectiveness of the proposed techniques. The significant bands with a difference in three types of leaves are found to be 560nm, 678nm, 726 nm and 750nm.

Keywords: huanglongbing (HLB), hyperspectral imaging (HSI), · omani citrus, CNN

Procedia PDF Downloads 79
5268 An Online 3D Modeling Method Based on a Lossless Compression Algorithm

Authors: Jiankang Wang, Hongyang Yu

Abstract:

This paper proposes a portable online 3D modeling method. The method first utilizes a depth camera to collect data and compresses the depth data using a frame-by-frame lossless data compression method. The color image is encoded using the H.264 encoding format. After the cloud obtains the color image and depth image, a 3D modeling method based on bundlefusion is used to complete the 3D modeling. The results of this study indicate that this method has the characteristics of portability, online, and high efficiency and has a wide range of application prospects.

Keywords: 3D reconstruction, bundlefusion, lossless compression, depth image

Procedia PDF Downloads 82
5267 Deep Learning-Based Classification of 3D CT Scans with Real Clinical Data; Impact of Image format

Authors: Maryam Fallahpoor, Biswajeet Pradhan

Abstract:

Background: Artificial intelligence (AI) serves as a valuable tool in mitigating the scarcity of human resources required for the evaluation and categorization of vast quantities of medical imaging data. When AI operates with optimal precision, it minimizes the demand for human interpretations and, thereby, reduces the burden on radiologists. Among various AI approaches, deep learning (DL) stands out as it obviates the need for feature extraction, a process that can impede classification, especially with intricate datasets. The advent of DL models has ushered in a new era in medical imaging, particularly in the context of COVID-19 detection. Traditional 2D imaging techniques exhibit limitations when applied to volumetric data, such as Computed Tomography (CT) scans. Medical images predominantly exist in one of two formats: neuroimaging informatics technology initiative (NIfTI) and digital imaging and communications in medicine (DICOM). Purpose: This study aims to employ DL for the classification of COVID-19-infected pulmonary patients and normal cases based on 3D CT scans while investigating the impact of image format. Material and Methods: The dataset used for model training and testing consisted of 1245 patients from IranMehr Hospital. All scans shared a matrix size of 512 × 512, although they exhibited varying slice numbers. Consequently, after loading the DICOM CT scans, image resampling and interpolation were performed to standardize the slice count. All images underwent cropping and resampling, resulting in uniform dimensions of 128 × 128 × 60. Resolution uniformity was achieved through resampling to 1 mm × 1 mm × 1 mm, and image intensities were confined to the range of (−1000, 400) Hounsfield units (HU). For classification purposes, positive pulmonary COVID-19 involvement was designated as 1, while normal images were assigned a value of 0. Subsequently, a U-net-based lung segmentation module was applied to obtain 3D segmented lung regions. The pre-processing stage included normalization, zero-centering, and shuffling. Four distinct 3D CNN models (ResNet152, ResNet50, DensNet169, and DensNet201) were employed in this study. Results: The findings revealed that the segmentation technique yielded superior results for DICOM images, which could be attributed to the potential loss of information during the conversion of original DICOM images to NIFTI format. Notably, ResNet152 and ResNet50 exhibited the highest accuracy at 90.0%, and the same models achieved the best F1 score at 87%. ResNet152 also secured the highest Area under the Curve (AUC) at 0.932. Regarding sensitivity and specificity, DensNet201 achieved the highest values at 93% and 96%, respectively. Conclusion: This study underscores the capacity of deep learning to classify COVID-19 pulmonary involvement using real 3D hospital data. The results underscore the significance of employing DICOM format 3D CT images alongside appropriate pre-processing techniques when training DL models for COVID-19 detection. This approach enhances the accuracy and reliability of diagnostic systems for COVID-19 detection.

Keywords: deep learning, COVID-19 detection, NIFTI format, DICOM format

Procedia PDF Downloads 88
5266 Retina Registration for Biometrics Based on Characterization of Retinal Feature Points

Authors: Nougrara Zineb

Abstract:

The unique structure of the blood vessels in the retina has been used for biometric identification. The retina blood vessel pattern is a unique pattern in each individual and it is almost impossible to forge that pattern in a false individual. The retina biometrics’ advantages include high distinctiveness, universality, and stability overtime of the blood vessel pattern. Once the creases have been extracted from the images, a registration stage is necessary, since the position of the retinal vessel structure could change between acquisitions due to the movements of the eye. Image registration consists of following steps: Feature detection, feature matching, transform model estimation and image resembling and transformation. In this paper, we present an algorithm of registration; it is based on the characterization of retinal feature points. For experiments, retinal images from the DRIVE database have been tested. The proposed methodology achieves good results for registration in general.

Keywords: fovea, optic disc, registration, retinal images

Procedia PDF Downloads 266
5265 Detection of Clipped Fragments in Speech Signals

Authors: Sergei Aleinik, Yuri Matveev

Abstract:

In this paper a novel method for the detection of clipping in speech signals is described. It is shown that the new method has better performance than known clipping detection methods, is easy to implement, and is robust to changes in signal amplitude, size of data, etc. Statistical simulation results are presented.

Keywords: clipping, clipped signal, speech signal processing, digital signal processing

Procedia PDF Downloads 392
5264 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation

Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez

Abstract:

Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.

Keywords: network intrusion detection, machine learning, artificial neural network, anomaly detection module

Procedia PDF Downloads 341
5263 Automatic Change Detection for High-Resolution Satellite Images of Urban and Suburban Areas

Authors: Antigoni Panagiotopoulou, Lemonia Ragia

Abstract:

High-resolution satellite images can provide detailed information about change detection on the earth. In the present work, QuickBird images of spatial resolution 60 cm/pixel and WorldView images of resolution 30 cm/pixel are utilized to perform automatic change detection in urban and suburban areas of Crete, Greece. There is a relative time difference of 13 years among the satellite images. Multiindex scene representation is applied on the images to classify the scene into buildings, vegetation, water and ground. Then, automatic change detection is made possible by pixel-per-pixel comparison of the classified multi-temporal images. The vegetation index and the water index which have been developed in this study prove effective. Furthermore, the proposed change detection approach not only indicates whether changes have taken place or not but also provides specific information relative to the types of changes. Experimentations with other different scenes in the future could help optimize the proposed spectral indices as well as the entire change detection methodology.

Keywords: change detection, multiindex scene representation, spectral index, QuickBird, WorldView

Procedia PDF Downloads 136