Search results for: Oman Vision 2040
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1262

Search results for: Oman Vision 2040

812 Hand Gesture Recognition Interface Based on IR Camera

Authors: Yang-Keun Ahn, Kwang-Soon Choi, Young-Choong Park, Kwang-Mo Jung

Abstract:

Vision based user interfaces to control TVs and PCs have the advantage of being able to perform natural control without being limited to a specific device. Accordingly, various studies on hand gesture recognition using RGB cameras or depth cameras have been conducted. However, such cameras have the disadvantage of lacking in accuracy or the construction cost being large. The proposed method uses a low cost IR camera to accurately differentiate between the hand and the background. Also, complicated learning and template matching methodologies are not used, and the correlation between the fingertips extracted through curvatures is utilized to recognize Click and Move gestures.

Keywords: recognition, hand gestures, infrared camera, RGB cameras

Procedia PDF Downloads 406
811 Roboweeder: A Robotic Weeds Killer Using Electromagnetic Waves

Authors: Yahoel Van Essen, Gordon Ho, Brett Russell, Hans-Georg Worms, Xiao Lin Long, Edward David Cooper, Avner Bachar

Abstract:

Weeds reduce farm and forest productivity, invade crops, smother pastures and some can harm livestock. Farmers need to spend a significant amount of money to control weeds by means of biological, chemical, cultural, and physical methods. To solve the global agricultural labor shortage and remove poisonous chemicals, a fully autonomous, eco-friendly, and sustainable weeding technology is developed. This takes the form of a weeding robot, ‘Roboweeder’. Roboweeder includes a four-wheel-drive self-driving vehicle, a 4-DOF robotic arm which is mounted on top of the vehicle, an electromagnetic wave generator (magnetron) which is mounted on the “wrist” of the robotic arm, 48V battery packs, and a control/communication system. Cameras are mounted on the front and two sides of the vehicle. Using image processing and recognition, distinguish types of weeds are detected before being eliminated. The electromagnetic wave technology is applied to heat the individual weeds and clusters dielectrically causing them to wilt and die. The 4-DOF robotic arm was modeled mathematically based on its structure/mechanics, each joint’s load, brushless DC motor and worm gear’ characteristics, forward kinematics, and inverse kinematics. The Proportional-Integral-Differential control algorithm is used to control the robotic arm’s motion to ensure the waveguide aperture pointing to the detected weeds. GPS and machine vision are used to traverse the farm and avoid obstacles without the need of supervision. A Roboweeder prototype has been built. Multiple test trials show that Roboweeder is able to detect, point, and kill the pre-defined weeds successfully although further improvements are needed, such as reducing the “weeds killing” time and developing a new waveguide with a smaller waveguide aperture to avoid killing crops surrounded. This technology changes the tedious, time consuming and expensive weeding processes, and allows farmers to grow more, go organic, and eliminate operational headaches. A patent of this technology is pending.

Keywords: autonomous navigation, machine vision, precision heating, sustainable and eco-friendly

Procedia PDF Downloads 252
810 Enhanced CNN for Rice Leaf Disease Classification in Mobile Applications

Authors: Kayne Uriel K. Rodrigo, Jerriane Hillary Heart S. Marcial, Samuel C. Brillo

Abstract:

Rice leaf diseases significantly impact yield production in rice-dependent countries, affecting their agricultural sectors. As part of precision agriculture, early and accurate detection of these diseases is crucial for effective mitigation practices and minimizing crop losses. Hence, this study proposes an enhancement to the Convolutional Neural Network (CNN), a widely-used method for Rice Leaf Disease Image Classification, by incorporating MobileViTV2—a recently advanced architecture that combines CNN and Vision Transformer models while maintaining fewer parameters, making it suitable for broader deployment on edge devices. Our methodology utilizes a publicly available rice disease image dataset from Kaggle, which was validated by a university structural biologist following the guidelines provided by the Philippine Rice Institute (PhilRice). Modifications to the dataset include renaming certain disease categories and augmenting the rice leaf image data through rotation, scaling, and flipping. The enhanced dataset was then used to train the MobileViTV2 model using the Timm library. The results of our approach are as follows: the model achieved notable performance, with 98% accuracy in both training and validation, 6% training and validation loss, and a Receiver Operating Characteristic (ROC) curve ranging from 95% to 100% for each label. Additionally, the F1 score was 97%. These metrics demonstrate a significant improvement compared to a conventional CNN-based approach, which, in a previous 2022 study, achieved only 78% accuracy after using 5 convolutional layers and 2 dense layers. Thus, it can be concluded that MobileViTV2, with its fewer parameters, outperforms traditional CNN models, particularly when applied to Rice Leaf Disease Image Identification. For future work, we recommend extending this model to include datasets validated by international rice experts and broadening the scope to accommodate biotic factors such as rice pest classification, as well as abiotic stressors such as climate, soil quality, and geographic information, which could improve the accuracy of disease prediction.

Keywords: convolutional neural network, MobileViTV2, rice leaf disease, precision agriculture, image classification, vision transformer

Procedia PDF Downloads 25
809 Spirituality and Coping with Breast Cancer among Omani Women

Authors: Huda Al-Awisi, Mohammed Al-Azri, Samira Al-Rasbi, Mansour Al-Moundhri

Abstract:

Cancer diagnosis is invariably a profound and catastrophic life-changing experience for individuals and their families. It has been found that cancer patients and survivors are distressed with the fragility of their life and their mortality. Based on the literature, cancer patients /survivors value their spiritual experience and connecting with unknown power either related to religious belief or not as an important coping mechanism. Health care professionals including nurses are expected to provide spiritual care for cancer patients as holistic care. Yet, nurses face many challenges in providing such care mainly due to lack of clear definition of spirituality. This study aims to explore coping mechanisms of Omani women diagnosed with breast cancer throughout their cancer journey including spirituality using a qualitative approach. A purposive sample of 19 Omani women diagnosed with breast cancer at different stages of cancer treatment modalities were interviewed. Interviews were tape recorded and transcribed verbatim. The framework approach was used to analyze the data. One main theme related to spirituality was identified and called “The power of faith”. For the majority of participants, faith in God (the will of God) was most important in coping with all stages of their breast cancer experience. Some participants thought that the breast cancer is a test from God which they have to accept. Participants also expressed acceptance of death as the eventual end and reward from God. This belief gives them the strength to cope with cancer and seek medical treatment. In conclusion, women participated in this study believed faith in God imposed spiritual power for them to cope with cancer. They connected spirituality with religious beliefs. Therefore, regardless of nurses’ faith in spirituality, the spiritual care needs to be tailored and provided according to each patient individual need.

Keywords: breast cancer, spiritual, religion, coping, diagnosis, oman, women

Procedia PDF Downloads 328
808 PatchMix: Learning Transferable Semi-Supervised Representation by Predicting Patches

Authors: Arpit Rai

Abstract:

In this work, we propose PatchMix, a semi-supervised method for pre-training visual representations. PatchMix mixes patches of two images and then solves an auxiliary task of predicting the label of each patch in the mixed image. Our experiments on the CIFAR-10, 100 and the SVHN dataset show that the representations learned by this method encodes useful information for transfer to new tasks and outperform the baseline Residual Network encoders by on CIFAR 10 by 12% on ResNet 101 and 2% on ResNet-56, by 4% on CIFAR-100 on ResNet101 and by 6% on SVHN dataset on the ResNet-101 baseline model.

Keywords: self-supervised learning, representation learning, computer vision, generalization

Procedia PDF Downloads 89
807 Underwater Image Enhancement and Reconstruction Using CNN and the MultiUNet Model

Authors: Snehal G. Teli, R. J. Shelke

Abstract:

CNN and MultiUNet models are the framework for the proposed method for enhancing and reconstructing underwater images. Multiscale merging of features and regeneration are both performed by the MultiUNet. CNN collects relevant features. Extensive tests on benchmark datasets show that the proposed strategy performs better than the latest methods. As a result of this work, underwater images can be represented and interpreted in a number of underwater applications with greater clarity. This strategy will advance underwater exploration and marine research by enhancing real-time underwater image processing systems, underwater robotic vision, and underwater surveillance.

Keywords: convolutional neural network, image enhancement, machine learning, multiunet, underwater images

Procedia PDF Downloads 76
806 Commoning as an Approach to Community Planning: An Inquiry into the Role of Urban Local Bodies and Commoners

Authors: Pruthvi Nath Palleti, Sarmada Madhulika Kone

Abstract:

Communities are formed based on the commonalities that exist in a set of individuals and when the group comes together on identifying those commonalities and to achieve their common goals. Thus, community planning with its vision to strengthen the community mostly involves with making or remaking of commons, which results in making or remaking of communities. This paper looks into different practices of planning around the world and tried to establish a link between commoning (the act of exercising the rights over commons by commoners) and participatory approach to community planning.

Keywords: commoners, commoning, community, participatory planning, urban local bodies

Procedia PDF Downloads 373
805 Improved Skin Detection Using Colour Space and Texture

Authors: Medjram Sofiane, Babahenini Mohamed Chaouki, Mohamed Benali Yamina

Abstract:

Skin detection is an important task for computer vision systems. A good method for skin detection means a good and successful result of the system. The colour is a good descriptor that allows us to detect skin colour in the images, but because of lightings effects and objects that have a similar colour skin, skin detection becomes difficult. In this paper, we proposed a method using the YCbCr colour space for skin detection and lighting effects elimination, then we use the information of texture to eliminate the false regions detected by the YCbCr colour skin model.

Keywords: skin detection, YCbCr, GLCM, texture, human skin

Procedia PDF Downloads 459
804 Simulation and Hardware Implementation of Data Communication Between CAN Controllers for Automotive Applications

Authors: R. M. Kalayappan, N. Kathiravan

Abstract:

In automobile industries, Controller Area Network (CAN) is widely used to reduce the system complexity and inter-task communication. Therefore, this paper proposes the hardware implementation of data frame communication between one controller to other. The CAN data frames and protocols will be explained deeply, here. The data frames are transferred without any collision or corruption. The simulation is made in the KEIL vision software to display the data transfer between transmitter and receiver in CAN. ARM7 micro-controller is used to transfer data’s between the controllers in real time. Data transfer is verified using the CRO.

Keywords: control area network (CAN), automotive electronic control unit, CAN 2.0, industry

Procedia PDF Downloads 398
803 Robot Spatial Reasoning via 3D Models

Authors: John Allard, Alex Rich, Iris Aguilar, Zachary Dodds

Abstract:

With this paper we present several experiences deploying novel, low-cost resources for computing with 3D spatial models. Certainly, computing with 3D models undergirds some of our field’s most important contributions to the human experience. Most often, those are contrived artifacts. This work extends that tradition by focusing on novel resources that deliver uncontrived models of a system’s current surroundings. Atop this new capability, we present several projects investigating the student-accessibility of the computational tools for reasoning about the 3D space around us. We conclude that, with current scaffolding, real-world 3D models are now an accessible and viable foundation for creative computational work.

Keywords: 3D vision, matterport model, real-world 3D models, mathematical and computational methods

Procedia PDF Downloads 536
802 Conflict around the Brownfield Reconversion of the Canadian Forces Base Rockcliffe in Ottawa: A Clash of Ambitions and Visions in Canadian Urban Sustainability

Authors: Kenza Benali

Abstract:

Over the past decade, a number of remarkable projects in urban brownfield reconversion emerged across Canada, including the reconversion of former military bases owned by the Canada Lands Company (CLC) into sustainable communities. However, unlike other developments, the regeneration project of the former Canadian Forces Base Rockcliffe in Ottawa – which was announced as one of the most ambitious Smart growth projects in Canada – faced serious obstacles in terms of social acceptance by the local community, particularly urban minorities composed of Francophones, Indigenous and vulnerable groups who live near or on the Base. This turn of events led to the project being postponed and even reconsidered. Through an analysis of its press coverage, this research aims to understand the causes of this urban conflict which lasted for nearly ten years. The findings reveal that the conflict is not limited to the “standard” issues common to most conflicts related to urban mega-projects in the world – e.g., proximity issues (threads to the quality of the surrounding neighbourhoods; noise, traffic, pollution, New-build gentrification) often associated with NIMBY phenomena. In this case, the local actors questioned the purpose of the project (for whom and for what types of uses is it conceived?), its local implementation (to what extent are the local history and existing environment taken into account?), and the degree of implication of the local population in the decision-making process (with whom is the project built?). Moreover, the interests of the local actors have “jumped scales” and transcend the micro-territorial level of their daily life to take on a national and even international dimension. They defined an alternative view of how this project, considered strategic by his location in the nation’s capital, should be a reference as well as an international showcase of Canadian ambition and achievement in terms of urban sustainability. This vision promoted, actually, a territorial and national identity approach - in which some cultural values are highly significant (respect of social justice, inclusivity, ethnical diversity, cultural heritage, etc.)- as a counterweight to planners’ vision which is criticized as a normative/ universalist logic that ignore the territorial peculiarities.

Keywords: smart growth, brownfield reconversion, sustainable neighborhoods, Canada Lands Company, Canadian Forces Base Rockcliffe, urban conflicts

Procedia PDF Downloads 382
801 Multiperson Drone Control with Seamless Pilot Switching Using Onboard Camera and Openpose Real-Time Keypoint Detection

Authors: Evan Lowhorn, Rocio Alba-Flores

Abstract:

Traditional classification Convolutional Neural Networks (CNN) attempt to classify an image in its entirety. This becomes problematic when trying to perform classification with a drone’s camera in real-time due to unpredictable backgrounds. Object detectors with bounding boxes can be used to isolate individuals and other items, but the original backgrounds remain within these boxes. These basic detectors have been regularly used to determine what type of object an item is, such as “person” or “dog.” Recent advancement in computer vision, particularly with human imaging, is keypoint detection. Human keypoint detection goes beyond bounding boxes to fully isolate humans and plot points, or Regions of Interest (ROI), on their bodies within an image. ROIs can include shoulders, elbows, knees, heads, etc. These points can then be related to each other and used in deep learning methods such as pose estimation. For drone control based on human motions, poses, or signals using the onboard camera, it is important to have a simple method for pilot identification among multiple individuals while also giving the pilot fine control options for the drone. To achieve this, the OpenPose keypoint detection network was used with body and hand keypoint detection enabled. OpenPose supports the ability to combine multiple keypoint detection methods in real-time with a single network. Body keypoint detection allows simple poses to act as the pilot identifier. The hand keypoint detection with ROIs for each finger can then offer a greater variety of signal options for the pilot once identified. For this work, the individual must raise their non-control arm to be identified as the operator and send commands with the hand on their other arm. The drone ignores all other individuals in the onboard camera feed until the current operator lowers their non-control arm. When another individual wish to operate the drone, they simply raise their arm once the current operator relinquishes control, and then they can begin controlling the drone with their other hand. This is all performed mid-flight with no landing or script editing required. When using a desktop with a discrete NVIDIA GPU, the drone’s 2.4 GHz Wi-Fi connection combined with OpenPose restrictions to only body and hand allows this control method to perform as intended while maintaining the responsiveness required for practical use.

Keywords: computer vision, drone control, keypoint detection, openpose

Procedia PDF Downloads 184
800 Fast Track to the Physical Internet: A Cross-Industry Project from Upper Austria

Authors: Laura Simmer, Maria Kalt, Oliver Schauer

Abstract:

Freight transport is growing fast, but many vehicles are empty or just partially loaded. The vision and concepts of the Physical Internet (PI) proposes to eliminate these inefficiencies. Aiming for a radical sustainability improvement, the PI – inspired by the Digital Internet – is a hyperconnected global logistic system, enabling seamless asset sharing and flow consolidation. The implementation of a PI in its full expression will be a huge challenge: the industry needs innovation and implementation support including change management approaches, awareness creation and good practices diffusion, legislative actions to remove antitrust and international commerce barriers, standardization and public incentives policies. In order to take a step closer to this future the project ‘Atropine - Fast Track to the Physical Internet’ funded under the Strategic Economic and Research Program ‘Innovative Upper Austria 2020’ was set up. The two-year research project unites several research partners in this field, but also industrial partners and logistics service providers. With Atropine, the consortium wants to actively shape the mobility landscape in Upper Austria and make an innovative contribution to an energy-efficient, environmentally sound and sustainable development in the transport area. This paper should, on the one hand, clarify the questions what the project Atropine is about and, on the other hand, how a proof of concept will be reached. Awareness building plays an important role in the project as the PI requires a reorganization of the supply chain and the design of completely new forms of inter-company co-operation. New business models have to be developed and should be verified by simulation. After the simulation process one of these business models will be chosen and tested in real life with the partner companies. The developed results - simulation model and demonstrator - are used to determine how the concept of the PI can be applied in Upper Austria. Atropine shall pave the way for a full-scale development of the PI vision in the next few decades and provide the basis for pushing the industry toward a new level of co-operation with more shared resources and increased standardization.

Keywords: Atropine, inter-company co-operation, Physical Internet, shared resources, sustainable logistics

Procedia PDF Downloads 223
799 Agricultural Mechanization for Transformation

Authors: Lawrence Gumbe

Abstract:

Kenya Vision 2030 is the country's programme for transformation covering the period 2008 to 2030. Its objective is to help transform Kenya into a newly industrializing, middle-income, exceeding US$10000, country providing a high quality of life to all its citizens by 2030, in a clean and secure environment. Increased agricultural and production and productivity is crucial for the realization of Vision 2030. Mechanization of agriculture in order to achieve greater yields is the only way to achieve these objectives. There are contending groups and views on the strategy for agricultural mechanization. The first group are those who oppose the widespread adoption of advanced technologies (mostly internal combustion engines and tractors) in agricultural mechanization as entirely inappropriate in most situations in developing countries. This group argues that mechanically powered -agricultural mechanization often leads to displacement of labour and hence increased unemployment, and this results in a host of other socio-economic problems, amongst them, rural-urban migration, inequitable distribution of wealth and in many cases an increase in absolute poverty, balance of payments due to the need to import machinery, fuel and sometimes technical assistance to manage them. The second group comprises of those who view the use of the improved hand tools and animal powered technology as transitional step between the most rudimentary step in technological development (characterized by entire reliance on human muscle power) and the advanced technologies (characterized 'by reliance on tractors and other machinery). The third group comprises those who regard these intermediate technologies (ie. improved hand tools and draught animal technology in agriculture) as a ‘delaying’ tactic and they advocate the use of mechanical technologies as-the most appropriate. This group argues that alternatives to the mechanical technologies do not just exist as a practical matter, or, if they are available, they are inefficient and they cannot be compared to the mechanical technologies in terms of economics and productivity. The fourth group advocates a compromise between groups two and third above. This group views the improved hand tools and draught animal technology as more of an 18th century technology and the modem tractor and combine harvester as too advanced for developing countries. This group has been busy designing an ‘intermediate’, ‘appropriate’, ‘mini’, ‘micro’ tractor for use by farmers in developing countries. This paper analyses and concludes on the different agricultural mechanization strategies available to Kenya and other third world countries

Keywords: agriculture, mechanazation, transformation, industrialization

Procedia PDF Downloads 338
798 The Proposal of a Shared Mobility City Index to Support Investment Decision Making for Carsharing

Authors: S. Murr, S. Phillips

Abstract:

One of the biggest challenges entering a market with a carsharing or any other shared mobility (SM) service is sound investment decision-making. To support this process, the authors think that a city index evaluating different criteria is necessary. The goal of such an index is to benchmark cities along a set of external measures to answer the main two challenges: financially viability and the understanding of its specific requirements. The authors have consulted several shared mobility projects and industry experts to create such a Shared Mobility City Index (SMCI). The current proposal of the SMCI consists of 11 individual index measures: general data (demographics, geography, climate and city culture), shared mobility landscape (current SM providers, public transit options, commuting patterns and driving culture) and political vision and goals (vision of the Mayor, sustainability plan, bylaws/tenders supporting SM). To evaluate the suitability of the index, 16 cities on the East Coast of North America were selected and secondary research was conducted. The main sources of this study were census data, organisational records, independent press releases and informational websites. Only non-academic sources where used because the relevant data for the chosen cities is not published in academia. Applying the index measures to the selected cities resulted in three major findings. Firstly, density (city area divided by number of inhabitants) is not an indicator for the number of SM services offered: the city with the lowest density has five bike and carsharing options. Secondly, there is a direct correlation between commuting patterns and how many shared mobility services are offered. New York, Toronto and Washington DC have the highest public transit ridership and the most shared mobility providers. Lastly, except one, all surveyed cities support shared mobility with their sustainability plan. The current version of the shared mobility index is proving a practical tool to evaluate cities, and to understand functional, political, social and environmental considerations. More cities will have to be evaluated to refine the criteria further. However, the current version of the index can be used to assess cities on their suitability for shared mobility services and will assist investors deciding which city is a financially viable market.

Keywords: carsharing, transportation, urban planning, shared mobility city index

Procedia PDF Downloads 303
797 K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors

Authors: Shao-Tzu Huang, Chen-Chien Hsu, Wei-Yen Wang

Abstract:

Matching high dimensional features between images is computationally expensive for exhaustive search approaches in computer vision. Although the dimension of the feature can be degraded by simplifying the prior knowledge of homography, matching accuracy may degrade as a tradeoff. In this paper, we present a feature matching method based on k-means algorithm that reduces the matching cost and matches the features between images instead of using a simplified geometric assumption. Experimental results show that the proposed method outperforms the previous linear exhaustive search approaches in terms of the inlier ratio of matched pairs.

Keywords: feature matching, k-means clustering, SIFT, RANSAC

Procedia PDF Downloads 358
796 Depth Estimation in DNN Using Stereo Thermal Image Pairs

Authors: Ahmet Faruk Akyuz, Hasan Sakir Bilge

Abstract:

Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.

Keywords: thermal stereo matching, deep neural networks, CNN, Depth estimation

Procedia PDF Downloads 279
795 Development of a Mixed-Reality Hands-Free Teleoperated Robotic Arm for Construction Applications

Authors: Damith Tennakoon, Mojgan Jadidi, Seyedreza Razavialavi

Abstract:

With recent advancements of automation in robotics, from self-driving cars to autonomous 4-legged quadrupeds, one industry that has been stagnant is the construction industry. The methodologies used in a modern-day construction site consist of arduous physical labor and the use of heavy machinery, which has not changed over the past few decades. The dangers of a modern-day construction site affect the health and safety of the workers due to performing tasks such as lifting and moving heavy objects and having to maintain unhealthy posture to complete repetitive tasks such as painting, installing drywall, and laying bricks. Further, training for heavy machinery is costly and requires a lot of time due to their complex control inputs. The main focus of this research is using immersive wearable technology and robotic arms to perform the complex and intricate skills of modern-day construction workers while alleviating the physical labor requirements to perform their day-to-day tasks. The methodology consists of mounting a stereo vision camera, the ZED Mini by Stereolabs, onto the end effector of an industrial grade robotic arm, streaming the video feed into the Virtual Reality (VR) Meta Quest 2 (Quest 2) head-mounted display (HMD). Due to the nature of stereo vision, and the similar field-of-views between the stereo camera and the Quest 2, human-vision can be replicated on the HMD. The main advantage this type of camera provides over a traditional monocular camera is it gives the user wearing the HMD a sense of the depth of the camera scene, specifically, a first-person view of the robotic arm’s end effector. Utilizing the built-in cameras of the Quest 2 HMD, open-source hand-tracking libraries from OpenXR can be implemented to track the user’s hands in real-time. A mixed-reality (XR) Unity application can be developed to localize the operator's physical hand motions with the end-effector of the robotic arm. Implementing gesture controls will enable the user to move the robotic arm and control its end-effector by moving the operator’s arm and providing gesture inputs from a distant location. Given that the end effector of the robotic arm is a gripper tool, gripping and opening the operator’s hand will translate to the gripper of the robot arm grabbing or releasing an object. This human-robot interaction approach provides many benefits within the construction industry. First, the operator’s safety will be increased substantially as they can be away from the site-location while still being able perform complex tasks such as moving heavy objects from place to place or performing repetitive tasks such as painting walls and laying bricks. The immersive interface enables precision robotic arm control and requires minimal training and knowledge of robotic arm manipulation, which lowers the cost for operator training. This human-robot interface can be extended to many applications, such as handling nuclear accident/waste cleanup, underwater repairs, deep space missions, and manufacturing and fabrication within factories. Further, the robotic arm can be mounted onto existing mobile robots to provide access to hazardous environments, including power plants, burning buildings, and high-altitude repair sites.

Keywords: construction automation, human-robot interaction, hand-tracking, mixed reality

Procedia PDF Downloads 80
794 Spectrum of Dry Eye Disease in Computer Users of Manipur India

Authors: Somorjeet Sharma Shamurailatpam, Rabindra Das, A. Suchitra Devi

Abstract:

Computer and video display users might complain about Asthenopia, burning, dry eyes etc. The management of dry eyes is often not in the lines of severity. Following systematic evaluation and grading, dry eye disease is one condition that can be practiced at all levels of ophthalmic care. In the present study, different spectrum causing dry eye and prevalence of dry eye disease in computer users of Manipur, India are determined with 600 individuals (300 cases and 300 control). Individuals between 15 and 50 years who used computers for more than 3 hrs a day for 1 year or more were included. Tear break up time (TBUT) and Schirmer’s test were conducted. It shows that 33 (20.4%) out of 164 males and 47 (30.3%) out of 136 females have dry eye. Possible explanation for the observed result is discussed.

Keywords: asthenopia, computer vision syndrome, dry eyes, Schirmer's test, TBUT

Procedia PDF Downloads 374
793 Visual Search Based Indoor Localization in Low Light via RGB-D Camera

Authors: Yali Zheng, Peipei Luo, Shinan Chen, Jiasheng Hao, Hong Cheng

Abstract:

Most of traditional visual indoor navigation algorithms and methods only consider the localization in ordinary daytime, while we focus on the indoor re-localization in low light in the paper. As RGB images are degraded in low light, less discriminative infrared and depth image pairs are taken, as the input, by RGB-D cameras, the most similar candidates, as the output, are searched from databases which is built in the bag-of-word framework. Epipolar constraints can be used to relocalize the query infrared and depth image sequence. We evaluate our method in two datasets captured by Kinect2. The results demonstrate very promising re-localization results for indoor navigation system in low light environments.

Keywords: indoor navigation, low light, RGB-D camera, vision based

Procedia PDF Downloads 461
792 Eradicating Rural Poverty in Nigeria through Entrepreneurship Education

Authors: Nwachukwu Ihiejeto Celestine

Abstract:

Rural poverty in Nigeria has been the bake of the society. It has been a canker worm which has eaten deep into the fabric of Nigerian society. Different models and principles have been applied to eradicate it, such as operation feed the nation, green revolution, NAPEP etc. Little or nothing has been done in the area of entrepreneurship education to tame this monster. It is based on this that the author wants to x-ray the role entrepreneurship education which studies “the process of identifying, bringing a vision to life” could play in the eradication of rural poverty in Nigeria. This will go along in providing appropriate principles for poverty alleviation and eradication in Nigeria. Some selected states in the eastern Geo-political region could be x-rayed in this circumstance. It is hoped that policy makers etc will find the work cogent in formulating and implementing policy decisions.

Keywords: poverty, entrepreneurship, education, Nigeria

Procedia PDF Downloads 466
791 Anisotropic Approach for Discontinuity Preserving in Optical Flow Estimation

Authors: Pushpendra Kumar, Sanjeev Kumar, R. Balasubramanian

Abstract:

Estimation of optical flow from a sequence of images using variational methods is one of the most successful approach. Discontinuity between different motions is one of the challenging problem in flow estimation. In this paper, we design a new anisotropic diffusion operator, which is able to provide smooth flow over a region and efficiently preserve discontinuity in optical flow. This operator is designed on the basis of intensity differences of the pixels and isotropic operator using exponential function. The combination of these are used to control the propagation of flow. Experimental results on the different datasets verify the robustness and accuracy of the algorithm and also validate the effect of anisotropic operator in the discontinuity preserving.

Keywords: optical flow, variational methods, computer vision, anisotropic operator

Procedia PDF Downloads 874
790 National Image in the Age of Mass Self-Communication: An Analysis of Internet Users' Perception of Portugal

Authors: L. Godinho, N. Teixeira

Abstract:

Nowadays, massification of Internet access represents one of the major challenges to the traditional powers of the State, among which the power to control its external image. The virtual world has also sparked the interest of social sciences which consider it a new field of study, an immense open text where sense is expressed. In this paper, that immense text has been accessed to so as to understand the perception Internet users from all over the world have of Portugal. Ours is a quantitative and qualitative approach, as we have resorted to buzz, thematic and category analysis. The results confirm the predominance of sea stereotype in others' vision of the Portuguese people, and evidence that national image has adapted to network communication through processes of individuation and paganization.

Keywords: national image, internet, self-communication, perception

Procedia PDF Downloads 256
789 A Comparative Study of Deep Learning Methods for COVID-19 Detection

Authors: Aishrith Rao

Abstract:

COVID 19 is a pandemic which has resulted in thousands of deaths around the world and a huge impact on the global economy. Testing is a huge issue as the test kits have limited availability and are expensive to manufacture. Using deep learning methods on radiology images in the detection of the coronavirus as these images contain information about the spread of the virus in the lungs is extremely economical and time-saving as it can be used in areas with a lack of testing facilities. This paper focuses on binary classification and multi-class classification of COVID 19 and other diseases such as pneumonia, tuberculosis, etc. Different deep learning methods such as VGG-19, COVID-Net, ResNET+ SVM, Deep CNN, DarkCovidnet, etc., have been used, and their accuracy has been compared using the Chest X-Ray dataset.

Keywords: deep learning, computer vision, radiology, COVID-19, ResNet, VGG-19, deep neural networks

Procedia PDF Downloads 160
788 Factors of English Language Learning and Acquisition at Bisha College of Technology

Authors: Khlaid Albishi

Abstract:

This paper participates in giving new vision and explains the learning and acquisition processes of English language by analyzing a certain context. Five important factors in English language acquisition and learning are discussed and suitable solutions are provided. The factors are compared with the learners' linguistic background at Bisha College of Technology BCT attempting to link the issues faced by students and the research done on similar situations. These factors are phonology, age of acquisition, motivation, psychology and courses of English. These factors are very important; because they interfere and affect specific learning processes at BCT context and general English learning situations.

Keywords: language acquisition, language learning, factors, Bisha college

Procedia PDF Downloads 499
787 Meiji Centennial as a Media Event: Ideas for Upcoming Turkish Republic Centennial

Authors: Hasan Topacoglu

Abstract:

The Meiji Restoration was a chain of events that restored Japan in 1868 and considered as the beginning of Japanese Modernization by many scholars. In 1968, to honor its modern incarnation, Japan celebrated Meiji Centennial as one of the biggest Media Events in the country after the World War II. It was celebrated all around the country throughout the year following with a central event in Tokyo. Meanwhile, Japanese scholars started an opposition movement and claimed that Government was using this event to raise nationalism, pointing at Government’s statement on the meaning of Meiji. Most of the scholars, unfortunately, were hooked into the ideological problem of the Government’s way of planning and evaluated it as a failure. However, scholars missed out an important point that apart from the central event in Tokyo, each city planned its own event and celebrated it on a different date, also with a different theme. For example, Kyoto showed a regional characteristic and focused on Kyoto’s own culture, tradition etc., and highlighted a further past than 100 years. This was mainly because some areas/cities had a different ‘memory’ for Meiji Restoration than Tokyo which was reflected through the way they celebrated Meiji Centennial. On the other hand, 2023 will be the year of Turkish Republic Centennial. A year which will be marked by national and maybe even international events. Although an official committee has not been announced yet, The 2023 Vision, a list of goals has been released by the Government to coincide with the centenary of the Republic of Turkey in 2023 and there are some ongoing projects that are planned to be completed by then. By looking at the content of these projects, it is possible to say that Government is aiming to focus on Modernization through the Centennial. However, some of the projects are already showing some interesting characteristics such as the Istanbul New Airport whose design is inspired by Selimiye Mosque’s Islamic-Ottoman figure. It is true that Turkey and Japan have different historical backgrounds and the timeline of the Meiji Restoration and Foundation of Turkish Republic are different. Therefore, a particular comparison between these two events is not justified. However, they may have more in common than we are up to think because, each country marked the start of a new nation conceived on modern principles. For that reason, it is important to understand the similarities or differences between Meiji Centennial and Turkish Republic Centennial as a media event. This study introduces Meiji Centennial as a media event and analyses opposition movement along with the meaning of Meiji Centennial. Additionally, it explains regional characteristic differences and gives Kyoto as an example. Moreover, it introduces some of the ongoing Centennial projects in Turkey and analyses the meaning of the Turkish Republic Centennial through these projects. Without comparing Japan and Turkey, it explains the case of Japan but the discussion centers on deepening our understanding of Centennial as a Media Event and remarks some important aspects for Turkey’s upcoming Centennial events.

Keywords: media events, Meiji centennial, the 2023 vision, Turkish republic centennial

Procedia PDF Downloads 332
786 Facial Expression Recognition Using Sparse Gaussian Conditional Random Field

Authors: Mohammadamin Abbasnejad

Abstract:

The analysis of expression and facial Action Units (AUs) detection are very important tasks in fields of computer vision and Human Computer Interaction (HCI) due to the wide range of applications in human life. Many works have been done during the past few years which has their own advantages and disadvantages. In this work, we present a new model based on Gaussian Conditional Random Field. We solve our objective problem using ADMM and we show how well the proposed model works. We train and test our work on two facial expression datasets, CK+, and RU-FACS. Experimental evaluation shows that our proposed approach outperform state of the art expression recognition.

Keywords: Gaussian Conditional Random Field, ADMM, convergence, gradient descent

Procedia PDF Downloads 356
785 Gifted Disadvantage in Education Safety Net: A Reality Check: A Case Study From India

Authors: Jyoti Sharma

Abstract:

Although notion of giftedness is a reality, yet it swings along the pendulum of equality and excellence. At times, nurturance of gifted abilities becomes a struggle of better catchment of resources and facilities. Those from affluent setup are blessed with better support system whereas gifted children from disadvantaged group suffer from submissive upbringing. In developing countries like India, with diverse demographic profiles, socio-cultural diversity and economic disparity, the very concept of equality in education face severe challenge. The present paper presents the dichotomy of ideology of equality and excellence in education practices. It highlights the need of wider vision, better policy making and decentralized implementation services to allow gifted children to enjoy what they are; dream what they can be; and promote what they will be.

Keywords: gifted, disadvantaged, education safety net, India

Procedia PDF Downloads 528
784 Magnetic Navigation in Underwater Networks

Authors: Kumar Divyendra

Abstract:

Underwater Sensor Networks (UWSNs) have wide applications in areas such as water quality monitoring, marine wildlife management etc. A typical UWSN system consists of a set of sensors deployed randomly underwater which communicate with each other using acoustic links. RF communication doesn't work underwater, and GPS too isn't available underwater. Additionally Automated Underwater Vehicles (AUVs) are deployed to collect data from some special nodes called Cluster Heads (CHs). These CHs aggregate data from their neighboring nodes and forward them to the AUVs using optical links when an AUV is in range. This helps reduce the number of hops covered by data packets and helps conserve energy. We consider the three-dimensional model of the UWSN. Nodes are initially deployed randomly underwater. They attach themselves to the surface using a rod and can only move upwards or downwards using a pump and bladder mechanism. We use graph theory concepts to maximize the coverage volume while every node maintaining connectivity with at least one surface node. We treat the surface nodes as landmarks and each node finds out its hop distance from every surface node. We treat these hop-distances as coordinates and use them for AUV navigation. An AUV intending to move closer to a node with given coordinates moves hop by hop through nodes that are closest to it in terms of these coordinates. In absence of GPS, multiple different approaches like Inertial Navigation System (INS), Doppler Velocity Log (DVL), computer vision-based navigation, etc., have been proposed. These systems have their own drawbacks. INS accumulates error with time, vision techniques require prior information about the environment. We propose a method that makes use of the earth's magnetic field values for navigation and combines it with other methods that simultaneously increase the coverage volume under the UWSN. The AUVs are fitted with magnetometers that measure the magnetic intensity (I), horizontal inclination (H), and Declination (D). The International Geomagnetic Reference Field (IGRF) is a mathematical model of the earth's magnetic field, which provides the field values for the geographical coordinateson earth. Researchers have developed an inverse deep learning model that takes the magnetic field values and predicts the location coordinates. We make use of this model within our work. We combine this with with the hop-by-hop movement described earlier so that the AUVs move in such a sequence that the deep learning predictor gets trained as quickly and precisely as possible We run simulations in MATLAB to prove the effectiveness of our model with respect to other methods described in the literature.

Keywords: clustering, deep learning, network backbone, parallel computing

Procedia PDF Downloads 98
783 Chemical Composition and Characteristics of Organic Solvent Extracts from the Omani Seaweeds Melanothamnus Somalensis and Gelidium Omanense

Authors: Abdullah Al-Nassri, Ahmed Al-Alawi

Abstract:

Seaweeds are classified into three groups: red, green, and brown. Each group of seaweeds consists of several types that have differences in composition. Even at the species level, there are differences in some ingredients, although in general composition, they are the same. Environmental conditions, availability of nutrients, and maturity stage are the main reasons for composition differences. In this study, two red seaweed species, Melanothamnus somalensis & Gelidium omanense, were collected in September 2021 from Sadh (Dhofar governorate, Oman). Five organic solvents were used sequentially to achieve extraction. The solvents were applied in the following order: hexane, dichloromethane, ethyl acetate, acetone, and methanol. Preparative HPLC (PrepLC) was performed to fraction the extracts. The chemical composition was measured; also, total phenols, flavonoids, and tannins were investigated. The structure of the extracts was analyzed by Fourier-transform infrared spectroscopy (FTIR). Seaweeds demonstrated high differences in terms of chemical composition, total phenolic content (TPC), total flavonoid content (TFC), and total tannin content (TTC). Gelidium omanense showed high moisture content, lipid content and carbohydrates (9.8 ± 0.15 %, 2.29 ± 0.09 % and 70.15 ± 0.42 %, respectively) compared to Melanothamnus somalensis (6.85 ± 0.01 %, 2.05 ± 0.12 % and 52.7 ± 0.36 % respectively). However, Melanothamnus somalensis showed high ash content and protein (27.68 ± 0.40 % and 52.7 ± 0.36 % respectively) compared to Gelidium omanense (8.07 ± 0.39 % and 9.70 ± 0.22 % respectively). Melanothamnus somalensis showed higher elements and minerals content, especially sodium and potassium. This is attributed to the jelly-like structure of Melanothamnus somalensis, which allows storage of more solutes compared to the leafy-like structure of Gelidium omanense. Furthermore, Melanothamnus somalensis had higher TPC in all fractions except the hexane fraction than Gelidium omanense. Except with hexane, TFC in the other solvents’ extracts was significantly different between Gelidium omanense and Melanothamnus somalensis. In all fractions, except dichloromethane and ethyl acetate fractions, there were no significant differences in TTC between Gelidium omanense and Melanothamnus somalensis. FTIR spectra showed variation between fractions, which is an indication of different functional groups.

Keywords: chemical composition, organic extract, Omani seaweeds, biological activity, FTIR

Procedia PDF Downloads 69