Search results for: CO2 emission allowances
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1447

Search results for: CO2 emission allowances

997 Diagnostic Properties of Exercise or Pharmacological Stress Myocardial Perfusion Scintigraphy in Per-Vessel Basis: A Clinical Validation Study

Authors: Ahmadreza Bagheri, Seyyed S. Eftekhari, Shervin Rashidinia

Abstract:

Background: Various stress tests have been proposed yet to assess patients with suspected coronary artery disease. However, their diagnostic properties in terms of sensitivity, specificity, and accuracy are variable and their applicability remained somewhat vague. The aim of this study is to validate per-vessel diagnostic properties of 3 types of stress myocardial perfusion scintigraphy in gated SPECT (Single-Photon Emission Computed Tomography) using either exercise or pharmacological stress testing with dipyridamole or dobutamine. Materials and Methods: Hospital records of 314 patients who referred to Imam Khomeini hospital of Tehran between September 2015 and January 2017 were completely reviewed in this study. All patients underwent coronary angiography within 3 months after stress myocardial perfusion scan. Eventually, the results were analyzed in per-vessel basis to find the proper modality for each involved vessel or scanned site. Results: The mean age of patients was 62.15 ± 4.94 years (30-85) and 35.03% were women. The overall sensitivity, specificity, and accuracy were calculated as 56.59%, 54.24%, and 55.09%, respectively. These values were 56.43% and 53.25%, 54.46% and 47.36%, 56.75% and 54.83% for dipyridamole and exercise, respectively. Ischemia of the anterior wall through exercise stress testing has the highest diagnostic accuracy in detecting LAD (Left Anterior Descending artery) involvement. Inferior wall hypokinesia and anterolateral wall ischemia during exercise stress testing have the highest diagnostic accuracy in detecting RCA (Right Coronary Artery) and LCX artery (Left Circumflex Artery) stenosis, respectively. Conclusion: Stress myocardial perfusion scan should be carried out on the basis of the findings of the preliminary investigations on suspicion of a specific coronary artery or involved myocardial wall.

Keywords: dipyridamole, dobutamine, single-photon emission computed tomography, stress myocardial perfusion scintigraphy

Procedia PDF Downloads 132
996 Positron Emission Tomography Parameters as Predictors of Pathologic Response and Nodal Clearance in Patients with Stage IIIA NSCLC Receiving Trimodality Therapy

Authors: Andrea L. Arnett, Ann T. Packard, Yolanda I. Garces, Kenneth W. Merrell

Abstract:

Objective: Pathologic response following neoadjuvant chemoradiation (CRT) has been associated with improved overall survival (OS). Conflicting results have been reported regarding the pathologic predictive value of positron emission tomography (PET) response in patients with stage III lung cancer. The aim of this study was to evaluate the correlation between post-treatment PET response and pathologic response utilizing novel FDG-PET parameters. Methods: This retrospective study included patients with non-metastatic, stage IIIA (N2) NSCLC cancer treated with CRT followed by resection. All patients underwent PET prior to and after neoadjuvant CRT. Univariate analysis was utilized to assess correlations between PET response, nodal clearance, pCR, and near-complete pathologic response (defined as the microscopic residual disease or less). Maximal standard uptake value (SUV), standard uptake ratio (SUR) [normalized independently to the liver (SUR-L) and blood pool (SUR-BP)], metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were measured pre- and post-chemoradiation. Results: A total of 44 patients were included for review. Median age was 61.9 years, and median follow-up was 2.6 years. Histologic subtypes included adenocarcinoma (72.2%) and squamous cell carcinoma (22.7%), and the majority of patients had the T2 disease (59.1%). The rate of pCR and near-complete pathologic response within the primary lesion was 28.9% and 44.4%, respectively. The average reduction in SUVmₐₓ was 9.2 units (range -1.9-32.8), and the majority of patients demonstrated some degree of favorable treatment response. SUR-BP and SUR-L showed a mean reduction of 4.7 units (range -0.1-17.3) and 3.5 units (range –1.7-12.6), respectively. Variation in PET response was not significantly associated with histologic subtype, concurrent chemotherapy type, stage, or radiation dose. No significant correlation was found between pathologic response and absolute change in MTV or TLG. Reduction in SUVmₐₓ and SUR were associated with increased rate of pathologic response (p ≤ 0.02). This correlation was not impacted by normalization of SUR to liver versus mediastinal blood pool. A threshold of > 75% decrease in SUR-L correlated with near-complete response, with a sensitivity of 57.9% and specificity of 85.7%, as well as positive and negative predictive values of 78.6% and 69.2%, respectively (diagnostic odds ratio [DOR]: 5.6, p=0.02). A threshold of >50% decrease in SUR was also significantly associated pathologic response (DOR 12.9, p=0.2), but specificity was substantially lower when utilizing this threshold value. No significant association was found between nodal PET parameters and pathologic nodal clearance. Conclusions: Our results suggest that treatment response to neoadjuvant therapy as assessed on PET imaging can be a predictor of pathologic response when evaluated via SUV and SUR. SUR parameters were associated with higher diagnostic odds ratios, suggesting improved predictive utility compared to SUVmₐₓ. MTV and TLG did not prove to be significant predictors of pathologic response but may warrant further investigation in a larger cohort of patients.

Keywords: lung cancer, positron emission tomography (PET), standard uptake ratio (SUR), standard uptake value (SUV)

Procedia PDF Downloads 210
995 Temperature Dependence of the Optoelectronic Properties of InAs(Sb)-Based LED Heterostructures

Authors: Antonina Semakova, Karim Mynbaev, Nikolai Bazhenov, Anton Chernyaev, Sergei Kizhaev, Nikolai Stoyanov

Abstract:

At present, heterostructures are used for fabrication of almost all types of optoelectronic devices. Our research focuses on the optoelectronic properties of InAs(Sb) solid solutions that are widely used in fabrication of light emitting diodes (LEDs) operating in middle wavelength infrared range (MWIR). This spectral range (2-6 μm) is relevant for laser diode spectroscopy of gases and molecules, for systems for the detection of explosive substances, medical applications, and for environmental monitoring. The fabrication of MWIR LEDs that operate efficiently at room temperature is mainly hindered by the predominance of non-radiative Auger recombination of charge carriers over the process of radiative recombination, which makes practical application of LEDs difficult. However, non-radiative recombination can be partly suppressed in quantum-well structures. In this regard, studies of such structures are quite topical. In this work, electroluminescence (EL) of LED heterostructures based on InAs(Sb) epitaxial films with the molar fraction of InSb ranging from 0 to 0.09 and multi quantum-well (MQW) structures was studied in the temperature range 4.2-300 K. The growth of the heterostructures was performed by metal-organic chemical vapour deposition on InAs substrates. On top of the active layer, a wide-bandgap InAsSb(Ga,P) barrier was formed. At low temperatures (4.2-100 K) stimulated emission was observed. As the temperature increased, the emission became spontaneous. The transition from stimulated emission to spontaneous one occurred at different temperatures for structures with different InSb contents in the active region. The temperature-dependent carrier lifetime, limited by radiative recombination and the most probable Auger processes (for the materials under consideration, CHHS and CHCC), were calculated within the framework of the Kane model. The effect of various recombination processes on the carrier lifetime was studied, and the dominant role of Auger processes was established. For MQW structures quantization energies for electrons, light and heavy holes were calculated. A characteristic feature of the experimental EL spectra of these structures was the presence of peaks with energy different from that of calculated optical transitions between the first quantization levels for electrons and heavy holes. The obtained results showed strong effect of the specific electronic structure of InAsSb on the energy and intensity of optical transitions in nanostructures based on this material. For the structure with MQWs in the active layer, a very weak temperature dependence of EL peak was observed at high temperatures (>150 K), which makes it attractive for fabricating temperature-resistant gas sensors operating in the middle-infrared range.

Keywords: Electroluminescence, InAsSb, light emitting diode, quantum wells

Procedia PDF Downloads 188
994 Analysis of Secondary Peak in Hα Emission Profile during Gas Puffing in Aditya Tokamak

Authors: Harshita Raj, Joydeep Ghosh, Rakesh L. Tanna, Prabal K. Chattopadhyay, K. A. Jadeja, Sharvil Patel, Kaushal M. Patel, Narendra C. Patel, S. B. Bhatt, V. K. Panchal, Chhaya Chavda, C. N. Gupta, D. Raju, S. K. Jha, J. Raval, S. Joisa, S. Purohit, C. V. S. Rao, P. K. Atrey, Umesh Nagora, R. Manchanda, M. B. Chowdhuri, Nilam Ramaiya, S. Banerjee, Y. C. Saxena

Abstract:

Efficient gas fueling is a critical aspect that needs to be mastered in order to maintain plasma density, to carry out fusion. This requires a fair understanding of fuel recycling in order to optimize the gas fueling. In Aditya tokamak, multiple gas puffs are used in a precise and controlled manner, for hydrogen fueling during the flat top of plasma discharge which has been instrumental in achieving discharges with enhanced density as well as energy confinement time. Following each gas puff, we observe peaks in temporal profile of Hα emission, Soft X-ray (SXR) and chord averaged electron density in a number of discharges, indicating efficient gas fueling. Interestingly, Hα temporal profile exhibited an additional peak following the peak corresponding to each gas puff. These additional peak Hα appeared in between the two gas puffs, indicating the presence of a secondary hydrogen source apart from the gas puffs. A thorough investigation revealed that these secondary Hα peaks coincide with Hard X- ray bursts which come from the interaction of runaway electrons with vessel limiters. This leads to consider that the runaway electrons (REs), which hit the wall, in turn, bring out the absorbed hydrogen and oxygen from the wall and makes the interaction of REs with limiter a secondary hydrogen source. These observations suggest that runaway electron induced recycling should also be included in recycling particle source in the particle balance calculations in tokamaks. Observation of two Hα peaks associated with one gas puff and their roles in enhancing and maintaining plasma density in Aditya tokamak will be discussed in this paper.

Keywords: fusion, gas fueling, recycling, Tokamak, Aditya

Procedia PDF Downloads 380
993 Influence of Recycled Concrete Aggregate Content on the Rebar/Concrete Bond Properties through Pull-Out Tests and Acoustic Emission Measurements

Authors: L. Chiriatti, H. Hafid, H. R. Mercado-Mendoza, K. L. Apedo, C. Fond, F. Feugeas

Abstract:

Substituting natural aggregate with recycled aggregate coming from concrete demolition represents a promising alternative to face the issues of both the depletion of natural resources and the congestion of waste storage facilities. However, the crushing process of concrete demolition waste, currently in use to produce recycled concrete aggregate, does not allow the complete separation of natural aggregate from a variable amount of adhered mortar. Given the physicochemical characteristics of the latter, the introduction of recycled concrete aggregate into a concrete mix modifies, to a certain extent, both fresh and hardened concrete properties. As a consequence, the behavior of recycled reinforced concrete members could likely be influenced by the specificities of recycled concrete aggregates. Beyond the mechanical properties of concrete, and as a result of the composite character of reinforced concrete, the bond characteristics at the rebar/concrete interface have to be taken into account in an attempt to describe accurately the mechanical response of recycled reinforced concrete members. Hence, a comparative experimental campaign, including 16 pull-out tests, was carried out. Four concrete mixes with different recycled concrete aggregate content were tested. The main mechanical properties (compressive strength, tensile strength, Young’s modulus) of each concrete mix were measured through standard procedures. A single 14-mm-diameter ribbed rebar, representative of the diameters commonly used in the domain of civil engineering, was embedded into a 200-mm-side concrete cube. The resulting concrete cover is intended to ensure a pull-out type failure (i.e. exceedance of the rebar/concrete interface shear strength). A pull-out test carried out on the 100% recycled concrete specimen was enriched with exploratory acoustic emission measurements. Acoustic event location was performed by means of eight piezoelectric transducers distributed over the whole surface of the specimen. The resulting map was compared to existing data related to natural aggregate concrete. Damage distribution around the reinforcement and main features of the characteristic bond stress/free-end slip curve appeared to be similar to previous results obtained through comparable studies carried out on natural aggregate concrete. This seems to show that the usual bond mechanism sequence (‘chemical adhesion’, mechanical interlocking and friction) remains unchanged despite the addition of recycled concrete aggregate. However, the results also suggest that bond efficiency seems somewhat improved through the use of recycled concrete aggregate. This observation appears to be counter-intuitive with regard to the diminution of the main concrete mechanical properties with the recycled concrete aggregate content. As a consequence, the impact of recycled concrete aggregate content on bond characteristics seemingly represents an important factor which should be taken into account and likely to be further explored in order to determine flexural parameters such as deflection or crack distribution.

Keywords: acoustic emission monitoring, high-bond steel rebar, pull-out test, recycled aggregate concrete

Procedia PDF Downloads 152
992 Transmission Line Protection Challenges under High Penetration of Renewable Energy Sources and Proposed Solutions: A Review

Authors: Melake Kuflom

Abstract:

European power networks involve the use of multiple overhead transmission lines to construct a highly duplicated system that delivers reliable and stable electrical energy to the distribution level. The transmission line protection applied in the existing GB transmission network are normally independent unit differential and time stepped distance protection schemes, referred to as main-1 & main-2 respectively, with overcurrent protection as a backup. The increasing penetration of renewable energy sources, commonly referred as “weak sources,” into the power network resulted in the decline of fault level. Traditionally, the fault level of the GB transmission network has been strong; hence the fault current contribution is more than sufficient to ensure the correct operation of the protection schemes. However, numerous conventional coal and nuclear generators have been or about to shut down due to the societal requirement for CO2 emission reduction, and this has resulted in a reduction in the fault level on some transmission lines, and therefore an adaptive transmission line protection is required. Generally, greater utilization of renewable energy sources generated from wind or direct solar energy results in a reduction of CO2 carbon emission and can increase the system security and reliability but reduces the fault level, which has an adverse effect on protection. Consequently, the effectiveness of conventional protection schemes under low fault levels needs to be reviewed, particularly for future GB transmission network operating scenarios. The proposed paper will evaluate the transmission line challenges under high penetration of renewable energy sources andprovides alternative viable protection solutions based on the problem observed. The paper will consider the assessment ofrenewable energy sources (RES) based on a fully rated converter technology. The DIgSILENT Power Factory software tool will be used to model the network.

Keywords: fault level, protection schemes, relay settings, relay coordination, renewable energy sources

Procedia PDF Downloads 175
991 Variability Studies of Seyfert Galaxies Using Sloan Digital Sky Survey and Wide-Field Infrared Survey Explorer Observations

Authors: Ayesha Anjum, Arbaz Basha

Abstract:

Active Galactic Nuclei (AGN) are the actively accreting centers of the galaxies that host supermassive black holes. AGN emits radiation in all wavelengths and also shows variability across all the wavelength bands. The analysis of flux variability tells us about the morphology of the site of emission radiation. Some of the major classifications of AGN are (a) Blazars, with featureless spectra. They are subclassified as BLLacertae objects, Flat Spectrum Radio Quasars (FSRQs), and others; (b) Seyferts with prominent emission line features are classified into Broad Line, Narrow Line Seyferts of Type 1 and Type 2 (c) quasars, and other types. Sloan Digital Sky Survey (SDSS) is an optical telescope based in Mexico that has observed and classified billions of objects based on automated photometric and spectroscopic methods. A sample of blazars is obtained from the third Fermi catalog. For variability analysis, we searched for light curves for these objects in Wide-Field Infrared Survey Explorer (WISE) and Near Earth Orbit WISE (NEOWISE) in two bands: W1 (3.4 microns) and W2 (4.6 microns), reducing the final sample to 256 objects. These objects are also classified into 155 BLLacs, 99 FSRQs, and 2 Narrow Line Seyferts, namely, PMNJ0948+0022 and PKS1502+036. Mid-infrared variability studies of these objects would be a contribution to the literature. With this as motivation, the present work is focused on studying a final sample of 256 objects in general and the Seyferts in particular. Owing to the fact that the classification is automated, SDSS has miclassified these objects into quasars, galaxies, and stars. Reasons for the misclassification are explained in this work. The variability analysis of these objects is done using the method of flux amplitude variability and excess variance. The sample consists of observations in both W1 and W2 bands. PMN J0948+0022 is observed between MJD from 57154.79 to 58810.57. PKS 1502+036 is observed between MJD from 57232.42 to 58517.11, which amounts to a period of over six years. The data is divided into different epochs spanning not more than 1.2 days. In all the epochs, the sources are found to be variable in both W1 and W2 bands. This confirms that the object is variable in mid-infrared wavebands in both long and short timescales. Also, the sources are observed for color variability. Objects either show a bluer when brighter trend (BWB) or a redder when brighter trend (RWB). The possible claim for the object to be BWB (present objects) is that the longer wavelength radiation emitted by the source can be suppressed by the high-energy radiation from the central source. Another result is that the smallest radius of the emission source is one day since the epoch span used in this work is one day. The mass of the black holes at the centers of these sources is found to be less than or equal to 108 solar masses, respectively.

Keywords: active galaxies, variability, Seyfert galaxies, SDSS, WISE

Procedia PDF Downloads 110
990 Monitoring the Railways by Means of C-OTDR Technology

Authors: Andrey V. Timofeev

Abstract:

This paper presents development results of the method of seismoacoustic activity monitoring based on usage vibrosensitive properties of optical fibers. Analysis of Rayleigh backscattering radiation parameters changes, which take place due to microscopic seismoacoustic impacts on the optical fiber, allows to determine seismoacoustic emission sources positions and to identify their types. Results of using this approach are successful for complex monitoring of railways.

Keywords: C-OTDR systems, monitoring of railways, Rayleigh backscattering, eismoacoustic activity

Procedia PDF Downloads 367
989 Auto Surgical-Emissive Hand

Authors: Abhit Kumar

Abstract:

The world is full of master slave Telemanipulator where the doctor’s masters the console and the surgical arm perform the operations, i.e. these robots are passive robots, what the world needs to focus is that in use of these passive robots we are acquiring doctors for operating these console hence the utilization of the concept of robotics is still not fully utilized ,hence the focus should be on active robots, Auto Surgical-Emissive Hand use the similar concept of active robotics where this anthropomorphic hand focuses on the autonomous surgical, emissive and scanning operation, enabled with the vision of 3 way emission of Laser Beam/-5°C < ICY Steam < 5°C/ TIC embedded in palm of the anthropomorphic hand and structured in a form of 3 way disc. Fingers of AS-EH (Auto Surgical-Emissive Hand) as called, will have tactile, force, pressure sensor rooted to it so that the mechanical mechanism of force, pressure and physical presence on the external subject can be maintained, conversely our main focus is on the concept of “emission” the question arises how all the 3 non related methods will work together that to merged in a single programmed hand, all the 3 methods will be utilized according to the need of the external subject, the laser if considered will be emitted via a pin sized outlet, this radiation is channelized via a thin channel which further connect to the palm of the surgical hand internally leading to the pin sized outlet, here the laser is used to emit radiation enough to cut open the skin for removal of metal scrap or any other foreign material while the patient is in under anesthesia, keeping the complexity of the operation very low, at the same time the TIC fitted with accurate temperature compensator will be providing us the real time feed of the surgery in the form of heat image, this gives us the chance to analyze the level, also ATC will help us to determine the elevated body temperature while the operation is being proceeded, the thermal imaging camera in rooted internally in the AS-EH while also being connected to the real time software externally to provide us live feedback. The ICY steam will provide the cooling effect before and after the operation, however for more utilization of this concept we can understand the working of simple procedure in which If a finger remain in icy water for a long time it freezes the blood flow stops and the portion become numb and isolated hence even if you try to pinch it will not provide any sensation as the nerve impulse did not coordinated with the brain hence sensory receptor did not got active which means no sense of touch was observed utilizing the same concept we can use the icy stem to be emitted via a pin sized hole on the area of concern ,temperature below 273K which will frost the area after which operation can be done, this steam can also be use to desensitized the pain while the operation in under process. The mathematical calculation, algorithm, programming of working and movement of this hand will be installed in the system prior to the procedure, since this AS-EH is a programmable hand it comes with the limitation hence this AS-EH robot will perform surgical process of low complexity only.

Keywords: active robots, algorithm, emission, icy steam, TIC, laser

Procedia PDF Downloads 338
988 Cu3SbS3 as Anode Material for Sodium Batteries

Authors: Atef Y. Shenouda, Fei Xu

Abstract:

Cu₃SbS₃ (CAS) was synthesized by direct solid-state reaction from elementary Cu, Sb, & S and hydrothermal reaction using thioacetamide (TAM). Crystal structure and morphology for the prepared phases of Cu₃SbS₃ were studied via X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). The band gap energies are 2 and 2.2 eV for the prepared samples. The two samples are as anode for Na ion storage. They show high initial capacity to 490 mAh/g. Na cell prepared from TAM sample shows 280 mAh/g after 25 cycles vs. 60 mAh/g for elemental sample.

Keywords: Cu3SbS3, sodium batteries, thioacetamide, sulphur sources

Procedia PDF Downloads 42
987 GPS Signal Correction to Improve Vehicle Location during Experimental Campaign

Authors: L. Della Ragione, G. Meccariello

Abstract:

In recent years the progress of the automobile industry in Italy in the field of reduction of emissions values is very remarkable. Nevertheless, their evaluation and reduction is a key problem, especially in the cities, which account for more than 50% of world population. In this paper we dealt with the problem of describing a quantitative approach for the reconstruction of GPS coordinates and altitude, in the context of correlation study between driving cycles / emission / geographical location, during an experimental campaign realized with some instrumented cars.

Keywords: air pollution, driving cycles, GPS signal, vehicle location

Procedia PDF Downloads 409
986 Enhanced Ripening Behaviour of Manganese Doped Cadmium Selenide Quantum Dots (Mn-doped CdSe QDs)

Authors: N. A. Hamizi, M. R. Johan, Y. H. Hor, A. N. Sabri, Y. Y. A. Yong

Abstract:

In this research, Mn-doped CdSe QDs is synthesized by using paraffin liquid as the reacting solvent and oleic acid as the ligands for Cd in order to produce Mn-doped CdSe QDs in zinc-blende crystal structure. Characterization studies for synthesized Mn-doped CdSe QDs are carried out using UV-visible and photoluminescence spectroscopy. The absorption wavelengths in UV-vis test and emission wavelengths in PL test were increase with the increases in the ripening temperature and time respectively.

Keywords: semiconductor, chemical synthesis, optical properties, ripening

Procedia PDF Downloads 346
985 Long-Term Conservation Tillage Impact on Soil Properties and Crop Productivity

Authors: Danute Karcauskiene, Dalia Ambrazaitiene, Regina Skuodiene, Monika Vilkiene, Regina Repsiene, Ieva Jokubauskaite

Abstract:

The main ambition for nowadays agriculture is to get the economically effective yield and to secure the soil ecological sustainability. According to the effect on the main soil quality indexes, tillage systems may be separated into two types, conventional and conservation tillage. The goal of this study was to determine the impact of conservation and conventional primary soil tillage methods and soil fertility improvement measures on soil properties and crop productivity. Methods: The soil of the experimental site is Dystric Glossic Retisol (WRB 2014) with texture of sandy loam. The trial was established in 2003 in the experimental field of crop rotation of Vėžaičiai Branch of Lithuanian Research Centre for Agriculture and Forestry. Trial factors and treatments: factor A- primary soil tillage in (autumn): deep ploughing (20-25cm), shallow ploughing (10-12cm), shallow ploughless tillage (8-10cm); factor B – soil fertility improvement measures: plant residues, plant residues + straw, green manure 1st cut + straw, farmyard manure 40tha-1 + straw. The four - course crop rotation consisted of red clover, winter wheat, spring rape and spring barley with undersown. Results: The tillage had no statistically significant effect on topsoil (0-10 cm) pHKCl level, it was 5.5 - 5.7. During all experiment period, the highest soil pHKCl level (5.65) was in the shallow ploughless tillage. The organic fertilizers particularly the biomass of grass and farmyard manure had tendency to increase the soil pHKCl. The content of plant - available phosphorus and potassium significantly increase in the shallow ploughing compared with others tillage systems. The farmyard manure increases those elements in whole arable layer. The dissolved organic carbon concentration was significantly higher in the 0 - 10 cm soil layer in the shallow ploughless tillage compared with deep ploughing. After the incorporation of clover biomass and farmyard manure the concentration of dissolved organic carbon increased in the top soil layer. During all experiment period the largest amount of water stable aggregates was determined in the soil where the shallow ploughless tillage was applied. It was by 12% higher compared with deep ploughing. During all experiment time, the soil moisture was higher in the shallow ploughing and shallow ploughless tillage (9-27%) compared to deep ploughing. The lowest emission of CO2 was determined in the deep ploughing soil. The highest rate of CO2 emission was in shallow ploughless tillage. The addition of organic fertilisers had a tendency to increase the CO2 emission, but there was no statistically significant effect between the different types of organic fertilisers. The crop yield was larger in the deep ploughing soil compared to the shallow and shallow ploughless tillage.

Keywords: reduced tillage, soil structure, soil pH, biological activity, crop productivity

Procedia PDF Downloads 244
984 Waste Management in Africa

Authors: Peter Ekene Egwu

Abstract:

Waste management is of critical importance in Africa for reasons related to public health, human dignity, climate resilience and environmental preservation. However, delivering waste management services requires adequate funding, which has generally been lacking in a context where the generation of waste is outpacing the development of waste management infrastructure in most cities. The sector represents a growing percentage of cities’ greenhouse gas (GHG) emissions, and some of the African cities profiled in this study are now designing waste management strategies with emission reduction in mind.

Keywords: management waste material, Africa, uses of new technology to manage waste, waste management

Procedia PDF Downloads 42
983 Structural Properties of Surface Modified PVA: Zn97Pr3O Polymer Nanocomposite Free Standing Films

Authors: Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian, Héctor D. Mansilla, José Ruiz

Abstract:

Rare earth ions doped semiconductor nanostructures gained much attention due to their novel physical and chemical properties which lead to potential applications in laser technology as inexpensive luminescent materials. Doping of rare earth ions into ZnO semiconductor alter its electronic structure and emission properties. Surface modification (polymer covering) is one of the simplest techniques to modify the emission characteristics of host materials. The present work reports the synthesis and structural properties of PVA:Zn97Pr3O polymer nanocomposite free standing films. To prepare Pr3+ doped ZnO nanostructures and PVA:Zn97Pr3O polymer nanocomposite free standing films, the colloidal chemical and solution casting techniques were adopted, respectively. The formation of PVA:Zn97Pr3O films were confirmed through X-ray diffraction (XRD), absorption and Fourier transform infrared (FTIR) spectroscopy analyses. XRD measurements confirm the prepared materials are crystalline having hexagonal wurtzite structure. Polymer composite film exhibits the diffraction peaks of both PVA and ZnO structures. TEM images reveal the pure and Pr3+ doped ZnO nanostructures exhibit sheet like morphology. Optical absorption spectra show free excitonic absorption band of ZnO at 370 nm and, the PVA:Zn97Pr3O polymer film shows absorption bands at ~282 and 368 nm and these arise due to the presence of carbonyl containing structures connected to the PVA polymeric chains, mainly at the ends and free excitonic absorption of ZnO nanostructures, respectively. Transmission spectrum of as prepared film shows 57 to 69% of transparency in the visible and near IR region. FTIR spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.

Keywords: rare earth doped ZnO, polymer composites, structural characterization, surface modification

Procedia PDF Downloads 345
982 An Efficient Emitting Supramolecular Material Derived from Calixarene: Synthesis, Optical and Electrochemical Features

Authors: Serkan Sayin, Songul F. Varol

Abstract:

High attention on the organic light-emitting diodes has been paid since their efficient properties in the flat panel displays, and solid-state lighting was realized. Because of their high efficient electroluminescence, brightness and providing eminent in the emission range, organic light emitting diodes have been preferred a material compared with the other materials consisting of the liquid crystal. Calixarenes obtained from the reaction of p-tert-butyl phenol and formaldehyde in a suitable base have been potentially used in various research area such as catalysis, enzyme immobilization, and applications, ion carrier, sensors, nanoscience, etc. In addition, their tremendous frameworks, as well as their easily functionalization, make them an effective candidate in the applied chemistry. Herein, a calix[4]arene derivative has been synthesized, and its structure has been fully characterized using Fourier Transform Infrared Spectrophotometer (FTIR), proton nuclear magnetic resonance (¹H-NMR), carbon-13 nuclear magnetic resonance (¹³C-NMR), liquid chromatography-mass spectrometry (LC-MS), and elemental analysis techniques. The calixarene derivative has been employed as an emitting layer in the fabrication of the organic light-emitting diodes. The optical and electrochemical features of calixarane-contained organic light-emitting diodes (Clx-OLED) have been also performed. The results showed that Clx-OLED exhibited blue emission and high external quantum efficacy. As a conclusion obtained results attributed that the synthesized calixarane derivative is a promising chromophore with efficient fluorescent quantum yield that provides it an attractive candidate for fabricating effective materials for fluorescent probes and labeling studies. This study was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK Grant no. 117Z402).

Keywords: calixarene, OLED, supramolecular chemistry, synthesis

Procedia PDF Downloads 235
981 The Impact of Shifting Trading Pattern from Long-Haul to Short-Sea to the Car Carriers’ Freight Revenues

Authors: Tianyu Wang, Nikita Karandikar

Abstract:

The uncertainty around cost, safety, and feasibility of the decarbonized shipping fuels has made it increasingly complex for the shipping companies to set pricing strategies and forecast their freight revenues going forward. The increase in the green fuel surcharges will ultimately influence the automobile’s consumer prices. The auto shipping demand (ton-miles) has been gradually shifting from long-haul to short-sea trade over the past years following the relocation of the original equipment manufacturer (OEM) manufacturing to regions such as South America and Southeast Asia. The objective of this paper is twofold: 1) to investigate the car-carriers freight revenue development over the years when the trade pattern is gradually shifting towards short-sea exports 2) to empirically identify the quantitative impact of such trade pattern shifting to mainly freight rate, but also vessel size, fleet size as well as Green House Gas (GHG) emission in Roll on-Roll Off (Ro-Ro) shipping. In this paper, a model of analyzing and forecasting ton-miles and freight revenues for the trade routes of AS-NA (Asia to North America), EU-NA (Europe to North America), and SA-NA (South America to North America) is established by deploying Automatic Identification System (AIS) data and the financial results of a selected car carrier company. More specifically, Wallenius Wilhelmsen Logistics (WALWIL), the Norwegian Ro-Ro carrier listed on Oslo Stock Exchange, is selected as the case study company in this paper. AIS-based ton-mile datasets of WALWIL vessels that are sailing into North America region from three different origins (Asia, Europe, and South America), together with WALWIL’s quarterly freight revenues as reported in trade segments, will be investigated and compared for the past five years (2018-2022). Furthermore, ordinary‐least‐square (OLS) regression is utilized to construct the ton-mile demand and freight revenue forecasting. The determinants of trade pattern shifting, such as import tariffs following the China-US trade war and fuel prices following the 0.1% Emission Control Areas (ECA) zone requirement after IMO2020 will be set as key variable inputs to the machine learning model. The model will be tested on another newly listed Norwegian Car Carrier, Hoegh Autoliner, to forecast its 2022 financial results and to validate the accuracy based on its actual results. GHG emissions on the three routes will be compared and discussed based on a constant emission per mile assumption and voyage distances. Our findings will provide important insights about 1) the trade-off evaluation between revenue reduction and energy saving with the new ton-mile pattern and 2) how the trade flow shifting would influence the future need for the vessel and fleet size.

Keywords: AIS, automobile exports, maritime big data, trade flows

Procedia PDF Downloads 96
980 Investigating the Effect of Ceramic Thermal Barrier Coating on Diesel Engine with Lemon Oil Biofuel

Authors: V. Karthickeyan

Abstract:

The demand for energy is anticipated to increase, due to growing urbanization, industrialization, upgraded living standards and cumulatively increasing human population. The general public is becoming gradually aware of the diminishing fossil fuel resources along with the environmental issues, and it has become clear that biofuel is intended to make significant support to the forthcoming energy needs of the native and industrial sectors. Nowadays, the investigation on biofuels obtained from peels of fruits and vegetables have gained the consideration as an environment-friendly alternative to diesel. In the present work, biofuel was produced from non-edible Lemon Oil (LO) using steam distillation process. LO is characterized by its beneficial aspects like low kinematic viscosity and enhanced calorific value which provides better fuel atomization and evaporation. Furthermore, the heating values of the biofuels are approximately equal to diesel. A single cylinder, four-stroke diesel engine was used for this experimentation. An engine modification technique namely Thermal Barrier Coating (TBC) was attempted. Combustion chamber components were thermally coated with ceramic material namely partially stabilized zirconia (PSZ). The benefit of thermal barrier coating is to diminish the heat loss from engine and transform the collected heat into piston work. Performance characteristics like Brake Thermal Efficiency (BTE) and Brake Specific Fuel Consumption (BSFC) were analyzed. Combustion characteristics like in-cylinder pressure and heat release rate were analyzed. In addition, the following engine emissions namely nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke were measured. The acquired performance combustion and emission characteristics of uncoated engine were compared with PSZ coated engine. From the results, it was perceived that the LO biofuel may be considered as the prominent alternative in the near prospect with thermal barrier coating technique to enrich the performance, combustion and emission characteristics of diesel engine.

Keywords: ceramic material, thermal barrier coating, biofuel and diesel engine

Procedia PDF Downloads 133
979 Photophysics and Photochemistry of Cross-Conjugated Y-Shaped Enediyne Fluorophores

Authors: Anuja Singh, Avik K. Pati, Ashok K. Mishra

Abstract:

Organic fluorophores with π-conjugated scaffolds are important because of their interesting optoelectronic properties. In recent years, our lab has been engaged in understanding the photophysics of small diacetylene bridged fluorophores and found the diynes as a promising class of π-conjugated fluorophores. Building on this understanding, recently we have focused on the photophysics of a less explored class of cross-conjugated Y-shaped enediynes (one double and two triple bonds). Here we present the photophysical properties of such enediynes which show interesting photophysical properties that include dual emissions from locally excited (LE) and intramolecular charge transfer (ICT) states and ring size dependent aggregate fluorescence in non-aqueous media. The dyes also show prominent aggregate fluorescence in mixed-aqueous solvents and solid powder form. We further show that the solid state fluorescence can be reversibly switched multiple of cycles by external stimuli, highlighting their potential applications in solid states. The enediynes with push-pull electronic substituents/moieties exhibit high contrast fluorescence color switching upon continuous photon illumination. The intriguing photophysical outcomes of the enediynyl fluorophores are judiciously exploited to generate single-component white light emission in binary solvent mixtures and sense polar aprotic vapor in polymer film matrices. The photophysical behavior of the dyes is further successfully utilized to monitor the microenvironment changes of biologically relevant anisotropic media such as bile salts. In summary, the newly introduced cross-conjugated enediynes enrich the toolbox of organic fluorophores and vouch to display versatile applications.

Keywords: aggregation in solution and solid state, enediynes, physical photochemistry and photophysics, vapor sensing and white light emission

Procedia PDF Downloads 461
978 Graphical Modeling of High Dimension Processes with an Environmental Application

Authors: Ali S. Gargoum

Abstract:

Graphical modeling plays an important role in providing efficient probability calculations in high dimensional problems (computational efficiency). In this paper, we address one of such problems where we discuss fragmenting puff models and some distributional assumptions concerning models for the instantaneous, emission readings and for the fragmenting process. A graphical representation in terms of a junction tree of the conditional probability breakdown of puffs and puff fragments is proposed.

Keywords: graphical models, influence diagrams, junction trees, Bayesian nets

Procedia PDF Downloads 378
977 Phytoremediation Potential of Enhanced Tobacco BAC F3 in Soil Contaminated with Heavy Metals

Authors: Violina Angelova

Abstract:

A comparative study has been carried out into the impact of organic meliorants on the uptake of heavy metals, micro and macroelements and the phytoremediation potential of enhanced tobacco BAC F3. The soil used as part of this experiment was sampled from the vicinity of the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. The pot experiment carried out consisted of a randomized, complete block design containing nine treatments and three replications (27 pots). The treatments consisted of a control (with no organic meliorants) and compost and vermicompost meliorants (added at 5%, 10%, 15%, and 30%, and recalculated based on their dry soil weight). Upon reaching commercial ripeness, the tobacco plants were gathered. Heavy metals, micro and macroelement contents in roots, stems, and leaves of tobacco were analyzed by the method of the microwave mineralization. To determine the elements in the samples, inductively coupled emission spectrometry (Jobin Yvon Emission - JY 38 S, France) was used. The distribution of the heavy metals, micro, and macroelements in the organs of the enhanced tobacco has a selective character and depended above all on the parts of the plants and the element that was examined. Pb, Zn, Cu, Fe, Mn, P and Mg distribution in tobacco decreases in the following order: roots > leaves > stems, and for Cd, K, and Ca - leaves > roots > stems. The high concentration of Cd in the leaves and the high translocation factor indicate the possibility of enhanced tobacco to be used in phytoextraction. Tested organic amendments significantly influenced the uptake of heavy metals, micro and macroelements by the roots, stems, and leaves of tobacco. A correlation was found between the quantity of the mobile forms and the uptake of Pb, Zn, and Cd by the enhanced tobacco. The compost and vermicompost treatments significantly reduced heavy metals concentration in leaves and increased uptake of K, Ca and Mg. The 30% compost and 30% vermicompost treatments led to the maximal reduction of heavy metals in enhanced tobacco BAC F3. The addition of compost and vermicompost further reduces the ability to digest the heavy metals in the leaves, and phytoremediation potential of enhanced tobacco BAC F3. Acknowledgment: The financial support by the Bulgarian National Science Fund Project DFNI Н04/9 is greatly appreciated.

Keywords: heavy metals, micro and macroelements, enhanced tobacco BAC F3, phytoremediation, organic meliorants

Procedia PDF Downloads 136
976 Analysis of the Environmental Impact of Selected Small Heat and Power Plants Operating in Poland

Authors: M. Stelmachowski, M. Wojtczak

Abstract:

The aim of the work was to assess the environmental impact of the selected small and medium-sized companies supplying heat and electricity to the cities with a population of about 50,000 inhabitants. Evaluation and comparison of the impact on the environment have been carried out for the three plants producing heat and two CHP plants with particular attention to emissions into the atmosphere and the impact of introducing a system of trading carbon emissions of these companies.

Keywords: CO2 emission, district heating, heat and power plant, impact on environment

Procedia PDF Downloads 455
975 Ultra-Low NOx Combustion Technology of Liquid Fuel Burner

Authors: Sewon Kim, Changyeop Lee

Abstract:

A new concept of in-furnace partial oxidation combustion is successfully applied in this research. The burner is designed such that liquid fuel is prevaporized in the furnace then injected into a fuel rich combustion zone so that a partial oxidation reaction occurs. The effects of equivalence ratio, thermal load, injection distance and fuel distribution ratio on the NOx and CO are experimentally investigated. This newly developed burner showed very low NOx emission level, about 15 ppm when light oil is used as a fuel.

Keywords: burner, low NOx, liquid fuel, partial oxidation

Procedia PDF Downloads 321
974 Field Emission Scanning Microscope Image Analysis for Porosity Characterization of Autoclaved Aerated Concrete

Authors: Venuka Kuruwita Arachchige Don, Mohamed Shaheen, Chris Goodier

Abstract:

Aerated autoclaved concrete (AAC) is known for its lightweight, easy handling, high thermal insulation, and extremely porous structure. Investigation of pore behavior in AAC is crucial for characterizing the material, standardizing design and production techniques, enhancing the mechanical, durability, and thermal performance, studying the effectiveness of protective measures, and analyzing the effects of weather conditions. The significant details of pores are complicated to observe with acknowledged accuracy. The High-resolution Field Emission Scanning Electron Microscope (FESEM) image analysis is a promising technique for investigating the pore behavior and density of AAC, which is adopted in this study. Mercury intrusion porosimeter and gas pycnometer were employed to characterize porosity distribution and density parameters. The analysis considered three different densities of AAC blocks and three layers in the altitude direction within each block. A set of understandings was presented to extract and analyze the details of pore shape, pore size, pore connectivity, and pore percentages from FESEM images of AAC. Average pore behavior outcomes per unit area were presented. Comparison of porosity distribution and density parameters revealed significant variations. FESEM imaging offered unparalleled insights into porosity behavior, surpassing the capabilities of other techniques. The analysis conducted from a multi-staged approach provides porosity percentage occupied by various pore categories, total porosity, variation of pore distribution compared to AAC densities and layers, number of two-dimensional and three-dimensional pores, variation of apparent and matrix densities concerning pore behaviors, variation of pore behavior with respect to aluminum content, and relationship among shape, diameter, connectivity, and percentage in each pore classification.

Keywords: autoclaved aerated concrete, density, imaging technique, microstructure, porosity behavior

Procedia PDF Downloads 34
973 [Keynote Talk]: Heavy Metals in Marine Sediments of Gulf of Izmir

Authors: E. Kam, Z. U. Yümün, D. Kurt

Abstract:

In this study, sediment samples were collected from four sampling sites located on the shores of the Gulf of İzmir. In the samples, Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn concentrations were determined using inductively coupled, plasma-optical emission spectrometry (ICP-OES). The average heavy metal concentrations were: Cd < LOD (limit of detection); Co 14.145 ± 0.13 μg g−1; Cr 112.868 ± 0.89 μg g−1; Cu 34.045 ± 0.53 μg g−1; Mn 481.43 ± 7.65 μg g−1; Ni 76.538 ± 3.81 μg g−1; Pb 11.059 ± 0.53 μg g−1 and Zn 140.133 ± 1.37 μg g−1, respectively. The results were compared with the average abundances of these elements in the Earth’s crust. The measured heavy metal concentrations can serve as reference values for further studies carried out on the shores of the Aegean Sea.

Keywords: heavy metal, Aegean Sea, ICP-OES, sediment

Procedia PDF Downloads 171
972 The Effect of Online Analyzer Malfunction on the Performance of Sulfur Recovery Unit and Providing a Temporary Solution to Reduce the Emission Rate

Authors: Hamid Reza Mahdipoor, Mehdi Bahrami, Mohammad Bodaghi, Seyed Ali Akbar Mansoori

Abstract:

Nowadays, with stricter limitations to reduce emissions, considerable penalties are imposed if pollution limits are exceeded. Therefore, refineries, along with focusing on improving the quality of their products, are also focused on producing products with the least environmental impact. The duty of the sulfur recovery unit (SRU) is to convert H₂S gas coming from the upstream units to elemental sulfur and minimize the burning of sulfur compounds to SO₂. The Claus process is a common process for converting H₂S to sulfur, including a reaction furnace followed by catalytic reactors and sulfur condensers. In addition to a Claus section, SRUs usually consist of a tail gas treatment (TGT) section to decrease the concentration of SO₂ in the flue gas below the emission limits. To operate an SRU properly, the flow rate of combustion air to the reaction furnace must be adjusted so that the Claus reaction is performed according to stoichiometry. Accurate control of the air demand leads to an optimum recovery of sulfur during the flow and composition fluctuations in the acid gas feed. Therefore, the major control system in the SRU is the air demand control loop, which includes a feed-forward control system based on predetermined feed flow rates and a feed-back control system based on the signal from the tail gas online analyzer. The use of online analyzers requires compliance with the installation and operation instructions. Unfortunately, most of these analyzers in Iran are out of service for different reasons, like the low importance of environmental issues and a lack of access to after-sales services due to sanctions. In this paper, an SRU in Iran was simulated and calibrated using industrial experimental data. Afterward, the effect of the malfunction of the online analyzer on the performance of SRU was investigated using the calibrated simulation. The results showed that an increase in the SO₂ concentration in the tail gas led to an increase in the temperature of the reduction reactor in the TGT section. This increase in temperature caused the failure of TGT and increased the concentration of SO₂ from 750 ppm to 35,000 ppm. In addition, the lack of a control system for the adjustment of the combustion air caused further increases in SO₂ emissions. In some processes, the major variable cannot be controlled directly due to difficulty in measurement or a long delay in the sampling system. In these cases, a secondary variable, which can be measured more easily, is considered to be controlled. With the correct selection of this variable, the main variable is also controlled along with the secondary variable. This strategy for controlling a process system is referred to as inferential control" and is considered in this paper. Therefore, a sensitivity analysis was performed to investigate the sensitivity of other measurable parameters to input disturbances. The results revealed that the output temperature of the first Claus reactor could be used for inferential control of the combustion air. Applying this method to the operation led to maximizing the sulfur recovery in the Claus section.

Keywords: sulfur recovery, online analyzer, inferential control, SO₂ emission

Procedia PDF Downloads 54
971 Rising Levels of Greenhouse Gases: Implication for Global Warming in Anambra State South Eastern Nigeria

Authors: Chikwelu Edward Emenike, Ogbuagu Uchenna Fredrick

Abstract:

About 34% of the solar radiant energy reaching the earth is immediately reflected back to space as incoming radiation by clouds, chemicals, dust in the atmosphere and by the earth’s surface. Most of the remaining 66% warms the atmosphere and land. Most of the incoming solar radiation not reflect away is degraded into low-quality heat and flows into space. The rate at which this energy returns to space as low-quality heat is affected by the presence of molecules of greenhouse gases. Gaseous emission was measured with the aid of Growen gas Analyzer with a digital readout. Total measurements of eight parameters of twelve selected sample locations taken at two different seasons within two months were made. The ambient air quality investigation in Anambra State has shown the overall mean concentrations of gaseous emission at twelve (12) locations. The mean gaseous emissions showed (NO2=0.66ppm, SO2=0.30ppm, CO=43.93ppm, H2S=2.17ppm, CH4=1.27ppm, CFC=1.59ppb, CO2=316.33ppm, N2O=302.67ppb and O3=0.37ppm). These values do not conform to the National Ambient Air Quality Standard (NAAQS) and thus contribute significantly to the global warming. Because some of these gaseous emissions (SO2, NO2) are oxidizing agents, they act as irritants that damage delicate tissues in the eyes and respiratory passages. These can impair lung function and trigger cardiovascular problems as the heart tries to compensate for lack of Oxygen by pumping faster and harder. The major sources of air pollution are transportation, industrial processes, stationary fuel combustion and solid waste disposal, thus much is yet to be done in a developing country like Nigeria. Air pollution control using pollution-control equipment to reduce the major conventional pollutants, relocating people who live very close to dumpsites, processing and treatment of gases to produce electricity, heat, fuel and various chemical components should be encouraged.

Keywords: ambient air, atmosphere, greenhouse gases, anambra state

Procedia PDF Downloads 402
970 Characteristics and Feature Analysis of PCF Labeling among Construction Materials

Authors: Sung-mo Seo, Chang-u Chae

Abstract:

The Product Carbon Footprint Labeling has been run for more than four years by the Ministry of Environment and there are number of products labeled by KEITI, as for declaring products with their carbon emission during life cycle stages. There are several categories for certifying products by the characteristics of usage. Building products which are applied to a building as combined components. In this paper, current status of PCF labeling has been compared with LCI DB for data composition. By this comparative analysis, we suggest carbon labeling development.

Keywords: carbon labeling, LCI DB, building materials, life cycle assessment

Procedia PDF Downloads 406
969 Effect of Windrow Management on Ammonia and Nitrous Oxide Emissions from Swine Manure Composting

Authors: Nanh Lovanh, John Loughrin, Kimberly Cook, Phil Silva, Byung-Taek Oh

Abstract:

In the era of sustainability, utilization of livestock wastes as soil amendment to provide micronutrients for crops is very economical and sustainable. It is well understood that livestock wastes are comparable, if not better, nutrient sources for crops as chemical fertilizers. However, the large concentrated volumes of animal manure produced from livestock operations and the limited amount of available nearby agricultural land areas necessitated the need for volume reduction of these animal wastes. Composting of these animal manures is a viable option for biomass and pathogenic reduction in the environment. Nevertheless, composting also increases the potential loss of available nutrients for crop production as well as unwanted emission of anthropogenic air pollutants due to the loss of ammonia and other compounds via volatilization. In this study, we examine the emission of ammonia and nitrous oxide from swine manure windrows to evaluate the benefit of biomass reduction in conjunction with the potential loss of available nutrients. The feedstock for the windrows was obtained from swine farm in Kentucky where swine manure was mixed with wood shaving as absorbent material. Static flux chambers along with photoacoustic gas analyzer were used to monitor ammonia and nitrous oxide concentrations during the composting process. The results show that ammonia and nitrous oxide fluxes were quite high during the initial composting process and after the turning of each compost pile. Over the period of roughly three months of composting, the biochemical oxygen demand (BOD) decreased by about 90%. Although composting of animal waste is quite beneficial for biomass reduction, composting may not be economically feasible from an agronomical point of view due to time, nutrient loss (N loss), and potential environmental pollution (ammonia and greenhouse gas emissions). Therefore, additional studies are needed to assess and validate the economics and environmental impact of animal (swine) manure composting (e.g., crop yield or impact on climate change).

Keywords: windrow, swine manure, ammonia, nitrous oxide, fluxes, management

Procedia PDF Downloads 336
968 NFC Kenaf Core Graphene Paper: In-situ Method Application

Authors: M. A. Izzati, R. Rosazley, A. W. Fareezal, M. Z. Shazana, I. Rushdan, M. Jani

Abstract:

Ultrasonic probe were using to produce nanofibrillated cellulose (NFC) kenaf core. NFC kenaf core and graphene was mixed using in-situ method with the 5V voltage for 24 hours. The resulting NFC graphene paper was characterized by field emission scanning electron microscopy (FESEM), fourier transformed infrared (FTIR) spectra and thermogavimetric analysis (TGA). The properties of NFC kenaf core graphene paper are compared with properties of pure NFC kenaf core paper.

Keywords: NFC, kenaf core, graphene, in-situ method

Procedia PDF Downloads 379