Search results for: optimal search
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4821

Search results for: optimal search

81 Multi-Objective Optimization of Assembly Manufacturing Factory Setups

Authors: Andreas Lind, Aitor Iriondo Pascual, Dan Hogberg, Lars Hanson

Abstract:

Factory setup lifecycles are most often described and prepared in CAD environments; the preparation is based on experience and inputs from several cross-disciplinary processes. Early in the factory setup preparation, a so-called block layout is created. The intention is to describe a high-level view of the intended factory setup and to claim area reservations and allocations. Factory areas are then blocked, i.e., targeted to be used for specific intended resources and processes, later redefined with detailed factory setup layouts. Each detailed layout is based on the block layout and inputs from cross-disciplinary preparation processes, such as manufacturing sequence, productivity, workers’ workplace requirements, and resource setup preparation. However, this activity is often not carried out with all variables considered simultaneously, which might entail a risk of sub-optimizing the detailed layout based on manual decisions. Therefore, this work aims to realize a digital method for assembly manufacturing layout planning where productivity, area utilization, and ergonomics can be considered simultaneously in a cross-disciplinary manner. The purpose of the digital method is to support engineers in finding optimized designs of detailed layouts for assembly manufacturing factories, thereby facilitating better decisions regarding setups of future factories. Input datasets are company-specific descriptions of required dimensions for specific area reservations, such as defined dimensions of a worker’s workplace, material façades, aisles, and the sequence to realize the product assembly manufacturing process. To test and iteratively develop the digital method, a demonstrator has been developed with an adaptation of existing software that simulates and proposes optimized designs of detailed layouts. Since the method is to consider productivity, ergonomics, area utilization, and constraints from the automatically generated block layout, a multi-objective optimization approach is utilized. In the demonstrator, the input data are sent to the simulation software industrial path solutions (IPS). Based on the input and Lua scripts, the IPS software generates a block layout in compliance with the company’s defined dimensions of area reservations. Communication is then established between the IPS and the software EPP (Ergonomics in Productivity Platform), including intended resource descriptions, assembly manufacturing process, and manikin (digital human) resources. Using multi-objective optimization approaches, the EPP software then calculates layout proposals that are sent iteratively and simulated and rendered in IPS, following the rules and regulations defined in the block layout as well as productivity and ergonomics constraints and objectives. The software demonstrator is promising. The software can handle several parameters to optimize the detailed layout simultaneously and can put forward several proposals. It can optimize multiple parameters or weight the parameters to fine-tune the optimal result of the detailed layout. The intention of the demonstrator is to make the preparation between cross-disciplinary silos transparent and achieve a common preparation of the assembly manufacturing factory setup, thereby facilitating better decisions.

Keywords: factory setup, multi-objective, optimization, simulation

Procedia PDF Downloads 148
80 Pharmacokinetic Assessment of Antimicrobial Treatment of Acute Exacerbations of Chronic Obstructive Pulmonary Disease in Hospitalized Patients Colonized with Pseudomonas aeruginosa

Authors: Juliette Begin, Juliano Colapelle, Andrea Taratanu, Daniel Thirion, Amelie Marsot, Bryan A. Ross

Abstract:

Chronic obstructive pulmonary disease (COPD), a leading cause of death globally, is characterized by chronic airflow obstruction and acute exacerbations (AECOPDs) that are often triggered by respiratory infections. Pseudomonas aeruginosa (P. aeruginosa), a potentially serious bacterial cause of AECOPDs, is treated with targeted anti-pseudomonal antibiotics. These select few antimicrobials are often used as first-line therapy in patients who are clinically unwell and/or in those suspected of P. aeruginosa-related infection prior to confirmation, potentially contributing to antimicrobial resistance. The present study evaluates prescribing practices in patients with a confirmed sputum history of P. aeruginosa admitted for AECOPD at the McGill University Health Centre (MUHC) and treated with anti-pseudomonal antibiotics. Serum antibiotic concentrations were measured from the same-day peak, trough, and mid-dose blood sampling intervals after reaching steady-state (on or after day 3) and were quantified using ultra-high-performance liquid chromatography (UHPLC). Demographic, clinical, and treatment outcomes were extracted from patient medical charts. Treatment failure was defined by respiratory-related death or mechanical ventilation after ≥3 days of antibiotics; antibiotic therapy extended beyond 2 weeks or a new antibiotic regimen started; or urgent care readmission within 30 days for AECOPD. To date, 9 of 30 planned participants have completed testing: seven received ciprofloxacin, one received meropenem, and one received piperacillin-tazobactam. Due to serum sample batching requirements, the serum ciprofloxacin concentration results for the first 2/8 participants are presented at the time of writing. The first participant had serum levels of 5.45mg/L (T₀), 4.74mg/L (T₅₀), and 4.49mg/L (T₁₀₀), while the second had serum levels of 5mg/L (T₀), 2.6mg/L (T₅₀), and 2.51mg/L (T₁₀₀). Pharmacokinetic parameters Cmax (5.18±0.43mg/L), T₁/₂ (23.56±18.94hours), and AUC (181.9±155.95mg*h/l) were higher than reported monograph values and met target AUC-to-MIC ratio of >125. The patients treated with meropenem and with piperacillin-tazobactam experienced treatment failure. Preliminary results suggest that standard ciprofloxacin dosing in patients experiencing an AECOPD and colonized with P. aeruginosa appears to achieve effective serum concentrations. Final cohort results will inform the pharmacokinetic appropriateness and clinical sufficiency of current AECOPD antimicrobial strategies in P. aeruginosa-colonized patients. This study will guide clinicians in determining the appropriate dosing for AECOPD treatment to achieve therapeutic levels, optimizing outcomes, and minimizing adverse effects. It could also highlight the value of routine antibiotic level monitoring in patients with treatment failure to ensure optimal serum concentrations.

Keywords: acute exacerbation, antimicrobial resistance, chronic obstructive pulmonary disease, pharmacokinetics/pharmacodynamics, Pseudomonas aeruginosa

Procedia PDF Downloads 12
79 Deep Learning-Based Classification of 3D CT Scans with Real Clinical Data; Impact of Image format

Authors: Maryam Fallahpoor, Biswajeet Pradhan

Abstract:

Background: Artificial intelligence (AI) serves as a valuable tool in mitigating the scarcity of human resources required for the evaluation and categorization of vast quantities of medical imaging data. When AI operates with optimal precision, it minimizes the demand for human interpretations and, thereby, reduces the burden on radiologists. Among various AI approaches, deep learning (DL) stands out as it obviates the need for feature extraction, a process that can impede classification, especially with intricate datasets. The advent of DL models has ushered in a new era in medical imaging, particularly in the context of COVID-19 detection. Traditional 2D imaging techniques exhibit limitations when applied to volumetric data, such as Computed Tomography (CT) scans. Medical images predominantly exist in one of two formats: neuroimaging informatics technology initiative (NIfTI) and digital imaging and communications in medicine (DICOM). Purpose: This study aims to employ DL for the classification of COVID-19-infected pulmonary patients and normal cases based on 3D CT scans while investigating the impact of image format. Material and Methods: The dataset used for model training and testing consisted of 1245 patients from IranMehr Hospital. All scans shared a matrix size of 512 × 512, although they exhibited varying slice numbers. Consequently, after loading the DICOM CT scans, image resampling and interpolation were performed to standardize the slice count. All images underwent cropping and resampling, resulting in uniform dimensions of 128 × 128 × 60. Resolution uniformity was achieved through resampling to 1 mm × 1 mm × 1 mm, and image intensities were confined to the range of (−1000, 400) Hounsfield units (HU). For classification purposes, positive pulmonary COVID-19 involvement was designated as 1, while normal images were assigned a value of 0. Subsequently, a U-net-based lung segmentation module was applied to obtain 3D segmented lung regions. The pre-processing stage included normalization, zero-centering, and shuffling. Four distinct 3D CNN models (ResNet152, ResNet50, DensNet169, and DensNet201) were employed in this study. Results: The findings revealed that the segmentation technique yielded superior results for DICOM images, which could be attributed to the potential loss of information during the conversion of original DICOM images to NIFTI format. Notably, ResNet152 and ResNet50 exhibited the highest accuracy at 90.0%, and the same models achieved the best F1 score at 87%. ResNet152 also secured the highest Area under the Curve (AUC) at 0.932. Regarding sensitivity and specificity, DensNet201 achieved the highest values at 93% and 96%, respectively. Conclusion: This study underscores the capacity of deep learning to classify COVID-19 pulmonary involvement using real 3D hospital data. The results underscore the significance of employing DICOM format 3D CT images alongside appropriate pre-processing techniques when training DL models for COVID-19 detection. This approach enhances the accuracy and reliability of diagnostic systems for COVID-19 detection.

Keywords: deep learning, COVID-19 detection, NIFTI format, DICOM format

Procedia PDF Downloads 88
78 Structural Characterization and Hot Deformation Behaviour of Al3Ni2/Al3Ni in-situ Core-shell intermetallic in Al-4Cu-Ni Composite

Authors: Ganesh V., Asit Kumar Khanra

Abstract:

An in-situ powder metallurgy technique was employed to create Ni-Al3Ni/Al3Ni2 core-shell-shaped aluminum-based intermetallic reinforced composites. The impact of Ni addition on the phase composition, microstructure, and mechanical characteristics of the Al-4Cu-xNi (x = 0, 2, 4, 6, 8, 10 wt.%) in relation to various sintering temperatures was investigated. Microstructure evolution was extensively examined using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), and transmission electron microscopy (TEM) techniques. Initially, under sintering conditions, the formation of "Single Core-Shell" structures was observed, consisting of Ni as the core with Al3Ni2 intermetallic, whereas samples sintered at 620°C exhibited both "Single Core-Shell" and "Double Core-Shell" structures containing Al3Ni2 and Al3Ni intermetallics formed between the Al matrix and Ni reinforcements. The composite achieved a high compressive yield strength of 198.13 MPa and ultimate strength of 410.68 MPa, with 24% total elongation for the sample containing 10 wt.% Ni. Additionally, there was a substantial increase in hardness, reaching 124.21 HV, which is 2.4 times higher than that of the base aluminum. Nanoindentation studies showed hardness values of 1.54, 4.65, 21.01, 13.16, 5.52, 6.27, and 8.39GPa corresponding to α-Al matrix, Ni, Al3Ni2, Ni and Al3Ni2 interface, Al3Ni, and their respective interfaces. Even at 200°C, it retained 54% of its room temperature strength (90.51 MPa). To investigate the deformation behavior of the composite material, experiments were conducted at deformation temperatures ranging from 300°C to 500°C, with strain rates varying from 0.0001s-1 to 0.1s-1. A sine-hyperbolic constitutive equation was developed to characterize the flow stress of the composite, which exhibited a significantly higher hot deformation activation energy of 231.44 kJ/mol compared to the self-diffusion of pure aluminum. The formation of Al2Cu intermetallics at grain boundaries and Al3Ni2/Al3Ni within the matrix hindered dislocation movement, leading to an increase in activation energy, which might have an adverse effect on high-temperature applications. Two models, the Strain-compensated Arrhenius model and the Artificial Neural Network (ANN) model, were developed to predict the composite's flow behavior. The ANN model outperformed the Strain-compensated Arrhenius model with a lower average absolute relative error of 2.266%, a smaller root means square error of 1.2488 MPa, and a higher correlation coefficient of 0.9997. Processing maps revealed that the optimal hot working conditions for the composite were in the temperature range of 420-500°C and strain rates between 0.0001s-1 and 0.001s-1. The changes in the composite microstructure were successfully correlated with the theory of processing maps, considering temperature and strain rate conditions. The uneven distribution in the shape and size of Core-shell/Al3Ni intermetallic compounds influenced the flow stress curves, leading to Dynamic Recrystallization (DRX), followed by partial Dynamic Recovery (DRV), and ultimately strain hardening. This composite material shows promise for applications in the automobile and aerospace industries.

Keywords: core-shell structure, hot deformation, intermetallic compounds, powder metallurgy

Procedia PDF Downloads 19
77 Mindmax: Building and Testing a Digital Wellbeing Application for Australian Football Players

Authors: Jo Mitchell, Daniel Johnson

Abstract:

MindMax is a digital community and learning platform built to maximise the wellbeing and resilience of AFL Players and Australian men. The MindMax application engages men, via their existing connection with sport and video games, in a range of wellbeing ideas, stories and actions, because we believe fit minds, kick goals. MindMax is an AFL Players Association led project, supported by a Movember Foundation grant, to improve the mental health of Australian males aged between 16-35 years. The key engagement and delivery strategy for the project was digital technology, sport (AFL) and video games, underpinned by evidenced based wellbeing science. The project commenced April 2015, and the expected completion date is March 2017. This paper describes the conceptual model underpinning product development, including progress, key learnings and challenges, as well as the research agenda. Evaluation of the MindMax project is a multi-pronged approach of qualitative and quantitative methods, including participatory design workshops, online reference groups, longitudinal survey methods, a naturalistic efficacy trial and evaluation of the social and economic return on investment. MindMax is focused on the wellness pathway and maximising our mind's capacity for fitness by sharing and promoting evidence-based actions that support this. A range of these ideas (from ACT, mindfulness and positive psychology) are already being implemented in AFL programs and services, mostly in face-to-face formats, with strong engagement by players. Player's experience features strongly as part of the product content. Wellbeing science is a discipline of psychology that explores what helps individuals and communities to flourish in life. Rather than ask questions about illness and poor functioning, wellbeing scientists and practitioners ask questions about wellness and optimal functioning. While illness and wellness are related, they operate as separate constructs and as such can be influenced through different pathways. The essential idea was to take the evidence-based wellbeing science around building psychological fitness to the places and spaces that men already frequent, namely sport and video games. There are 800 current senior AFL players, 5000+ past players, and 11 million boys and men that are interested in the lives of AFL Players; what they think and do to be their best both on and off field. AFL Players are also keen video gamers – using games as one way to de-stress, connect and build wellbeing. There are 9.5 million active gamers in Australia with 93% of households having a device for playing games. Video games in MindMax will be used as an engagement and learning tool. Gamers (including AFL players) can also share their personal experience of how games help build their mental fitness. Currently available games (i.e., we are not in the game creation business) will also be used to motivate and connect MindMax participants. The MindMax model is built with replication by other sport codes (e.g., Cricket) in mind. It is intended to not only support our current crop of athletes but also the community that surrounds them, so they can maximise their capacity for health and wellbeing.

Keywords: Australian football league, digital application, positive psychology, wellbeing

Procedia PDF Downloads 238
76 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data

Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann

Abstract:

Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.

Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers

Procedia PDF Downloads 205
75 Prostheticly Oriented Approach for Determination of Fixture Position for Facial Prostheses Retention in Cases with Atypical and Combined Facial Defects

Authors: K. A.Veselova, N. V.Gromova, I. N.Antonova, I. N. Kalakutskii

Abstract:

There are many diseases and incidents that may result facial defects and deformities: cancer, trauma, burns, congenital anomalies, and autoimmune diseases. In some cases, patient may acquire atypically extensive facial defect, including more than one anatomical region or, by contrast, atypically small defect (e.g. partial auricular defect). The anaplastology gives us opportunity to help patient with facial disfigurement in cases when plastic surgery is contraindicated. Using of implant retention for facial prosthesis is strongly recommended because improves both aesthetic and functional results and makes using of the prosthesis more comfortable. Prostheticly oriented fixture position is extremely important for aesthetic and functional long-term result; however, the optimal site for fixture placement is not clear in cases with atypical configuration of facial defect. The objective of this report is to demonstrate challenges in fixture position determination we have faced with and offer the solution. In this report, four cases of implant-supported facial prosthesis are described. Extra-oral implants with four millimeter length were used in all cases. The decision regarding the quantity of surgical stages was based on anamnesis of disease. Facial prostheses were manufactured according to conventional technique. Clinical and technological difficulties and mistakes are described, and prostheticly oriented approach for determination of fixture position is demonstrated. The case with atypically large combined orbital and nasal defect resulting after arteriovenous malformation is described: the correct positioning of artificial eye was impossible due to wrong position of the fixture (with suprastructure) located in medial aspect of supraorbital rim. The suprastructure was unfixed and this fixture wasn`t used for retention in order to achieve appropriate artificial eye placement and better aesthetic result. In other case with small partial auricular defect (only helix and antihelix were absent) caused by squamoized cell carcinoma T1N0M0 surgical template was used to avoid the difficulties. To achieve the prostheticly oriented fixture position in case of extremely small defect the template was made on preliminary cast using vacuum thermoforming method. Two radiopaque markers were incorporated into template in preferable for fixture placement positions taking into account future prosthesis configuration. The template was put on remaining ear and cone-beam CT was performed to insure, that the amount of bone is enough for implant insertion in preferable position. Before the surgery radiopaque markers were extracted and template was holed for guide drill. Fabrication of implant-retained facial prostheses gives us opportunity to improve aesthetics, retention and patients’ quality of life. But every inaccuracy in planning leads to challenges on surgery and prosthetic stages. Moreover, in cases with atypically small or extended facial defects prostheticly oriented approach for determination of fixture position is strongly required. The approach including surgical template fabrication is effective, easy and cheap way to avoid mistakes and unpredictable result.

Keywords: anaplastology, facial prosthesis, implant-retained facial prosthesis., maxillofacil prosthese

Procedia PDF Downloads 114
74 Modeling and Energy Analysis of Limestone Decomposition with Microwave Heating

Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

The energy transition is spurred by structural changes in energy demand, supply, and prices. Microwave technology was first proposed as a faster alternative for cooking food. It was found that food heated instantly when interacting with high-frequency electromagnetic waves. The dielectric properties account for a material’s ability to absorb electromagnetic energy and dissipate this energy in the form of heat. Many energy-intense industries could benefit from electromagnetic heating since many of the raw materials are dielectric at high temperatures. Limestone sedimentary rock is a dielectric material intensively used in the cement industry to produce unslaked lime. A numerical 3D model was implemented in COMSOL Multiphysics to study the limestone continuous processing under microwave heating. The model solves the two-way coupling between the Energy equation and Maxwell’s equations as well as the coupling between heat transfer and chemical interfaces. Complementary, a controller was implemented to optimize the overall heating efficiency and control the numerical model stability. This was done by continuously matching the cavity impedance and predicting the required energy for the system, avoiding energy inefficiencies. This controller was developed in MATLAB and successfully fulfilled all these goals. The limestone load influence on thermal decomposition and overall process efficiency was the main object of this study. The procedure considered the Verification and Validation of the chemical kinetics model separately from the coupled model. The chemical model was found to correctly describe the chosen kinetic equation, and the coupled model successfully solved the equations describing the numerical model. The interaction between flow of material and electric field Poynting vector revealed to influence limestone decomposition, as a result from the low dielectric properties of limestone. The numerical model considered this effect and took advantage from this interaction. The model was demonstrated to be highly unstable when solving non-linear temperature distributions. Limestone has a dielectric loss response that increases with temperature and has low thermal conductivity. For this reason, limestone is prone to produce thermal runaway under electromagnetic heating, as well as numerical model instabilities. Five different scenarios were tested by considering a material fill ratio of 30%, 50%, 65%, 80%, and 100%. Simulating the tube rotation for mixing enhancement was proven to be beneficial and crucial for all loads considered. When uniform temperature distribution is accomplished, the electromagnetic field and material interaction is facilitated. The results pointed out the inefficient development of the electric field within the bed for 30% fill ratio. The thermal efficiency showed the propensity to stabilize around 90%for loads higher than 50%. The process accomplished a maximum microwave efficiency of 75% for the 80% fill ratio, sustaining that the tube has an optimal fill of material. Electric field peak detachment was observed for the case with 100% fill ratio, justifying the lower efficiencies compared to 80%. Microwave technology has been demonstrated to be an important ally for the decarbonization of the cement industry.

Keywords: CFD numerical simulations, efficiency optimization, electromagnetic heating, impedance matching, limestone continuous processing

Procedia PDF Downloads 175
73 A Clustering-Based Approach for Weblog Data Cleaning

Authors: Amine Ganibardi, Cherif Arab Ali

Abstract:

This paper addresses the data cleaning issue as a part of web usage data preprocessing within the scope of Web Usage Mining. Weblog data recorded by web servers within log files reflect usage activity, i.e., End-users’ clicks and underlying user-agents’ hits. As Web Usage Mining is interested in End-users’ behavior, user-agents’ hits are referred to as noise to be cleaned-off before mining. Filtering hits from clicks is not trivial for two reasons, i.e., a server records requests interlaced in sequential order regardless of their source or type, website resources may be set up as requestable interchangeably by end-users and user-agents. The current methods are content-centric based on filtering heuristics of relevant/irrelevant items in terms of some cleaning attributes, i.e., website’s resources filetype extensions, website’s resources pointed by hyperlinks/URIs, http methods, user-agents, etc. These methods need exhaustive extra-weblog data and prior knowledge on the relevant and/or irrelevant items to be assumed as clicks or hits within the filtering heuristics. Such methods are not appropriate for dynamic/responsive Web for three reasons, i.e., resources may be set up to as clickable by end-users regardless of their type, website’s resources are indexed by frame names without filetype extensions, web contents are generated and cancelled differently from an end-user to another. In order to overcome these constraints, a clustering-based cleaning method centered on the logging structure is proposed. This method focuses on the statistical properties of the logging structure at the requested and referring resources attributes levels. It is insensitive to logging content and does not need extra-weblog data. The used statistical property takes on the structure of the generated logging feature by webpage requests in terms of clicks and hits. Since a webpage consists of its single URI and several components, these feature results in a single click to multiple hits ratio in terms of the requested and referring resources. Thus, the clustering-based method is meant to identify two clusters based on the application of the appropriate distance to the frequency matrix of the requested and referring resources levels. As the ratio clicks to hits is single to multiple, the clicks’ cluster is the smallest one in requests number. Hierarchical Agglomerative Clustering based on a pairwise distance (Gower) and average linkage has been applied to four logfiles of dynamic/responsive websites whose click to hits ratio range from 1/2 to 1/15. The optimal clustering set on the basis of average linkage and maximum inter-cluster inertia results always in two clusters. The evaluation of the smallest cluster referred to as clicks cluster under the terms of confusion matrix indicators results in 97% of true positive rate. The content-centric cleaning methods, i.e., conventional and advanced cleaning, resulted in a lower rate 91%. Thus, the proposed clustering-based cleaning outperforms the content-centric methods within dynamic and responsive web design without the need of any extra-weblog. Such an improvement in cleaning quality is likely to refine dependent analysis.

Keywords: clustering approach, data cleaning, data preprocessing, weblog data, web usage data

Procedia PDF Downloads 170
72 Sorbitol Galactoside Synthesis Using β-Galactosidase Immobilized on Functionalized Silica Nanoparticles

Authors: Milica Carević, Katarina Banjanac, Marija ĆOrović, Ana Milivojević, Nevena Prlainović, Aleksandar Marinković, Dejan Bezbradica

Abstract:

Nowadays, considering the growing awareness of functional food beneficial effects on human health, due attention is dedicated to the research in the field of obtaining new prominent products exhibiting improved physiological and physicochemical characteristics. Therefore, different approaches to valuable bioactive compounds synthesis have been proposed. β-Galactosidase, for example, although mainly utilized as hydrolytic enzyme, proved to be a promising tool for these purposes. Namely, under the particular conditions, such as high lactose concentration, elevated temperatures and low water activities, reaction of galactose moiety transfer to free hydroxyl group of the alternative acceptor (e.g. different sugars, alcohols or aromatic compounds) can generate a wide range of potentially interesting products. Up to now, galacto-oligosaccharides and lactulose have attracted the most attention due to their inherent prebiotic properties. The goal of this study was to obtain a novel product sorbitol galactoside, using the similar reaction mechanism, namely transgalactosylation reaction catalyzed by β-galactosidase from Aspergillus oryzae. By using sugar alcohol (sorbitol) as alternative acceptor, a diverse mixture of potential prebiotics is produced, enabling its more favorable functional features. Nevertheless, an introduction of alternative acceptor into the reaction mixture contributed to the complexity of reaction scheme, since several potential reaction pathways were introduced. Therefore, the thorough optimization using response surface method (RSM), in order to get an insight into different parameter (lactose concentration, sorbitol to lactose molar ratio, enzyme concentration, NaCl concentration and reaction time) influences, as well as their mutual interactions on product yield and productivity, was performed. In view of product yield maximization, the obtained model predicted optimal lactose concentration 500 mM, the molar ratio of sobitol to lactose 9, enzyme concentration 0.76 mg/ml, concentration of NaCl 0.8M, and the reaction time 7h. From the aspect of productivity, the optimum substrate molar ratio was found to be 1, while the values for other factors coincide. In order to additionally, improve enzyme efficiency and enable its reuse and potential continual application, immobilization of β-galactosidase onto tailored silica nanoparticles was performed. These non-porous fumed silica nanoparticles (FNS)were chosen on the basis of their biocompatibility and non-toxicity, as well as their advantageous mechanical and hydrodinamical properties. However, in order to achieve better compatibility between enzymes and the carrier, modifications of the silica surface using amino functional organosilane (3-aminopropyltrimethoxysilane, APTMS) were made. Obtained support with amino functional groups (AFNS) enabled high enzyme loadings and, more importantly, extremely high expressed activities, approximately 230 mg proteins/g and 2100 IU/g, respectively. Moreover, this immobilized preparation showed high affinity towards sorbitol galactoside synthesis. Therefore, the findings of this study could provided a valuable contribution to the efficient production of physiologically active galactosides in immobilized enzyme reactors.

Keywords: β-galactosidase, immobilization, silica nanoparticles, transgalactosylation

Procedia PDF Downloads 301
71 Wind Resource Classification and Feasibility of Distributed Generation for Rural Community Utilization in North Central Nigeria

Authors: O. D. Ohijeagbon, Oluseyi O. Ajayi, M. Ogbonnaya, Ahmeh Attabo

Abstract:

This study analyzed the electricity generation potential from wind at seven sites spread across seven states of the North-Central region of Nigeria. Twenty-one years (1987 to 2007) wind speed data at a height of 10m were assessed from the Nigeria Meteorological Department, Oshodi. The data were subjected to different statistical tests and also compared with the two-parameter Weibull probability density function. The outcome shows that the monthly average wind speeds ranged between 2.2 m/s in November for Bida and 10.1 m/s in December for Jos. The yearly average ranged between 2.1m/s in 1987 for Bida and 11.8 m/s in 2002 for Jos. Also, the power density for each site was determined to range between 29.66 W/m2 for Bida and 864.96 W/m2 for Jos, Two parameters (k and c) of the Weibull distribution were found to range between 2.3 in Lokoja and 6.5 in Jos for k, while c ranged between 2.9 in Bida and 9.9m/s in Jos. These outcomes points to the fact that wind speeds at Jos, Minna, Ilorin, Makurdi and Abuja are compatible with the cut-in speeds of modern wind turbines and hence, may be economically feasible for wind-to-electricity at and above the height of 10 m. The study further assessed the potential and economic viability of standalone wind generation systems for off-grid rural communities located in each of the studied sites. A specific electric load profile was developed to suite hypothetic communities, each consisting of 200 homes, a school and a community health center. Assessment of the design that will optimally meet the daily load demand with a loss of load probability (LOLP) of 0.01 was performed, considering 2 stand-alone applications of wind and diesel. The diesel standalone system (DSS) was taken as the basis of comparison since the experimental locations have no connection to a distribution network. The HOMER® software optimizing tool was utilized to determine the optimal combination of system components that will yield the lowest life cycle cost. Sequel to the analysis for rural community utilization, a Distributed Generation (DG) analysis that considered the possibility of generating wind power in the MW range in order to take advantage of Nigeria’s tariff regime for embedded generation was carried out for each site. The DG design incorporated each community of 200 homes, freely catered for and offset from the excess electrical energy generated above the minimum requirement for sales to a nearby distribution grid. Wind DG systems were found suitable and viable in producing environmentally friendly energy in terms of life cycle cost and levelised value of producing energy at Jos ($0.14/kWh), Minna ($0.12/kWh), Ilorin ($0.09/kWh), Makurdi ($0.09/kWh), and Abuja ($0.04/kWh) at a particluar turbine hub height. These outputs reveal the value retrievable from the project after breakeven point as a function of energy consumed Based on the results, the study demonstrated that including renewable energy in the rural development plan will enhance fast upgrade of the rural communities.

Keywords: wind speed, wind power, distributed generation, cost per kilowatt-hour, clean energy, North-Central Nigeria

Procedia PDF Downloads 512
70 The Impact of an Improved Strategic Partnership Programme on Organisational Performance and Growth of Firms in the Internet Protocol Television and Hybrid Fibre-Coaxial Broadband Industry

Authors: Collen T. Masilo, Brane Semolic, Pieter Steyn

Abstract:

The Internet Protocol Television (IPTV) and Hybrid Fibre-Coaxial (HFC) Broadband industrial sector landscape are rapidly changing and organisations within the industry need to stay competitive by exploring new business models so that they can be able to offer new services and products to customers. The business challenge in this industrial sector is meeting or exceeding high customer expectations across multiple content delivery modes. The increasing challenges in the IPTV and HFC broadband industrial sector encourage service providers to form strategic partnerships with key suppliers, marketing partners, advertisers, and technology partners. The need to form enterprise collaborative networks poses a challenge for any organisation in this sector, in selecting the right strategic partners who will ensure that the organisation’s services and products are marketed in new markets. Partners who will ensure that customers are efficiently supported by meeting and exceeding their expectations. Lastly, selecting cooperation partners who will represent the organisation in a positive manner, and contribute to improving the performance of the organisation. Companies in the IPTV and HFC broadband industrial sector tend to form informal partnerships with suppliers, vendors, system integrators and technology partners. Generally, partnerships are formed without thorough analysis of the real reason a company is forming collaborations, without proper evaluations of prospective partners using specific selection criteria, and with ineffective performance monitoring of partners to ensure that a firm gains real long term benefits from its partners and gains competitive advantage. Similar tendencies are illustrated in the research case study and are based on Skyline Communications, a global leader in end-to-end, multi-vendor network management and operational support systems (OSS) solutions. The organisation’s flagship product is the DataMiner network management platform used by many operators across multiple industries and can be referred to as a smart system that intelligently manages complex technology ecosystems for its customers in the IPTV and HFC broadband industry. The approach of the research is to develop the most efficient business model that can be deployed to improve a strategic partnership programme in order to significantly improve the performance and growth of organisations participating in a collaborative network in the IPTV and HFC broadband industrial sector. This involves proposing and implementing a new strategic partnership model and its main features within the industry which should bring about significant benefits for all involved companies to achieve value add and an optimal growth strategy. The proposed business model has been developed based on the research of existing relationships, value chains and business requirements in this industrial sector and validated in 'Skyline Communications'. The outputs of the business model have been demonstrated and evaluated in the research business case study the IPTV and HFC broadband service provider 'Skyline Communications'.

Keywords: growth, partnership, selection criteria, value chain

Procedia PDF Downloads 132
69 OASIS: An Alternative Access to Potable Water, Renewable Energy and Organic Food

Authors: Julien G. Chenet, Mario A. Hernandez, U. Leonardo Rodriguez

Abstract:

The tropical areas are places where there is scarcity of access to potable water and where renewable energies need further development. They also display high undernourishment levels, even though they are one of the resources-richest areas in the world. In these areas, it is common to count on great extension of soils, high solar radiation and raw water from rain, groundwater, surface water or even saltwater. Even though resources are available, access to them is limited, and the low-density habitat makes central solutions expensive and investments not worthy. In response to this lack of investment, rural inhabitants use fossil fuels and timber as an energy source and import agrochemical for soils fertilization, which increase GHG emissions. The OASIS project brings an answer to this situation. It supplies renewable energy, potable water and organic food. The first step is the determination of the needs of the communities in terms of energy, water quantity and quality, food requirements and soil characteristics. Second step is the determination of the available resources, such as solar energy, raw water and organic residues on site. The pilot OASIS project is located in the Vichada department, Colombia, and ensures the sustainable use of natural resources to meet the community needs. The department has roughly 70% of indigenous people. They live in a very scattered landscape, with no access to clean water and energy. They use polluted surface water for direct consumption and diesel for energy purposes. OASIS pilot will ensure basic needs for a 400-students education center. In this case, OASIS will provide 20 kW of solar energy potential and 40 liters per student per day. Water will be treated form groundwater, with two qualities. A conventional one with chlorine, and as the indigenous people are not used to chlorine for direct consumption, second train is with reverse osmosis to bring conservable safe water without taste. OASIS offers a solution to supply basic needs, shifting from fossil fuels, timber, to a no-GHG-emission solution. This solution is part of the mitigation strategy against Climate Change for the communities in low-density areas of the tropics. OASIS is a learning center to teach how to convert natural resources into utilizable ones. It is also a meeting point for the community with high pedagogic impact that promotes the efficient and sustainable use of resources. OASIS system is adaptable to any tropical area and competes technically and economically with any conventional solution, that needs transport of energy, treated water and food. It is a fully automatic, replicable and sustainable solution to sort out the issue of access to basic needs in rural areas. OASIS is also a solution to undernourishment, ensuring a responsible use of resources, to prevent long-term pollution of soils and groundwater. It promotes the closure of the nutrient cycle, and the optimal use of the land whilst ensuring food security in depressed low-density regions of the tropics. OASIS is under optimization to Vichada conditions, and will be available to any other tropical area in the following months.

Keywords: climate change adaptation and mitigation, rural development, sustainable access to clean and renewable resources, social inclusion

Procedia PDF Downloads 250
68 Developing Primary Care Datasets for a National Asthma Audit

Authors: Rachael Andrews, Viktoria McMillan, Shuaib Nasser, Christopher M. Roberts

Abstract:

Background and objective: The National Review of Asthma Deaths (NRAD) found that asthma management and care was inadequate in 26% of cases reviewed. Major shortfalls identified were adherence to national guidelines and standards and, particularly, the organisation of care, including supervision and monitoring in primary care, with 70% of cases reviewed having at least one avoidable factor in this area. 5.4 million people in the UK are diagnosed with and actively treated for asthma, and approximately 60,000 are admitted to hospital with acute exacerbations each year. The majority of people with asthma receive management and treatment solely in primary care. This has therefore created concern that many people within the UK are receiving sub-optimal asthma care resulting in unnecessary morbidity and risk of adverse outcome. NRAD concluded that a national asthma audit programme should be established to measure and improve processes, organisation, and outcomes of asthma care. Objective: To develop a primary care dataset enabling extraction of information from GP practices in Wales and providing robust data by which results and lessons could be drawn and drive service development and improvement. Methods: A multidisciplinary group of experts, including general practitioners, primary care organisation representatives, and asthma patients was formed and used as a source of governance and guidance. A review of asthma literature, guidance, and standards took place and was used to identify areas of asthma care which, if improved, would lead to better patient outcomes. Modified Delphi methodology was used to gain consensus from the expert group on which of the areas identified were to be prioritised, and an asthma patient and carer focus group held to seek views and feedback on areas of asthma care that were important to them. Areas of asthma care identified by both groups were mapped to asthma guidelines and standards to inform and develop primary and secondary care datasets covering both adult and pediatric care. Dataset development consisted of expert review and a targeted consultation process in order to seek broad stakeholder views and feedback. Results: Areas of asthma care identified as requiring prioritisation by the National Asthma Audit were: (i) Prescribing, (ii) Asthma diagnosis (iii) Asthma Reviews (iv) Personalised Asthma Action Plans (PAAPs) (v) Primary care follow-up after discharge from hospital (vi) Methodologies and primary care queries were developed to cover each of the areas of poor and variable asthma care identified and the queries designed to extract information directly from electronic patients’ records. Conclusion: This paper describes the methodological approach followed to develop primary care datasets for a National Asthma Audit. It sets out the principles behind the establishment of a National Asthma Audit programme in response to a national asthma mortality review and describes the development activities undertaken. Key process elements included: (i) mapping identified areas of poor and variable asthma care to national guidelines and standards, (ii) early engagement of experts, including clinicians and patients in the process, and (iii) targeted consultation of the queries to provide further insight into measures that were collectable, reproducible and relevant.

Keywords: asthma, primary care, general practice, dataset development

Procedia PDF Downloads 175
67 Solid Polymer Electrolyte Membranes Based on Siloxane Matrix

Authors: Natia Jalagonia, Tinatin Kuchukhidze

Abstract:

Polymer electrolytes (PE) play an important part in electrochemical devices such as batteries and fuel cells. To achieve optimal performance, the PE must maintain a high ionic conductivity and mechanical stability at both high and low relative humidity. The polymer electrolyte also needs to have excellent chemical stability for long and robustness. According to the prevailing theory, ionic conduction in polymer electrolytes is facilitated by the large-scale segmental motion of the polymer backbone, and primarily occurs in the amorphous regions of the polymer electrolyte. Crystallinity restricts polymer backbone segmental motion and significantly reduces conductivity. Consequently, polymer electrolytes with high conductivity at room temperature have been sought through polymers which have highly flexible backbones and have largely amorphous morphology. The interest in polymer electrolytes was increased also by potential applications of solid polymer electrolytes in high energy density solid state batteries, gas sensors and electrochromic windows. Conductivity of 10-3 S/cm is commonly regarded as a necessary minimum value for practical applications in batteries. At present, polyethylene oxide (PEO)-based systems are most thoroughly investigated, reaching room temperature conductivities of 10-7 S/cm in some cross-linked salt in polymer systems based on amorphous PEO-polypropylene oxide copolymers.. It is widely accepted that amorphous polymers with low glass transition temperatures Tg and a high segmental mobility are important prerequisites for high ionic conductivities. Another necessary condition for high ionic conductivity is a high salt solubility in the polymer, which is most often achieved by donors such as ether oxygen or imide groups on the main chain or on the side groups of the PE. It is well established also that lithium ion coordination takes place predominantly in the amorphous domain, and that the segmental mobility of the polymer is an important factor in determining the ionic mobility. Great attention was pointed to PEO-based amorphous electrolyte obtained by synthesis of comb-like polymers, by attaching short ethylene oxide unit sequences to an existing amorphous polymer backbone. The aim of presented work is to obtain of solid polymer electrolyte membranes using PMHS as a matrix. For this purpose the hydrosilylation reactions of α,ω-bis(trimethylsiloxy)methyl¬hydrosiloxane with allyl triethylene-glycol mo¬nomethyl ether and vinyltriethoxysilane at 1:28:7 ratio of initial com¬pounds in the presence of Karstedt’s catalyst, platinum hydrochloric acid (0.1 M solution in THF) and platinum on the carbon catalyst in 50% solution of anhydrous toluene have been studied. The synthesized olygomers are vitreous liquid products, which are well soluble in organic solvents with specific viscosity ηsp ≈ 0.05 - 0.06. The synthesized olygomers were analysed with FTIR, 1H, 13C, 29Si NMR spectroscopy. Synthesized polysiloxanes were investigated with wide-angle X-ray, gel-permeation chromatography, and DSC analyses. Via sol-gel processes of doped with lithium trifluoromethylsulfonate (triflate) or lithium bis¬(trifluoromethylsulfonyl)¬imide polymer systems solid polymer electrolyte membranes have been obtained. The dependence of ionic conductivity as a function of temperature and salt concentration was investigated and the activation energies of conductivity for all obtained compounds are calculated

Keywords: synthesis, PMHS, membrane, electrolyte

Procedia PDF Downloads 257
66 Quantum Chemical Prediction of Standard Formation Enthalpies of Uranyl Nitrates and Its Degradation Products

Authors: Mohamad Saab, Florent Real, Francois Virot, Laurent Cantrel, Valerie Vallet

Abstract:

All spent nuclear fuel reprocessing plants use the PUREX process (Plutonium Uranium Refining by Extraction), which is a liquid-liquid extraction method. The organic extracting solvent is a mixture of tri-n-butyl phosphate (TBP) and hydrocarbon solvent such as hydrogenated tetra-propylene (TPH). By chemical complexation, uranium and plutonium (from spent fuel dissolved in nitric acid solution), are separated from fission products and minor actinides. During a normal extraction operation, uranium is extracted in the organic phase as the UO₂(NO₃)₂(TBP)₂ complex. The TBP solvent can form an explosive mixture called red oil when it comes in contact with nitric acid. The formation of this unstable organic phase originates from the reaction between TBP and its degradation products on the one hand, and nitric acid, its derivatives and heavy metal nitrate complexes on the other hand. The decomposition of the red oil can lead to violent explosive thermal runaway. These hazards are at the origin of several accidents such as the two in the United States in 1953 and 1975 (Savannah River) and, more recently, the one in Russia in 1993 (Tomsk). This raises the question of the exothermicity of reactions that involve TBP and all other degradation products, and calls for a better knowledge of the underlying chemical phenomena. A simulation tool (Alambic) is currently being developed at IRSN that integrates thermal and kinetic functions related to the deterioration of uranyl nitrates in organic and aqueous phases, but not of the n-butyl phosphate. To include them in the modeling scheme, there is an urgent need to obtain the thermodynamic and kinetic functions governing the deterioration processes in liquid phase. However, little is known about the thermodynamic properties, like standard enthalpies of formation, of the n-butyl phosphate molecules and of the UO₂(NO₃)₂(TBP)₂ UO₂(NO₃)₂(HDBP)(TBP) and UO₂(NO₃)₂(HDBP)₂ complexes. In this work, we propose to estimate the thermodynamic properties with Quantum Methods (QM). Thus, in the first part of our project, we focused on the mono, di, and tri-butyl complexes. Quantum chemical calculations have been performed to study several reactions leading to the formation of mono-(H₂MBP), di-(HDBP), and TBP in gas and liquid phases. In the gas phase, the optimal structures of all species were optimized using the B3LYP density functional. Triple-ζ def2-TZVP basis sets were used for all atoms. All geometries were optimized in the gas-phase, and the corresponding harmonic frequencies were used without scaling to compute the vibrational partition functions at 298.15 K and 0.1 Mpa. Accurate single point energies were calculated using the efficient localized LCCSD(T) method to the complete basis set limit. Whenever species in the liquid phase are considered, solvent effects are included with the COSMO-RS continuum model. The standard enthalpies of formation of TBP, HDBP, and H2MBP are finally predicted with an uncertainty of about 15 kJ mol⁻¹. In the second part of this project, we have investigated the fundamental properties of three organic species that mostly contribute to the thermal runaway: UO₂(NO₃)₂(TBP)₂, UO₂(NO₃)₂(HDBP)(TBP), and UO₂(NO₃)₂(HDBP)₂ using the same quantum chemical methods that were used for TBP and its derivatives in both the gas and the liquid phase. We will discuss the structures and thermodynamic properties of all these species.

Keywords: PUREX process, red oils, quantum chemical methods, hydrolysis

Procedia PDF Downloads 188
65 Towards Automatic Calibration of In-Line Machine Processes

Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales

Abstract:

In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820

Keywords: data model, machine learning, industrial winding, calibration

Procedia PDF Downloads 241
64 Fuzzy Time Series- Markov Chain Method for Corn and Soybean Price Forecasting in North Carolina Markets

Authors: Selin Guney, Andres Riquelme

Abstract:

Among the main purposes of optimal and efficient forecasts of agricultural commodity prices is to guide the firms to advance the economic decision making process such as planning business operations and marketing decisions. Governments are also the beneficiaries and suppliers of agricultural price forecasts. They use this information to establish a proper agricultural policy, and hence, the forecasts affect social welfare and systematic errors in forecasts could lead to a misallocation of scarce resources. Various empirical approaches have been applied to forecast commodity prices that have used different methodologies. Most commonly-used approaches to forecast commodity sectors depend on classical time series models that assume values of the response variables are precise which is quite often not true in reality. Recently, this literature has mostly evolved to a consideration of fuzzy time series models that provide more flexibility in terms of the classical time series models assumptions such as stationarity, and large sample size requirement. Besides, fuzzy modeling approach allows decision making with estimated values under incomplete information or uncertainty. A number of fuzzy time series models have been developed and implemented over the last decades; however, most of them are not appropriate for forecasting repeated and nonconsecutive transitions in the data. The modeling scheme used in this paper eliminates this problem by introducing Markov modeling approach that takes into account both the repeated and nonconsecutive transitions. Also, the determination of length of interval is crucial in terms of the accuracy of forecasts. The problem of determining the length of interval arbitrarily is overcome and a methodology to determine the proper length of interval based on the distribution or mean of the first differences of series to improve forecast accuracy is proposed. The specific purpose of this paper is to propose and investigate the potential of a new forecasting model that integrates methodologies for determining the proper length of interval based on the distribution or mean of the first differences of series and Fuzzy Time Series- Markov Chain model. Moreover, the accuracy of the forecasting performance of proposed integrated model is compared to different univariate time series models and the superiority of proposed method over competing methods in respect of modelling and forecasting on the basis of forecast evaluation criteria is demonstrated. The application is to daily corn and soybean prices observed at three commercially important North Carolina markets; Candor, Cofield and Roaring River for corn and Fayetteville, Cofield and Greenville City for soybeans respectively. One main conclusion from this paper is that using fuzzy logic improves the forecast performance and accuracy; the effectiveness and potential benefits of the proposed model is confirmed with small selection criteria value such MAPE. The paper concludes with a discussion of the implications of integrating fuzzy logic and nonarbitrary determination of length of interval for the reliability and accuracy of price forecasts. The empirical results represent a significant contribution to our understanding of the applicability of fuzzy modeling in commodity price forecasts.

Keywords: commodity, forecast, fuzzy, Markov

Procedia PDF Downloads 217
63 Protected Cultivation of Horticultural Crops: Increases Productivity per Unit of Area and Time

Authors: Deepak Loura

Abstract:

The most contemporary method of producing horticulture crops both qualitatively and quantitatively is protected cultivation, or greenhouse cultivation, which has gained widespread acceptance in recent decades. Protected farming, commonly referred to as controlled environment agriculture (CEA), is extremely productive, land- and water-wise, as well as environmentally friendly. The technology entails growing horticulture crops in a controlled environment where variables such as temperature, humidity, light, soil, water, fertilizer, etc. are adjusted to achieve optimal output and enable a consistent supply of them even during the off-season. Over the past ten years, protected cultivation of high-value crops and cut flowers has demonstrated remarkable potential. More and more agricultural and horticultural crop production systems are moving to protected environments as a result of the growing demand for high-quality products by global markets. By covering the crop, it is possible to control the macro- and microenvironments, enhancing plant performance and allowing for longer production times, earlier harvests, and higher yields of higher quality. These shielding features alter the environment of the plant while also offering protection from wind, rain, and insects. Protected farming opens up hitherto unexplored opportunities in agriculture as the liberalised economy and improved agricultural technologies advance. Typically, the revenues from fruit, vegetable, and flower crops are 4 to 8 times higher than those from other crops. If any of these high-value crops are cultivated in protected environments like greenhouses, net houses, tunnels, etc., this profit can be multiplied. Vegetable and cut flower post-harvest losses are extremely high (20–0%), however sheltered growing techniques and year-round cropping can greatly minimize post-harvest losses and enhance yield by 5–10 times. Seasonality and weather have a big impact on the production of vegetables and flowers. The variety of their products results in significant price and quality changes for vegetables. For the application of current technology in crop production, achieving a balance between year-round availability of vegetables and flowers with minimal environmental impact and remaining competitive is a significant problem. The future of agriculture will be protected since population growth is reducing the amount of land that may be held. Protected agriculture is a particularly profitable endeavor for tiny landholdings. Small greenhouses, net houses, nurseries, and low tunnel greenhouses can all be built by farmers to increase their income. Protected agriculture is also aided by the rise in biotic and abiotic stress factors. As a result of the greater productivity levels, these technologies are not only opening up opportunities for producers with larger landholdings, but also for those with smaller holdings. Protected cultivation can be thought of as a kind of precise, forward-thinking, parallel agriculture that covers almost all aspects of farming and is rather subject to additional inspection for technical applicability to circumstances, farmer economics, and market economics.

Keywords: protected cultivation, horticulture, greenhouse, vegetable, controlled environment agriculture

Procedia PDF Downloads 76
62 Protocol for Dynamic Load Distributed Low Latency Web-Based Augmented Reality and Virtual Reality

Authors: Rohit T. P., Sahil Athrij, Sasi Gopalan

Abstract:

Currently, the content entertainment industry is dominated by mobile devices. As the trends slowly shift towards Augmented/Virtual Reality applications the computational demands on these devices are increasing exponentially and we are already reaching the limits of hardware optimizations. This paper proposes a software solution to this problem. By leveraging the capabilities of cloud computing we can offload the work from mobile devices to dedicated rendering servers that are way more powerful. But this introduces the problem of latency. This paper introduces a protocol that can achieve high-performance low latency Augmented/Virtual Reality experience. There are two parts to the protocol, 1) In-flight compression The main cause of latency in the system is the time required to transmit the camera frame from client to server. The round trip time is directly proportional to the amount of data transmitted. This can therefore be reduced by compressing the frames before sending. Using some standard compression algorithms like JPEG can result in minor size reduction only. Since the images to be compressed are consecutive camera frames there won't be a lot of changes between two consecutive images. So inter-frame compression is preferred. Inter-frame compression can be implemented efficiently using WebGL but the implementation of WebGL limits the precision of floating point numbers to 16bit in most devices. This can introduce noise to the image due to rounding errors, which will add up eventually. This can be solved using an improved interframe compression algorithm. The algorithm detects changes between frames and reuses unchanged pixels from the previous frame. This eliminates the need for floating point subtraction thereby cutting down on noise. The change detection is also improved drastically by taking the weighted average difference of pixels instead of the absolute difference. The kernel weights for this comparison can be fine-tuned to match the type of image to be compressed. 2) Dynamic Load distribution Conventional cloud computing architectures work by offloading as much work as possible to the servers, but this approach can cause a hit on bandwidth and server costs. The most optimal solution is obtained when the device utilizes 100% of its resources and the rest is done by the server. The protocol balances the load between the server and the client by doing a fraction of the computing on the device depending on the power of the device and network conditions. The protocol will be responsible for dynamically partitioning the tasks. Special flags will be used to communicate the workload fraction between the client and the server and will be updated in a constant interval of time ( or frames ). The whole of the protocol is designed so that it can be client agnostic. Flags are available to the client for resetting the frame, indicating latency, switching mode, etc. The server can react to client-side changes on the fly and adapt accordingly by switching to different pipelines. The server is designed to effectively spread the load and thereby scale horizontally. This is achieved by isolating client connections into different processes.

Keywords: 2D kernelling, augmented reality, cloud computing, dynamic load distribution, immersive experience, mobile computing, motion tracking, protocols, real-time systems, web-based augmented reality application

Procedia PDF Downloads 72
61 Post-bladder Catheter Infection

Authors: Mahla Azimi

Abstract:

Introduction: Post-bladder catheter infection is a common and significant healthcare-associated infection that affects individuals with indwelling urinary catheters. These infections can lead to various complications, including urinary tract infections (UTIs), bacteremia, sepsis, and increased morbidity and mortality rates. This article aims to provide a comprehensive review of post-bladder catheter infections, including their causes, risk factors, clinical presentation, diagnosis, treatment options, and preventive measures. Causes and Risk Factors: Post-bladder catheter infections primarily occur due to the colonization of microorganisms on the surface of the urinary catheter. The most common pathogens involved are Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterococcus species. Several risk factors contribute to the development of these infections, such as prolonged catheterization duration, improper insertion technique, poor hygiene practices during catheter care, compromised immune system function in patients with underlying conditions or immunosuppressive therapy. Clinical Presentation: Patients with post-bladder catheter infections may present with symptoms such as fever, chills, malaise, suprapubic pain or tenderness, and cloudy or foul-smelling urine. In severe cases or when left untreated for an extended period of time, patients may develop more severe symptoms like hematuria or signs of systemic infection. Diagnosis: The diagnosis of post-bladder catheter infection involves a combination of clinical evaluation and laboratory investigations. Urinalysis is crucial in identifying pyuria (presence of white blood cells) and bacteriuria (presence of bacteria). A urine culture is performed to identify the causative organism(s) and determine its antibiotic susceptibility profile. Treatment Options: Prompt initiation of appropriate antibiotic therapy is essential in managing post-bladder catheter infections. Empirical treatment should cover common pathogens until culture results are available. The choice of antibiotics should be guided by local antibiogram data to ensure optimal therapy. In some cases, catheter removal may be necessary, especially if the infection is recurrent or associated with severe complications. Preventive Measures: Prevention plays a vital role in reducing the incidence of post-bladder catheter infections. Strategies include proper hand hygiene, aseptic technique during catheter insertion and care, regular catheter maintenance, and timely removal of unnecessary catheters. Healthcare professionals should also promote patient education regarding self-care practices and signs of infection. Conclusion: Post-bladder catheter infections are a significant healthcare concern that can lead to severe complications and increased healthcare costs. Early recognition, appropriate diagnosis, and prompt treatment are crucial in managing these infections effectively. Implementing preventive measures can significantly reduce the incidence of post-bladder catheter infections and improve patient outcomes. Further research is needed to explore novel strategies for prevention and management in this field.

Keywords: post-bladder catheter infection, urinary tract infection, bacteriuria, indwelling urinary catheters, prevention

Procedia PDF Downloads 81
60 Thermodynamic Modeling of Cryogenic Fuel Tanks with a Model-Based Inverse Method

Authors: Pedro A. Marques, Francisco Monteiro, Alessandra Zumbo, Alessia Simonini, Miguel A. Mendez

Abstract:

Cryogenic fuels such as Liquid Hydrogen (LH₂) must be transported and stored at extremely low temperatures. Without expensive active cooling solutions, preventing fuel boil-off over time is impossible. Hence, one must resort to venting systems at the cost of significant energy and fuel mass loss. These losses increase significantly in propellant tanks installed on vehicles, as the presence of external accelerations induces sloshing. Sloshing increases heat and mass transfer rates and leads to significant pressure oscillations, which might further trigger propellant venting. To make LH₂ economically viable, it is essential to minimize these factors by using advanced control techniques. However, these require accurate modelling and a full understanding of the tank's thermodynamics. The present research aims to implement a simple thermodynamic model capable of predicting the state of a cryogenic fuel tank under different operating conditions (i.e., filling, pressurization, fuel extraction, long-term storage, and sloshing). Since this model relies on a set of closure parameters to drive the system's transient response, it must be calibrated using experimental or numerical data. This work focuses on the former approach, wherein the model is calibrated through an experimental campaign carried out on a reduced-scale model of a cryogenic tank. The thermodynamic model of the system is composed of three control volumes: the ullage, the liquid, and the insulating walls. Under this lumped formulation, the governing equations are derived from energy and mass balances in each region, with mass-averaged properties assigned to each of them. The gas-liquid interface is treated as an infinitesimally thin region across which both phases can exchange mass and heat. This results in a coupled system of ordinary differential equations, which must be closed with heat and mass transfer coefficients between each control volume. These parameters are linked to the system evolution via empirical relations derived from different operating regimes of the tank. The derivation of these relations is carried out using an inverse method to find the optimal relations that allow the model to reproduce the available data. This approach extends classic system identification methods beyond linear dynamical systems via a nonlinear optimization step. Thanks to the data-driven assimilation of the closure problem, the resulting model accurately predicts the evolution of the tank's thermodynamics at a negligible computational cost. The lumped model can thus be easily integrated with other submodels to perform complete system simulations in real time. Moreover, by setting the model in a dimensionless form, a scaling analysis allowed us to relate the tested configurations to a representative full-size tank for naval applications. It was thus possible to compare the relative importance of different transport phenomena between the laboratory model and the full-size prototype among the different operating regimes.

Keywords: destratification, hydrogen, modeling, pressure-drop, pressurization, sloshing, thermodynamics

Procedia PDF Downloads 92
59 Selective Immobilization of Fructosyltransferase onto Glutaraldehyde Modified Support and Its Application in the Production of Fructo-Oligosaccharides

Authors: Milica B. Veljković, Milica B. Simović, Marija M. Ćorović, Ana D. Milivojević, Anja I. Petrov, Katarina M. Banjanac, Dejan I. Bezbradica

Abstract:

In recent decades, the scientific community has recognized the growing importance of prebiotics, and therefore, numerous studies are focused on their economic production due to their low presence in natural resources. It has been confirmed that prebiotics is a source of energy for probiotics in the gastrointestinal tract (GIT) and enable their proliferation, consequently leading to the normal functioning of the intestinal microbiota. Also, products of their fermentation are short-chain fatty acids (SCFA), which play a key role in maintaining and improving the health not only of the GIT but also of the whole organism. Among several confirmed prebiotics, fructooligosaccharides (FOS) are considered interesting candidates for use in a wide range of products in the food industry. They are characterized as low-calorie and non-cariogenic substances that represent an adequate sugar substitute and can be considered suitable for use in products intended for diabetics. The subject of this research will be the production of FOS by transforming sucrose using a fructosyltransferase (FTase) present in commercial preparation Pectinex® Ultra SP-L, with special emphasis on the development of adequate FTase immobilization method that would enable selective isolation of the enzyme responsible for the synthesis of FOS from the complex enzymatic mixture. This would lead to considerable enzyme purification and allow its direct incorporation into different sucrose-based products without the fear that the action of the other hydrolytic enzymes may adversely affect the products' functional characteristics. Accordingly, the possibility of selective immobilization of the enzyme using support with primary amino groups, Purolite® A109, which was previously activated and modified using glutaraldehyde (GA), was investigated. In the initial phase of the research, the effects of individual immobilization parameters such as pH, enzyme concentration, and immobilization time were investigated to optimize the process using support chemically activated with 15% and 0.5% GA to form dimers and monomers, respectively. It was determined that highly active immobilized preparations (371.8 IU/g of support - dimer and 213.8 IU/g of support – monomer) were achieved under acidic conditions (pH 4) provided that an enzyme concentration was 50 mg/g of support after 7 h and 3 h, respectively. Bearing in mind the obtained results of the expressed activity, it is noticeable that the formation of dimers showed higher reactivity compared to the form of monomers. Also, in the case of support modification using 15% GA, the value of the ratio of FTase and pectinase (as dominant enzyme mixture component) activity immobilization yields was 16.45, indicating the high feasibility of selective immobilization of FTase on modified polystyrene resin. After obtaining immobilized preparations of satisfactory features, they were tested in a reaction of FOS synthesis under determined optimal conditions. The maximum FOS yields of approximately 50% of total carbohydrates in the reaction mixture were recorded after 21 h. Finally, it can be concluded that the examined immobilization method yielded highly active, stable and, more importantly, refined enzyme preparation that can be further utilized on a larger scale for the development of continual processes for FOS synthesis, as well as for modification of different sucrose-based mediums.

Keywords: chemical modification, fructooligosaccharides, glutaraldehyde, immobilization of fructosyltransferase

Procedia PDF Downloads 186
58 Application of the Carboxylate Platform in the Consolidated Bioconversion of Agricultural Wastes to Biofuel Precursors

Authors: Sesethu G. Njokweni, Marelize Botes, Emile W. H. Van Zyl

Abstract:

An alternative strategy to the production of bioethanol is by examining the degradability of biomass in a natural system such as the rumen of mammals. This anaerobic microbial community has higher cellulolytic activities than microbial communities from other habitats and degrades cellulose to produce volatile fatty acids (VFA), methane and CO₂. VFAs have the potential to serve as intermediate products for electrochemical conversion to hydrocarbon fuels. In vitro mimicking of this process would be more cost-effective than bioethanol production as it does not require chemical pre-treatment of biomass, a sterile environment or added enzymes. The strategies of the carboxylate platform and the co-cultures of a bovine ruminal microbiota from cannulated cows were combined in order to investigate and optimize the bioconversion of agricultural biomass (apple and grape pomace, citrus pulp, sugarcane bagasse and triticale straw) to high value VFAs as intermediates for biofuel production in a consolidated bioprocess. Optimisation of reactor conditions was investigated using five different ruminal inoculum concentrations; 5,10,15,20 and 25% with fixed pH at 6.8 and temperature at 39 ˚C. The ANKOM 200/220 fiber analyser was used to analyse in vitro neutral detergent fiber (NDF) disappearance of the feedstuffs. Fresh and cryo-frozen (5% DMSO and 50% glycerol for 3 months) rumen cultures were tested for the retainment of fermentation capacity and durability in 72 h fermentations in 125 ml serum vials using a FURO medical solutions 6-valve gas manifold to induce anaerobic conditions. Fermentation of apple pomace, triticale straw, and grape pomace showed no significant difference (P > 0.05) in the effect of 15 and 20 % inoculum concentrations for the total VFA yield. However, high performance liquid chromatographic separation within the two inoculum concentrations showed a significant difference (P < 0.05) in acetic acid yield, with 20% inoculum concentration being the optimum at 4.67 g/l. NDF disappearance of 85% in 96 h and total VFA yield of 11.5 g/l in 72 h (A/P ratio = 2.04) for apple pomace entailed that it was the optimal feedstuff for this process. The NDF disappearance and VFA yield of DMSO (82% NDF disappearance and 10.6 g/l VFA) and glycerol (90% NDF disappearance and 11.6 g/l VFA) stored rumen also showed significantly similar degradability of apple pomace with lack of treatment effect differences compared to a fresh rumen control (P > 0.05). The lack of treatment effects was a positive sign in indicating that there was no difference between the stored samples and the fresh rumen control. Retaining of the fermentation capacity within the preserved cultures suggests that its metabolic characteristics were preserved due to resilience and redundancy of the rumen culture. The amount of degradability and VFA yield within a short span was similar to other carboxylate platforms that have longer run times. This study shows that by virtue of faster rates and high extent of degradability, small scale alternatives to bioethanol such as rumen microbiomes and other natural fermenting microbiomes can be employed to enhance the feasibility of biofuels large-scale implementation.

Keywords: agricultural wastes, carboxylate platform, rumen microbiome, volatile fatty acids

Procedia PDF Downloads 130
57 Simulation-based Decision Making on Intra-hospital Patient Referral in a Collaborative Medical Alliance

Authors: Yuguang Gao, Mingtao Deng

Abstract:

The integration of independently operating hospitals into a unified healthcare service system has become a strategic imperative in the pursuit of hospitals’ high-quality development. Central to the concept of group governance over such transformation, exemplified by a collaborative medical alliance, is the delineation of shared value, vision, and goals. Given the inherent disparity in capabilities among hospitals within the alliance, particularly in the treatment of different diseases characterized by Disease Related Groups (DRG) in terms of effectiveness, efficiency and resource utilization, this study aims to address the centralized decision-making of intra-hospital patient referral within the medical alliance to enhance the overall production and quality of service provided. We first introduce the notion of production utility, where a higher production utility for a hospital implies better performance in treating patients diagnosed with that specific DRG group of diseases. Then, a Discrete-Event Simulation (DES) framework is established for patient referral among hospitals, where patient flow modeling incorporates a queueing system with fixed capacities for each hospital. The simulation study begins with a two-member alliance. The pivotal strategy examined is a "whether-to-refer" decision triggered when the bed usage rate surpasses a predefined threshold for either hospital. Then, the decision encompasses referring patients to the other hospital based on DRG groups’ production utility differentials as well as bed availability. The objective is to maximize the total production utility of the alliance while minimizing patients’ average length of stay and turnover rate. Thus the parameter under scrutiny is the bed usage rate threshold, influencing the efficacy of the referral strategy. Extending the study to a three-member alliance, which could readily be generalized to multi-member alliances, we maintain the core setup while introducing an additional “which-to-refer" decision that involves referring patients with specific DRG groups to the member hospital according to their respective production utility rankings. The overarching goal remains consistent, for which the bed usage rate threshold is once again a focal point for analysis. For the two-member alliance scenario, our simulation results indicate that the optimal bed usage rate threshold hinges on the discrepancy in the number of beds between member hospitals, the distribution of DRG groups among incoming patients, and variations in production utilities across hospitals. Transitioning to the three-member alliance, we observe similar dependencies on these parameters. Additionally, it becomes evident that an imbalanced distribution of DRG diagnoses and further disparity in production utilities among member hospitals may lead to an increase in the turnover rate. In general, it was found that the intra-hospital referral mechanism enhances the overall production utility of the medical alliance compared to individual hospitals without partnership. Patients’ average length of stay is also reduced, showcasing the positive impact of the collaborative approach. However, the turnover rate exhibits variability based on parameter setups, particularly when patients are redirected within the alliance. In conclusion, the re-structuring of diagnostic disease groups within the medical alliance proves instrumental in improving overall healthcare service outcomes, providing a compelling rationale for the government's promotion of patient referrals within collaborative medical alliances.

Keywords: collaborative medical alliance, disease related group, patient referral, simulation

Procedia PDF Downloads 58
56 Flood Early Warning and Management System

Authors: Yogesh Kumar Singh, T. S. Murugesh Prabhu, Upasana Dutta, Girishchandra Yendargaye, Rahul Yadav, Rohini Gopinath Kale, Binay Kumar, Manoj Khare

Abstract:

The Indian subcontinent is severely affected by floods that cause intense irreversible devastation to crops and livelihoods. With increased incidences of floods and their related catastrophes, an Early Warning System for Flood Prediction and an efficient Flood Management System for the river basins of India is a must. Accurately modeled hydrological conditions and a web-based early warning system may significantly reduce economic losses incurred due to floods and enable end users to issue advisories with better lead time. This study describes the design and development of an EWS-FP using advanced computational tools/methods, viz. High-Performance Computing (HPC), Remote Sensing, GIS technologies, and open-source tools for the Mahanadi River Basin of India. The flood prediction is based on a robust 2D hydrodynamic model, which solves shallow water equations using the finite volume method. Considering the complexity of the hydrological modeling and the size of the basins in India, it is always a tug of war between better forecast lead time and optimal resolution at which the simulations are to be run. High-performance computing technology provides a good computational means to overcome this issue for the construction of national-level or basin-level flash flood warning systems having a high resolution at local-level warning analysis with a better lead time. High-performance computers with capacities at the order of teraflops and petaflops prove useful while running simulations on such big areas at optimum resolutions. In this study, a free and open-source, HPC-based 2-D hydrodynamic model, with the capability to simulate rainfall run-off, river routing, and tidal forcing, is used. The model was tested for a part of the Mahanadi River Basin (Mahanadi Delta) with actual and predicted discharge, rainfall, and tide data. The simulation time was reduced from 8 hrs to 3 hrs by increasing CPU nodes from 45 to 135, which shows good scalability and performance enhancement. The simulated flood inundation spread and stage were compared with SAR data and CWC Observed Gauge data, respectively. The system shows good accuracy and better lead time suitable for flood forecasting in near-real-time. To disseminate warning to the end user, a network-enabled solution is developed using open-source software. The system has query-based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. System effectively facilitates the management of post-disaster activities caused due to floods, like displaying spatial maps of the area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the criticality of the information. It is designed to facilitate users in managing information related to flooding during critical flood seasons and analyzing the extent of the damage.

Keywords: flood, modeling, HPC, FOSS

Procedia PDF Downloads 89
55 Optical Imaging Based Detection of Solder Paste in Printed Circuit Board Jet-Printing Inspection

Authors: D. Heinemann, S. Schramm, S. Knabner, D. Baumgarten

Abstract:

Purpose: Applying solder paste to printed circuit boards (PCB) with stencils has been the method of choice over the past years. A new method uses a jet printer to deposit tiny droplets of solder paste through an ejector mechanism onto the board. This allows for more flexible PCB layouts with smaller components. Due to the viscosity of the solder paste, air blisters can be trapped in the cartridge. This can lead to missing solder joints or deviations in the applied solder volume. Therefore, a built-in and real-time inspection of the printing process is needed to minimize uncertainties and increase the efficiency of the process by immediate correction. The objective of the current study is the design of an optimal imaging system and the development of an automatic algorithm for the detection of applied solder joints from optical from the captured images. Methods: In a first approach, a camera module connected to a microcomputer and LED strips are employed to capture images of the printed circuit board under four different illuminations (white, red, green and blue). Subsequently, an improved system including a ring light, an objective lens, and a monochromatic camera was set up to acquire higher quality images. The obtained images can be divided into three main components: the PCB itself (i.e., the background), the reflections induced by unsoldered positions or screw holes and the solder joints. Non-uniform illumination is corrected by estimating the background using a morphological opening and subtraction from the input image. Image sharpening is applied in order to prevent error pixels in the subsequent segmentation. The intensity thresholds which divide the main components are obtained from the multimodal histogram using three probability density functions. Determining the intersections delivers proper thresholds for the segmentation. Remaining edge gradients produces small error areas which are removed by another morphological opening. For quantitative analysis of the segmentation results, the dice coefficient is used. Results: The obtained PCB images show a significant gradient in all RGB channels, resulting from ambient light. Using different lightings and color channels 12 images of a single PCB are available. A visual inspection and the investigation of 27 specific points show the best differentiation between those points using a red lighting and a green color channel. Estimating two thresholds from analyzing the multimodal histogram of the corrected images and using them for segmentation precisely extracts the solder joints. The comparison of the results to manually segmented images yield high sensitivity and specificity values. Analyzing the overall result delivers a Dice coefficient of 0.89 which varies for single object segmentations between 0.96 for a good segmented solder joints and 0.25 for single negative outliers. Conclusion: Our results demonstrate that the presented optical imaging system and the developed algorithm can robustly detect solder joints on printed circuit boards. Future work will comprise a modified lighting system which allows for more precise segmentation results using structure analysis.

Keywords: printed circuit board jet-printing, inspection, segmentation, solder paste detection

Procedia PDF Downloads 335
54 Development of an Omaha System-Based Remote Intervention Program for Work-Related Musculoskeletal Disorders (WMSDs) Among Front-Line Nurses

Authors: Tianqiao Zhang, Ye Tian, Yanliang Yin, Yichao Tian, Suzhai Tian, Weige Sun, Shuhui Gong, Limei Tang, Ruoliang Tang

Abstract:

Introduction: Healthcare workers, especially the nurses all over the world, are highly vulnerable to work-related musculoskeletal disorders (WMSDs), experiencing high rates of neck, shoulder, and low back injuries, due to the unfavorable working conditions. To reduce WMSDs among nursing personnel, many workplace interventions have been developed and implemented. Unfortunately, the ongoing Covid-19 (SARS-CoV-2) pandemic has posed great challenges to the ergonomic practices and interventions in healthcare facilities, particularly the hospitals, since current Covid-19 mitigation measures, such as social distancing and working remotely, has substantially minimized in-person gatherings and trainings. On the other hand, hospitals throughout the world have been short-staffed, resulting in disturbance of shift scheduling and more importantly, the increased job demand among the available caregivers, particularly the doctors and nurses. With the latest development in communication technology, remote intervention measures have been developed as an alternative, without the necessity of in-person meetings. The Omaha System (OS) is a standardized classification system for nursing practices, including a problem classification system, an intervention system, and an outcome evaluation system. This paper describes the development of an OS-based ergonomic intervention program. Methods: First, a comprehensive literature search was performed among worldwide electronic databases, including PubMed, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI), between journal inception to May 2020, resulting in a total of 1,418 scientific articles. After two independent screening processes, the final knowledge pool included eleven randomized controlled trial studies to develop the draft of the intervention program with Omaha intervention subsystem as the framework. After the determination of sample size needed for statistical power and the potential loss to follow-up, a total of 94 nurses from eight clinical departments agreed to provide written, informed consent to participate in the study, which were subsequently assigned into two random groups (i.e., intervention vs. control). A subgroup of twelve nurses were randomly selected to participate in a semi-structured interview, during which their general understanding and awareness of musculoskeletal disorders and potential interventions was assessed. Then, the first draft was modified to reflect the findings from these interviews. Meanwhile, the tentative program schedule was also assessed. Next, two rounds of consultation were conducted among experts in nursing management, occupational health, psychology, and rehabilitation, to further adjust and finalize the intervention program. The control group had access to all the information and exercise modules at baseline, while an interdisciplinary research team was formed and supervised the implementation of the on-line intervention program through multiple social media groups. Outcome measures of this comparative study included biomechanical load assessed by the Quick Exposure Check and stresses due to awkward body postures. Results and Discussion: Modification to the draft included (1) supplementing traditional Chinese medicine practices, (2) adding the use of assistive patient handling equipment, and (3) revising the on-line training method. Information module should be once a week, lasting about 20 to 30 minutes, for a total of 6 weeks, while the exercise module should be 5 times a week, each lasting about 15 to 20 minutes, for a total of 6 weeks.

Keywords: ergonomic interventions, musculoskeletal disorders (MSDs), omaha system, nurses, Covid-19

Procedia PDF Downloads 182
53 Achieving Sustainable Lifestyles Based on the Spiritual Teaching and Values of Buddhism from Lumbini, Nepal

Authors: Purna Prasad Acharya, Madhav Karki, Sunta B. Tamang, Uttam Basnet, Chhatra Katwal

Abstract:

The paper outlines the idea behind achieving sustainable lifestyles based on the spiritual values and teachings of Lord Buddha. This objective is to be achieved by spreading the tenets and teachings of Buddhism throughout the Asia Pacific region and the world from the sacred birth place of Buddha - Lumbini, Nepal. There is an urgent need to advance the relevance of Buddhist philosophy in tackling the triple planetary crisis of climate change, nature’s decline, and pollution. Today, the world is facing an existential crisis due to the above crises, exasperated by hunger, poverty and armed conflict. To address multi-dimensional impacts, the global communities have to adopt simple life styles that respect nature and universal human values. These were the basic teachings of Gautam Buddha. Lumbini, Nepal has the moral obligation to widely disseminate Buddha’s teaching to the world and receive constant feedback and learning to develop human and ecosystem resilience by molding the lifestyles of current and future generations through adaptive learning and simplicity across the geography and nationality based on spirituality and environmental stewardship. By promoting Buddhism, Nepal has developed a pro-nature tourism industry that focuses on both its spiritual and bio-cultural heritage. Nepal is a country rich in ancient wisdom, where sages have sought knowledge, practiced meditation, and followed spiritual paths for thousands of years. It can spread the teachings of Buddha in a way people can search for and adopt ways to live, creating harmony with nature. Using tools of natural sciences and social sciences, the team will package knowledge and share the idea of community well-being within the framework of environmental sustainability, social harmony and universal respect for nature and people in a more holistic manner. This notion takes into account key elements of sustainable development such as food-energy-water-biodiversity interconnections, environmental conservation, ecological integrity, ecosystem health, community resiliency, adaptation capacity, and indigenous culture, knowledge and values. This inclusive concept has garnered a strong network of supporters locally, regionally, and internationally. The key objectives behind this concept are: a) to leverage expertise and passion of a network of global collaborators to advance research, education, and policy outreach in the areas of human sustainability based on lifestyle change using the power of spirituality and Buddha’s teaching, resilient lifestyles, and adaptive living; b) help develop creative short courses for multi-disciplinary teaching in educational institutions worldwide in collaboration with Lumbini Buddha University and other relevant partners in Nepal; c) help build local and regional intellectual and cultural teaching and learning capacity by improving professional collaborations to promote nature based and Buddhist value-based lifestyles by connecting Lumbini to Nepal’s rich nature; d) promote research avenues to provide policy relevant knowledge that is creative, innovative, as well as practical and locally viable; and e) connect local research and outreach work with academic and cultural partners in South Korea so as to open up Lumbini based Buddhist heritage and Nepal’s Karnali River basin’s unique natural landscape to Korean scholars and students to promote sustainable lifestyles leading to human living in harmony with nature.

Keywords: triple planetary crisis, spirituality, sustainable lifestyles, living in harmony with nature, resilience

Procedia PDF Downloads 34
52 South African Breast Cancer Mutation Spectrum: Pitfalls to Copy Number Variation Detection Using Internationally Designed Multiplex Ligation-Dependent Probe Amplification and Next Generation Sequencing Panels

Authors: Jaco Oosthuizen, Nerina C. Van Der Merwe

Abstract:

The National Health Laboratory Services in Bloemfontien has been the diagnostic testing facility for 1830 patients for familial breast cancer since 1997. From the cohort, 540 were comprehensively screened using High-Resolution Melting Analysis or Next Generation Sequencing for the presence of point mutations and/or indels. Approximately 90% of these patients stil remain undiagnosed as they are BRCA1/2 negative. Multiplex ligation-dependent probe amplification was initially added to screen for copy number variation detection, but with the introduction of next generation sequencing in 2017, was substituted and is currently used as a confirmation assay. The aim was to investigate the viability of utilizing internationally designed copy number variation detection assays based on mostly European/Caucasian genomic data for use within a South African context. The multiplex ligation-dependent probe amplification technique is based on the hybridization and subsequent ligation of multiple probes to a targeted exon. The ligated probes are amplified using conventional polymerase chain reaction, followed by fragment analysis by means of capillary electrophoresis. The experimental design of the assay was performed according to the guidelines of MRC-Holland. For BRCA1 (P002-D1) and BRCA2 (P045-B3), both multiplex assays were validated, and results were confirmed using a secondary probe set for each gene. The next generation sequencing technique is based on target amplification via multiplex polymerase chain reaction, where after the amplicons are sequenced parallel on a semiconductor chip. Amplified read counts are visualized as relative copy numbers to determine the median of the absolute values of all pairwise differences. Various experimental parameters such as DNA quality, quantity, and signal intensity or read depth were verified using positive and negative patients previously tested internationally. DNA quality and quantity proved to be the critical factors during the verification of both assays. The quantity influenced the relative copy number frequency directly whereas the quality of the DNA and its salt concentration influenced denaturation consistency in both assays. Multiplex ligation-dependent probe amplification produced false positives due to ligation failure when ligation was inhibited due to a variant present within the ligation site. Next generation sequencing produced false positives due to read dropout when primer sequences did not meet optimal multiplex binding kinetics due to population variants in the primer binding site. The analytical sensitivity and specificity for the South African population have been proven. Verification resulted in repeatable reactions with regards to the detection of relative copy number differences. Both multiplex ligation-dependent probe amplification and next generation sequencing multiplex panels need to be optimized to accommodate South African polymorphisms present within the genetically diverse ethnic groups to reduce the false copy number variation positive rate and increase performance efficiency.

Keywords: familial breast cancer, multiplex ligation-dependent probe amplification, next generation sequencing, South Africa

Procedia PDF Downloads 231