Search results for: MEMS-IMU (Micro-Electro-Mechanical System Inertial Measurement Unit)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21113

Search results for: MEMS-IMU (Micro-Electro-Mechanical System Inertial Measurement Unit)

16373 Identity Verification Based on Multimodal Machine Learning on Red Green Blue (RGB) Red Green Blue-Depth (RGB-D) Voice Data

Authors: LuoJiaoyang, Yu Hongyang

Abstract:

In this paper, we experimented with a new approach to multimodal identification using RGB, RGB-D and voice data. The multimodal combination of RGB and voice data has been applied in tasks such as emotion recognition and has shown good results and stability, and it is also the same in identity recognition tasks. We believe that the data of different modalities can enhance the effect of the model through mutual reinforcement. We try to increase the three modalities on the basis of the dual modalities and try to improve the effectiveness of the network by increasing the number of modalities. We also implemented the single-modal identification system separately, tested the data of these different modalities under clean and noisy conditions, and compared the performance with the multimodal model. In the process of designing the multimodal model, we tried a variety of different fusion strategies and finally chose the fusion method with the best performance. The experimental results show that the performance of the multimodal system is better than that of the single modality, especially in dealing with noise, and the multimodal system can achieve an average improvement of 5%.

Keywords: multimodal, three modalities, RGB-D, identity verification

Procedia PDF Downloads 75
16372 Thickness Measurement and Void Detection in Concrete Elements through Ultrasonic Pulse

Authors: Leonel Lipa Cusi, Enrique Nestor Pasquel Carbajal, Laura Marina Navarro Alvarado, José Del Álamo Carazas

Abstract:

This research analyses the accuracy of the ultrasound and the pulse echo ultrasound technic to find voids and to measure thickness of concrete elements. These mentioned air voids are simulated by polystyrene expanded and hollow containers of thin thickness made of plastic or cardboard of different sizes and shapes. These targets are distributed strategically inside concrete at different depths. For this research, a shear wave pulse echo ultrasonic device of 50 KHz is used to scan the concrete elements. Despite the small measurements of the concrete elements and because of voids’ size are near the half of the wavelength, pre and post processing steps like voltage, gain, SAFT, envelope and time compensation were made in order to improve imaging results.

Keywords: ultrasonic, concrete, thickness, pulse echo, void

Procedia PDF Downloads 340
16371 Performance Evaluation of Vertical Handover on Silom Line BTS

Authors: Silumpa Suboonsan, Suwat Pattaramalai

Abstract:

In this paper, the performance of internet usage by using Vertical Handover (VHO) between cellular network and wireless local area network (WLAN) on Silom line Bangkok Mass Transit System (BTS) is evaluated. In the evaluation model, there is the WLAN on every BTS station and there are cellular base stations along the BTS path. The maximum data rates for cellular network are 7.2, 14.4, 42, and 100Mbps and for WLAN are 54, 150, and 300Mbps. The simulation are based on users using internet, watching VDOs and browsing web pages, on the BTS train from first station to the last station (full time usage) and on the BTS train for traveling some number of stations (random time). The results shows that VHO system has throughput a lot more than using only cellular network when the data rate of WLAN is more than one of cellular network. Lastly, the number of watching HD VDO and Full HD VDO is higher on VHO system on both regular time and rush hour of BTS travelling.

Keywords: vertical handover, WLAN, cellular, silom line BTS

Procedia PDF Downloads 479
16370 Green Growth in Kazakhstan: Political Leadership, Business Strategies and Environmental Fiscal Reform for Competitive System Change

Authors: A. S. Salimzhanova, J. C. Sardinas, O. A. Yanovskaya

Abstract:

The objective of this research work is to discuss the concept of green growth in the Republic of Kazakhstan introduced by its government in the National Sustainable Development Strategy with the objective of transition to a resource-efficient, green economy. We believe that emerging economies like Kazakhstan can pursue a cleaner and more efficient development path by introducing an environmental tax system based on resource consumption rather than only income and labor. The key issues discussed in this article are the eco-efficiency, which refers to closing the gap between economic and ecological efficiencies, and the structural change of the economy toward green growth. We also strongly believe that studying the experience of East Asian countries on green reform including eco-innovation and green solutions in business is essential to the case of Kazakhstan. All of these will raise the status of Kazakhstan to the level of one of the thirty developed countries over the next decades.

Keywords: economic strategy, green growth, green solutions, natural resource management, environmental tax system

Procedia PDF Downloads 283
16369 Process Flows and Risk Analysis for the Global E-SMC

Authors: Taeho Park, Ming Zhou, Sangryul Shim

Abstract:

With the emergence of the global economy, today’s business environment is getting more competitive than ever in the past. And many supply chain (SC) strategies and operations have significantly been altered over the past decade to overcome more complexities and risks imposed onto the global business. First, offshoring and outsourcing are more adopted as operational strategies. Manufacturing continues to move to better locations for enhancing competitiveness. Second, international operations are a challenge to a company’s SC system. Third, the products traded in the SC system are not just physical goods, but also digital goods (e.g., software, e-books, music, video materials). There are three main flows involved in fulfilling the activities in the SC system: physical flow, information flow, and financial flow. An advance of the Internet and electronic communication technologies has enabled companies to perform the flows of SC activities in electronic formats, resulting in the advent of an electronic supply chain management (e-SCM) system. A SC system for digital goods is somewhat different from the supply chain system for physical goods. However, it involves many similar or identical SC activities and flows. For example, like the production of physical goods, many third parties are also involved in producing digital goods for the production of components and even final products. This research aims at identifying process flows of both physical and digital goods in a SC system, and then investigating all risk elements involved in the physical, information, and financial flows during the fulfilment of SC activities. There are many risks inherent in the e-SCM system. Some risks may have severe impact on a company’s business, and some occur frequently but are not detrimental enough to jeopardize a company. Thus, companies should assess the impact and frequency of those risks, and then prioritize them in terms of their severity, frequency, budget, and time in order to be carefully maintained. We found risks involved in the global trading of physical and digital goods in four different categories: environmental risk, strategic risk, technological risk, and operational risk. And then the significance of those risks was investigated through a survey. The survey asked companies about the frequency and severity of the identified risks. They were also asked whether they had faced those risks in the past. Since the characteristics and supply chain flows of digital goods are varying industry by industry and country by country, it is more meaningful and useful to analyze risks by industry and country. To this end, more data in each industry sector and country should be collected, which could be accomplished in the future research.

Keywords: digital goods, e-SCM, risk analysis, supply chain flows

Procedia PDF Downloads 425
16368 Pharmacy Practice Research's Future

Authors: Ragy Raafat Gaber Attaalla

Abstract:

Background: The research begins with a summary of the state of pharmacy practice research, both now and in the future. The concerns that are relevant to practice research are then covered in this research to set the stage. These concerns include shifts in the demography of the population, technological advancements, the institutional function of pharmacies, consumer behavior, and the pharmacy profession itself. It also describes the significant changes in pharmacy practice research, such as interprofessional collaboration and patient teaming, the description and measurement of intervention results, and the cultural diversity of patients. Methods: It would be most frequently employed in the next pharmacy practice research are highlighted in the conclusion. They cover the cultural diversity of patients, documenting and assessing the results of interventions, and interdisciplinary communication and partnership with patients. Results: The rise of large and complicated data sets, the handling of electronic health records, and the use of a wide range of mixed techniques by pharmacy practice researchers are a few potential future methodological obstacles.

Keywords: pharmacy, practice, research, significant changes

Procedia PDF Downloads 16
16367 Controller Design Using GA for SMC Systems

Authors: Susy Thomas, Sajju Thomas, Varghese Vaidyan

Abstract:

This paper considers SMCs using linear feedback with switched gains and proposes a method which can minimize the pole perturbation. The method is able to enhance the robustness property of the controller. A pre-assigned neighborhood of the ‘nominal’ positions is assigned and the system poles are not allowed to stray out of these bounds even when parameters variations/uncertainties act upon the system. A quasi SMM is maintained within the assigned boundaries of the sliding surface.

Keywords: parameter variations, pole perturbation, sliding mode control, switching surface, robust switching vector

Procedia PDF Downloads 369
16366 Sustainability Rating System for Infrastructure Projects in UAE

Authors: Amrutha Venugopal, Rabee Rustum

Abstract:

In spite of huge investments and the vital role infrastructure plays in the economy of UAE, the country has not yet developed an assessment scheme to measure the sustainability of infrastructure projects/development. The aim of this study was to develop a sustainability rating system for infrastructure projects in UAE using weighted indicator scoring. The identification of the list of 66 indicators was done by content analysis. The sources of content analysis were from government guidelines, research literature and sustainability rating system for infrastructure projects namely BCA Greenmark for Infrastructure (Singapore), ISCA (Australia) and Envision (USA). These indicators were shortlisted based on their relevance in the UAE. A mixture of qualitative and quantitative research methods is utilized to find the weightage to be applied to the indicators and to find suggestive measures to improve infrastructure sustainability in this region. Interviews and surveys were conducted with a good mix of experts from the industry. The data collected from the interviews were collated to provide suggestive measures for improving infrastructure sustainability. The collected survey data were analyzed using statistical analysis techniques to find the indicator weighing. The indicators were shortlisted by 75% to minimize the effort and investment into the process. The weighing of the deleted indicators was distributed among the critical clusters identified by Pareto analysis. Finally a simple Microsoft Excel tool was developed as the rating tool by using the calculated weighing for the indicators.

Keywords: infrastructure, rating system, suggestive measures, sustainability, UAE

Procedia PDF Downloads 310
16365 Application of Subversion Analysis in the Search for the Causes of Cracking in a Marine Engine Injector Nozzle

Authors: Leszek Chybowski, Artur Bejger, Katarzyna Gawdzińska

Abstract:

Subversion analysis is a tool used in the TRIZ (Theory of Inventive Problem Solving) methodology. This article introduces the history and describes the process of subversion analysis, as well as function analysis and analysis of the resources, used at the design stage when generating possible undesirable situations. The article charts the course of subversion analysis when applied to a fuel injection nozzle of a marine engine. The work describes the fuel injector nozzle as a technological system and presents principles of analysis for the causes of a cracked tip of the nozzle body. The system is modelled with functional analysis. A search for potential causes of the damage is undertaken and a cause-and-effect analysis for various hypotheses concerning the damage is drawn up. The importance of particular hypotheses is evaluated and the most likely causes of damage identified.

Keywords: complex technical system, fuel injector, function analysis, importance analysis, resource analysis, sabotage analysis, subversion analysis, TRIZ (Theory of Inventive Problem Solving)

Procedia PDF Downloads 622
16364 Electoral Mathematics and Asymmetrical Treatment to Political Parties: The Mexican Case

Authors: Verónica Arredondo, Miguel Martínez-Panero, Teresa Peña, Victoriano Ramírez

Abstract:

The Mexican Chamber of Deputies is composed of 500 representatives: 300 of them elected by relative majority and another 200 ones elected through proportional representation in five electoral clusters (constituencies) with 40 representatives each. In this mixed-member electoral system, the seats distribution of proportional representation is not independent of the election by relative majority, as it attempts to correct representation imbalances produced in single-member districts. This two-fold structure has been maintained in the successive electoral reforms carried out along the last three decades (eight from 1986 to 2014). In all of them, the election process of 200 seats becomes complex: Formulas in the Law are difficult to understand and to be interpreted. This paper analyzes the Mexican electoral system after the electoral reform of 2014, which was applied for the first time in 2015. The research focuses on contradictions and issues of applicability, in particular situations where seats allocation is affected by ambiguity in the law and where asymmetrical treatment of political parties arises. Due to these facts, a proposal of electoral reform will be presented. It is intended to be simpler, clearer, and more enduring than the current system. Furthermore, this model is more suitable for producing electoral outcomes free of contradictions and paradoxes. This approach would allow a fair treatment of political parties and as a result an improved opportunity to exercise democracy.

Keywords: electoral mathematics, electoral reform, Mexican electoral system, political asymmetry, proportional representation

Procedia PDF Downloads 256
16363 Theoretical Paradigms for Total Quality Environmental Management (TQEM)

Authors: Mohammad Hossein Khasmafkan Nezam, Nader Chavoshi Boroujeni, Mohamad Reza Veshaghi

Abstract:

Quality management is dominated by rational paradigms for the measurement and management of quality, but these paradigms start to ‘break down’, when faced with the inherent complexity of managing quality in intensely competitive changing environments. In this article, the various theoretical paradigms employed to manage quality are reviewed and the advantages and limitations of these paradigms are highlighted. A major implication of this review is that when faced with complexity, an ideological stance to any single strategy paradigm for total quality environmental management is ineffective. We suggest that as complexity increases and we envisage intensely competitive changing environments there will be a greater need to consider a multi-paradigm integrationist view of strategy for TQEM.

Keywords: total quality management (TQM), total quality environmental management (TQEM), ideologies (philosophy), theoretical paradigms

Procedia PDF Downloads 323
16362 Non-AIDS Related Multiple Brain and Orbital Lymphoma Mimicking Meningioma: A Case Report

Authors: Eghosa Morgan, Bourtarbouch Mahjouba, Heida El Ouahabi, Poluyi Edward, Diawarra Seylan

Abstract:

Non-AIDS lymphoma, a type of primary central nervous system (CNS) lymphoma is an uncommon aggressive infiltrative malignant tumour involving several sites in the central nervous system, such as the periventricular region and leptomeninges. In this article, the authors presented a 26-year old man with painless progressive right exophthalmos and scalp swelling with no symptoms and signs of intracranial hypertension and hyperthyroidism. Magnetic resonance imaging (MRI) done revealed isointense masses with brilliant homogenous enhancement on contrast administration resembling a meningioma, with a dura tail – like attachment as seen in meningioma. He had surgery for the right orbital tumour and histopathological diagnosis confirmed our suspicion of lymphoma (B type). Steroid was given in the post-operative period which led to significant regression of the tumours, hence its description as ‘vanishing tumour’. He is presently receiving methotrexate-based chemotherapy and subsequently planned for radiotherapy.

Keywords: central nervous system (CNS), meningioma, non-aids lymphoma, orbital

Procedia PDF Downloads 94
16361 Mechanochemical Behaviour of Aluminium–Boron Oxide–Melamine Ternary System

Authors: Ismail Seckin Cardakli, Mustafa Engin Kocadagistan, Ersin Arslan

Abstract:

In this study, mechanochemical behaviour of aluminium - boron oxide - melamine ternary system was investigated by high energy ball milling. According to the reaction Al + B₂O₃ = Al₂O₃ + B, stochiometric amount of aluminium and boron oxide with melamine up to ten percent of total weight was used in the experiments. The powder characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) after leaching of product by 1M HCl acid. Results show that mechanically induced self-sustaining reaction (MSR) between aluminium and boron oxide takes place after four hours high energy ball milling. Al₂O₃/h-BN composite powder is obtained as the product of aluminium - boron oxide - melamine ternary system.

Keywords: high energy ball milling, hexagonal boron nitride, mechanically induced self-sustaining reaction, melamine

Procedia PDF Downloads 151
16360 Real-Time Land Use and Land Information System in Homagama Divisional Secretariat Division

Authors: Kumara Jayapathma J. H. M. S. S., Dampegama S. D. P. J.

Abstract:

Lands are valuable & limited resource which constantly changes with the growth of the population. An efficient and good land management system is essential to avoid conflicts associated with lands. This paper aims to design the prototype model of a Mobile GIS Land use and Land Information System in real-time. Homagama Divisional Secretariat Division situated in the western province of Sri Lanka was selected as the study area. The prototype model was developed after reviewing related literature. The methodology was consisted of designing and modeling the prototype model into an application running on a mobile platform. The system architecture mainly consists of a Google mapping app for real-time updates with firebase support tools. Thereby, the method of implementation consists of front-end and back-end components. Software tools used in designing applications are Android Studio with JAVA based on GeoJSON File structure. Android Studio with JAVA in GeoJSON File Synchronize to Firebase was found to be the perfect mobile solution for continuously updating Land use and Land Information System (LIS) in real-time in the present scenario. The mobile-based land use and LIS developed in this study are multiple user applications catering to different hierarchy levels such as basic users, supervisory managers, and database administrators. The benefits of this mobile mapping application will help public sector field officers with non-GIS expertise to overcome the land use planning challenges with land use updated in real-time.

Keywords: Android, Firebase, GeoJSON, GIS, JAVA, JSON, LIS, Mobile GIS, real-time, REST API

Procedia PDF Downloads 235
16359 Reducing CO2 Emission Using EDA and Weighted Sum Model in Smart Parking System

Authors: Rahman Ali, Muhammad Sajjad, Farkhund Iqbal, Muhammad Sadiq Hassan Zada, Mohammed Hussain

Abstract:

Emission of Carbon Dioxide (CO2) has adversely affected the environment. One of the major sources of CO2 emission is transportation. In the last few decades, the increase in mobility of people using vehicles has enormously increased the emission of CO2 in the environment. To reduce CO2 emission, sustainable transportation system is required in which smart parking is one of the important measures that need to be established. To contribute to the issue of reducing the amount of CO2 emission, this research proposes a smart parking system. A cloud-based solution is provided to the drivers which automatically searches and recommends the most preferred parking slots. To determine preferences of the parking areas, this methodology exploits a number of unique parking features which ultimately results in the selection of a parking that leads to minimum level of CO2 emission from the current position of the vehicle. To realize the methodology, a scenario-based implementation is considered. During the implementation, a mobile application with GPS signals, vehicles with a number of vehicle features and a list of parking areas with parking features are used by sorting, multi-level filtering, exploratory data analysis (EDA, Analytical Hierarchy Process (AHP)) and weighted sum model (WSM) to rank the parking areas and recommend the drivers with top-k most preferred parking areas. In the EDA process, “2020testcar-2020-03-03”, a freely available dataset is used to estimate CO2 emission of a particular vehicle. To evaluate the system, results of the proposed system are compared with the conventional approach, which reveal that the proposed methodology supersedes the conventional one in reducing the emission of CO2 into the atmosphere.

Keywords: car parking, Co2, Co2 reduction, IoT, merge sort, number plate recognition, smart car parking

Procedia PDF Downloads 149
16358 Information Requirements for Vessel Traffic Service Operations

Authors: Fan Li, Chun-Hsien Chen, Li Pheng Khoo

Abstract:

Operators of vessel traffic service (VTS) center provides three different types of services; namely information service, navigational assistance and traffic organization to vessels. To provide these services, operators monitor vessel traffic through computer interface and provide navigational advice based on the information integrated from multiple sources, including automatic identification system (AIS), radar system, and closed circuit television (CCTV) system. Therefore, this information is crucial in VTS operation. However, what information the VTS operator actually need to efficiently and properly offer services is unclear. The aim of this study is to investigate into information requirements for VTS operation. To achieve this aim, field observation was carried out to elicit the information requirements for VTS operation. The study revealed that the most frequent and important tasks were handling arrival vessel report, potential conflict control and abeam vessel report. Current location and vessel name were used in all tasks. Hazard cargo information was particularly required when operators handle arrival vessel report. The speed, the course, and the distance of two or several vessels were only used in potential conflict control. The information requirements identified in this study can be utilized in designing a human-computer interface that takes into consideration what and when information should be displayed, and might be further used to build the foundation of a decision support system for VTS.

Keywords: vessel traffic service, information requirements, hierarchy task analysis, field observation

Procedia PDF Downloads 252
16357 Solving Ill-Posed Initial Value Problems for Switched Differential Equations

Authors: Eugene Stepanov, Arcady Ponosov

Abstract:

To model gene regulatory networks one uses ordinary differential equations with switching nonlinearities, where the initial value problem is known to be well-posed if the trajectories cross the discontinuities transversally. Otherwise, the initial value problem is usually ill-posed, which lead to theoretical and numerical complications. In the presentation, it is proposed to apply the theory of hybrid dynamical systems, rather than switched ones, to regularize the problem. 'Hybridization' of the switched system means that one attaches a dynamic discrete component ('automaton'), which follows the trajectories of the original system and governs its dynamics at the points of ill-posedness of the initial value problem making it well-posed. The construction of the automaton is based on the classification of the attractors of the specially designed adjoint dynamical system. Several examples are provided in the presentation, which support the suggested analysis. The method can also be of interest in other applied fields, where differential equations contain switchings, e.g. in neural field models.

Keywords: hybrid dynamical systems, ill-posed problems, singular perturbation analysis, switching nonlinearities

Procedia PDF Downloads 189
16356 Sustainable Food Systems in Community Development: Integrating Urban Food Security into a Growing Population

Authors: Opal Giulianelli, Pegah Zamani

Abstract:

Sustainable food has become a frequently debated topic in recent years due to a consumer push for environmentally sustainable food. While some research works on improving the monoculture farm systems that are currently in use, others focus on expanding the definition of sustainable food systems. This research looks at those concepts of alternative food systems applied to a more extensive city system. The goal is to create a theoretical site plan that could be implemented in emerging cities and other urban environments. This site plan combines the ideas of environmentally sustainable food development, such as food forests, urban farming, and community gardens. This would represent one part of a larger sustainable food system that can be altered depending on the environment or the people it is serving. However, this research is being carried out with the southeast United States in mind and, therefore, may prove difficult to apply to other regions, especially those of radically different climates.

Keywords: alternative food systems, urban design, food forests, aquaponics, hydroponics, food security, food system design

Procedia PDF Downloads 107
16355 Computerized Scoring System: A Stethoscope to Understand Consumer's Emotion through His or Her Feedback

Authors: Chen Yang, Jun Hu, Ping Li, Lili Xue

Abstract:

Most companies pay careful attention to consumer feedback collection, so it is popular to find the ‘feedback’ button of all kinds of mobile apps. Yet it is much more changeling to analyze these feedback texts and to catch the true feelings of a consumer regarding either a problem or a complimentary of consumers who hands out the feedback. Especially to the Chinese content, it is possible that; in one context the Chinese feedback expresses positive feedback, but in the other context, the same Chinese feedback may be a negative one. For example, in Chinese, the feedback 'operating with loudness' works well with both refrigerator and stereo system. Apparently, this feedback towards a refrigerator shows negative feedback; however, the same feedback is positive towards a stereo system. By introducing Bradley, M. and Lang, P.'s Affective Norms for English Text (ANET) theory and Bucci W.’s Referential Activity (RA) theory, we, usability researchers at Pingan, are able to decipher the feedback and to find the hidden feelings behind the content. We subtract 2 disciplines ‘valence’ and ‘dominance’ out of 3 of ANET and 2 disciplines ‘concreteness’ and ‘specificity’ out of 4 of RA to organize our own rating system with a scale of 1 to 5 points. This rating system enables us to judge the feelings/emotion behind each feedback, and it works well with both single word/phrase and a whole paragraph. The result of the rating reflects the strength of the feeling/emotion of the consumer when he/she is typing the feedback. In our daily work, we first require a consumer to answer the net promoter score (NPS) before writing the feedback, so we can determine the feedback is positive or negative. Secondly, we code the feedback content according to company problematic list, which contains 200 problematic items. In this way, we are able to collect the data that how many feedbacks left by the consumer belong to one typical problem. Thirdly, we rate each feedback based on the rating system mentioned above to illustrate the strength of the feeling/emotion when our consumer writes the feedback. In this way, we actually obtain two kinds of data 1) the portion, which means how many feedbacks are ascribed into one problematic item and 2) the severity, how strong the negative feeling/emotion is when the consumer is writing this feedback. By crossing these two, and introducing the portion into X-axis and severity into Y-axis, we are able to find which typical problem gets the high score in both portion and severity. The higher the score of a problem has, the more urgent a problem is supposed to be solved as it means more people write stronger negative feelings in feedbacks regarding this problem. Moreover, by introducing hidden Markov model to program our rating system, we are able to computerize the scoring system and are able to process thousands of feedback in a short period of time, which is efficient and accurate enough for the industrial purpose.

Keywords: computerized scoring system, feeling/emotion of consumer feedback, referential activity, text mining

Procedia PDF Downloads 179
16354 Assessment of Noise Pollution in the City of Biskra, Algeria

Authors: Tallal Abdel Karim Bouzir, Nourdinne Zemmouri, Djihed Berkouk

Abstract:

In this research, a quantitative assessment of the urban sound environment of the city of Biskra, Algeria, was conducted. To determine the quality of the soundscape based on in-situ measurement, using a Landtek SL5868P sound level meter in 47 points, which have been identified to represent the whole city. The result shows that the urban noise level varies from 55.3 dB to 75.8 dB during the weekdays and from 51.7 dB to 74.3 dB during the weekend. On the other hand, we can also note that 70.20% of the results of the weekday measurements and 55.30% of the results of the weekend measurements have levels of sound intensity that exceed the levels allowed by Algerian law and the recommendations of the World Health Organization. These very high urban noise levels affect the quality of life, the acoustic comfort and may even pose multiple risks to people's health.

Keywords: road traffic, noise pollution, sound intensity, public health

Procedia PDF Downloads 271
16353 Experimental Investigation of On-Body Channel Modelling at 2.45 GHz

Authors: Hasliza A. Rahim, Fareq Malek, Nur A. M. Affendi, Azuwa Ali, Norshafinash Saudin, Latifah Mohamed

Abstract:

This paper presents the experimental investigation of on-body channel fading at 2.45 GHz considering two effects of the user body movement; stationary and mobile. A pair of body-worn antennas was utilized in this measurement campaign. A statistical analysis was performed by comparing the measured on-body path loss to five well-known distributions; lognormal, normal, Nakagami, Weibull and Rayleigh. The results showed that the average path loss of moving arm varied higher than the path loss in sitting position for upper-arm-to-left-chest link, up to 3.5 dB. The analysis also concluded that the Nakagami distribution provided the best fit for most of on-body static link path loss in standing still and sitting position, while the arm movement can be best described by log-normal distribution.

Keywords: on-body channel communications, fading characteristics, statistical model, body movement

Procedia PDF Downloads 358
16352 Design and Integration of a Renewable Energy Based Polygeneration System with Desalination for an Industrial Plant

Authors: Lucero Luciano, Cesar Celis, Jose Ramos

Abstract:

Polygeneration improves energy efficiency and reduce both energy consumption and pollutant emissions compared to conventional generation technologies. A polygeneration system is a variation of a cogeneration one, in which more than two outputs, i.e., heat, power, cooling, water, energy or fuels, are accounted for. In particular, polygeneration systems integrating solar energy and water desalination represent promising technologies for energy production and water supply. They are therefore interesting options for coastal regions with a high solar potential, such as those located in southern Peru and northern Chile. Notice that most of the Peruvian and Chilean mining industry operations intensive in electricity and water consumption are located in these particular regions. Accordingly, this work focus on the design and integration of a polygeneration system producing industrial heating, cooling, electrical power and water for an industrial plant. The design procedure followed in this work involves integer linear programming modeling (MILP), operational planning and dynamic operating conditions. The technical and economic feasibility of integrating renewable energy technologies (photovoltaic and solar thermal, PV+CPS), thermal energy store, power and thermal exchange, absorption chillers, cogeneration heat engines and desalination technologies is particularly assessed. The polygeneration system integration carried out seek to minimize the system total annual cost subject to CO2 emissions restrictions. Particular economic aspects accounted for include investment, maintenance and operating costs.

Keywords: desalination, design and integration, polygeneration systems, renewable energy

Procedia PDF Downloads 129
16351 An Experimental Investigation of Chemical Enhanced Oil Recovery (Ceor) for Fractured Carbonate Reservoirs, Case Study: Kais Formation on Wakamuk Field

Authors: Jackson Andreas Theo Pola, Leksono Mucharam, Hari Oetomo, Budi Susanto, Wisnu Nugraha

Abstract:

About half of the world oil reserves are located in carbonate reservoirs, where 65% of the total carbonate reservoirs are oil wet and 12% intermediate wet [1]. Oil recovery in oil wet or mixed wet carbonate reservoirs can be increased by dissolving surfactant to injected water to change the rock wettability from oil wet to more water wet. The Wakamuk Field operated by PetroChina International (Bermuda) Ltd. and PT. Pertamina EP in Papua, produces from main reservoir of Miocene Kais Limestone. First production commenced on August, 2004 and the peak field production of 1456 BOPD occurred in August, 2010. It was found that is a complex reservoir system and until 2014 cumulative oil production was 2.07 MMBO, less than 9% of OOIP. This performance is indicative of presence of secondary porosity, other than matrix porosity which is of low average porosity 13% and permeability less than 7 mD. Implementing chemical EOR in this case is the best way to increase oil production. However, the selected chemical must be able to lower the interfacial tension (IFT), reduce oil viscosity, and alter the wettability; thus a special chemical treatment named SeMAR has been proposed. Numerous laboratory tests such as phase behavior test, core compatibility test, mixture viscosity, contact angle measurement, IFT, imbibitions test and core flooding were conducted on Wakamuk field samples. Based on the spontaneous imbibitions results for Wakamuk field core, formulation of SeMAR with compositional S12A gave oil recovery 43.94% at 1wt% concentration and maximum percentage of oil recovery 87.3% at 3wt% concentration respectively. In addition, the results for first scenario of core flooding test gave oil recovery 60.32% at 1 wt% concentration S12A and the second scenario gave 96.78% of oil recovery at concentration 3 wt% respectively. The soaking time of chemicals has a significant effect on the recovery and higher chemical concentrations affect larger areas for wettability and therefore, higher oil recovery. The chemical that gives best overall results from laboratory tests study will also be a consideration for Huff and Puff injections trial (pilot project) for increasing oil recovery from Wakamuk Field

Keywords: Wakamuk field, chemical treatment, oil recovery, viscosity

Procedia PDF Downloads 695
16350 Relationship of Workplace Stress and Mental Wellbeing among Health Professionals

Authors: Rabia Mushtaq, Uroosa Javaid

Abstract:

It has been observed that health professionals are at higher danger of stress in light of the fact that being a specialist is physically and emotionally demanding. The study aimed to investigate the relationship between workplace stress and mental wellbeing among health professionals. Sample of 120 male and female health professionals belonging to two age groups, i.e., early adulthood and middle adulthood, was employed through purposive sampling technique. Job stress scale, mindful attention awareness scale, and Warwick Edinburgh mental wellbeing scales were used for the measurement of study variables. Results of the study indicated that job stress has a significant negative relationship with mental wellbeing among health professionals. The current study opened the door for more exploratory work on mindfulness among health professionals. Yielding outcomes helped in consolidating adapting procedures among workers to improve their mental wellbeing and lessen the job stress.

Keywords: health professionals, job stress, mental wellbeing, mindfulness

Procedia PDF Downloads 178
16349 Pervasive Computing: Model to Increase Arable Crop Yield through Detection Intrusion System (IDS)

Authors: Idowu Olugbenga Adewumi, Foluke Iyabo Oluwatoyinbo

Abstract:

Presently, there are several discussions on the food security with increase in yield of arable crop throughout the world. This article, briefly present research efforts to create digital interfaces to nature, in particular to area of crop production in agriculture with increase in yield with interest on pervasive computing. The approach goes beyond the use of sensor networks for environmental monitoring but also by emphasizing the development of a system architecture that detect intruder (Intrusion Process) which reduce the yield of the farmer at the end of the planting/harvesting period. The objective of the work is to set a model for setting up the hand held or portable device for increasing the quality and quantity of arable crop. This process incorporates the use of infrared motion image sensor with security alarm system which can send a noise signal to intruder on the farm. This model of the portable image sensing device in monitoring or scaring human, rodent, birds and even pests activities will reduce post harvest loss which will increase the yield on farm. The nano intelligence technology was proposed to combat and minimize intrusion process that usually leads to low quality and quantity of produce from farm. Intranet system will be in place with wireless radio (WLAN), router, server, and client computer system or hand held device e.g PDAs or mobile phone. This approach enables the development of hybrid systems which will be effective as a security measure on farm. Since, precision agriculture has developed with the computerization of agricultural production systems and the networking of computerized control systems. In the intelligent plant production system of controlled greenhouses, information on plant responses, measured by sensors, is used to optimize the system. Further work must be carry out on modeling using pervasive computing environment to solve problems of agriculture, as the use of electronics in agriculture will attracts more youth involvement in the industry.

Keywords: pervasive computing, intrusion detection, precision agriculture, security, arable crop

Procedia PDF Downloads 409
16348 Genetic Identification of Crop Cultivars Using Barcode System

Authors: Kesavan Markkandan, Ha Young Park, Seung-Il Yoo, Sin-Gi Park, Junhyung Park

Abstract:

For genetic identification of crop cultivars, insertions/deletions (InDel) markers have been preferred currently because they are easy to use, PCR based, co-dominant and relatively abundant. However, new InDels need to be developed for genetic studies of new varieties due to the difference of allele frequencies in InDels among the population groups. These new varieties are evolved with low levels of genetic diversity in specific genome loci with high recombination rate. In this study, we described soybean barcode system approach based on InDel makers, each of which is specific to a variation block (VB), where the genomes split by all assumed recombination sites. Firstly, VBs in crop cultivars were mined for transferability to VB-specific InDel markers. Secondly, putative InDels in the VB regions were identified for the development of barcode system by analyzing particular cultivar’s whole genome data. Thirdly, common VB-specific InDels from all cultivars were selected by gel electrophoresis, which were converted as 2D barcode types according to comparing amplicon polymorphisms in the five cultivars to the reference cultivar. Finally, the polymorphism of the selected markers was assessed with other cultivars, and the barcode system that allows a clear distinction among those cultivars is described. The same approach can be applicable for other commercial crops. Hence, VB-based genetic identification not only minimize the molecular markers but also useful for assessing cultivars and for marker-assisted breeding in other crop species.

Keywords: variation block, polymorphism, InDel marker, genetic identification

Procedia PDF Downloads 383
16347 Possible Exposure of Persons with Cardiac Pacemakers to Extremely Low Frequency (ELF) Electric and Magnetic Fields

Authors: Leena Korpinen, Rauno Pääkkönen, Fabriziomaria Gobba, Vesa Virtanen

Abstract:

The number of persons with implanted cardiac pacemakers (PM) has increased in Western countries. The aim of this paper is to investigate the possible situations where persons with a PM may be exposed to extremely low frequency (ELF) electric (EF) and magnetic fields (MF) that may disturb their PM. Based on our earlier studies, it is possible to find such high public exposure to EFs only in some places near 400 kV power lines, where an EF may disturb a PM in unipolar mode. Such EFs cannot be found near 110 kV power lines. Disturbing MFs can be found near welding machines. However, we do not have measurement data from welding. Based on literature and earlier studies at Tampere University of Technology, it is difficult to find public EF or MF exposure that is high enough to interfere with PMs.

Keywords: cardiac pacemaker, electric field, magnetic field, electrical engineering

Procedia PDF Downloads 435
16346 Multi-Sensor Target Tracking Using Ensemble Learning

Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana

Abstract:

Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfill requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.

Keywords: single classifier, ensemble learning, multi-target tracking, multiple classifiers

Procedia PDF Downloads 276
16345 Encapsulation of Venlafaxine-Dowex® Resinate: A Once Daily Multiple Unit Formulation

Authors: Salwa Mohamed Salah Eldin, Howida Kamal Ibrahim

Abstract:

Introduction: Major depressive disorder affects high proportion of the world’s population presenting cost load in health care. Extended release venlafaxine is more convenient and could reduce discontinuation syndrome. The once daily dosing also reduces the potential for adverse events such as nausea due to reduced Cmax. Venlafaxine is an effective first-line agent in the treatment of depression. A once daily formulation was designed to enhance patient compliance. Complexing with a resin was suggested to improve loading of the water soluble drug. The formulated systems were thoroughly evaluated in vitro to prove superiority to previous trials and were compared to the commercial extended release product in experimental animals. Materials and Methods: Venlafaxine-resinates were prepared using Dowex®50WX4-400 and Dowex®50WX8-100 at drug to resin weight ratio of 1: 1. The prepared resinates were evaluated for their drug content, particle shape and surface properties and in vitro release profile in gradient pH. The release kinetics and mechanism were evaluated. Venlafaxine-Dowex® resinates were encapsulated using O/W solvent evaporation technique. Poly-ε-caprolactone, Poly(D, L-lactide-co-glycolide) ester, Poly(D, L-lactide) ester and Eudragit®RS100 were used as coating polymers alone and in combination. Drug-resinate microcapsules were evaluated for morphology, entrapment efficiency and in-vitro release profile. The selected formula was tested in rabbits using a randomized, single-dose, 2-way crossover study against Effexor-XR tablets under fasting condition. Results and Discussion: The equilibrium time was 30 min for Dowex®50WX4-400 and 90 min for Dowex®50WX8-100. The percentage drug loaded was 93.96 and 83.56% for both resins, respectively. Both drug-Dowex® resintes were efficient in sustaining venlafaxine release in comparison to the free drug (up to 8h.). Dowex®50WX4-400 based venlafaxine-resinate was selected for further encapsulation to optimize the release profile for once daily dosing and to lower the burst effect. The selected formula (coated with a mixture of Eudragit RS and PLGA in a ratio of 50/50) was chosen by applying a group of mathematical equations according to targeted values. It recorded the minimum burst effect, the maximum MDT (Mean dissolution time) and a Q24h (percentage drug released after 24 hours) between 95 and 100%. The 90% confidence intervals for the test/reference mean ratio of the log-transformed data of AUC0–24 and AUC0−∞ are within (0.8–1.25), which satisfies the bioequivalence criteria. Conclusion: The optimized formula could be a promising extended release form of the water soluble, short half lived venlafaxine. Being a multiple unit formulation, it lowers the probability of dose dumping and reduces the inter-subject variability in absorption.

Keywords: biodegradable polymers, cation-exchange resin, microencapsulation, venlafaxine hcl

Procedia PDF Downloads 400
16344 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 134