Search results for: tectonic stress field
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11978

Search results for: tectonic stress field

7268 Teaching English as a Second/Foreign Language Under Humanistic and Sociocultural Psychology

Authors: Mahrukh Baig

Abstract:

This research paper, sets out to draw some traditional english language teaching practices and to suggest ways for their improvement under the light of humanistic and socio-cultural psychology. This is going to aid language teachers by applying principled psychological methods on the field of education in order to introduce a reciprocal mode of teaching where teacher and learner begin with a mutual effort. However the teacher, after initiating most of the work, gradually passes on more and more responsibility to the learners resulting in their independent endeavors.

Keywords: English Language Teaching (ELT), Second Language Acquisition (SLA), teaching english as second/foreign language, humanistic psychology, socio-cultural psychology, application of psychology to language teaching

Procedia PDF Downloads 615
7267 Amifostine Analogue, Drde-30, Attenuates Radiation-Induced Lung Injury in Mice

Authors: Aastha Arora, Vikas Bhuria, Saurabh Singh, Uma Pathak, Shweta Mathur, Puja P. Hazari, Rajat Sandhir, Ravi Soni, Anant N. Bhatt, Bilikere S. Dwarakanath

Abstract:

Radiotherapy is an effective curative and palliative option for patients with thoracic malignancies. However, lung injury, comprising of pneumonitis and fibrosis, remains a significant clin¬ical complication of thoracic radiation, thus making it a dose-limiting factor. Also, injury to the lung is often reported as part of multi-organ failure in victims of accidental radiation exposures. Radiation induced inflammatory response in the lung, characterized by leukocyte infiltration and vascular changes, is an important contributing factor for the injury. Therefore, countermeasure agents to attenuate radiation induced inflammatory response are considered as an important approach to prevent chronic lung damage. Although Amifostine, the widely used, FDA approved radio-protector, has been found to reduce the radiation induced pneumonitis during radiation therapy of non-small cell lung carcinoma, its application during mass and field exposure is limited due to associated toxicity and ineffectiveness with the oral administration. The amifostine analogue (DRDE-30) overcomes this limitation as it is orally effective in reducing the mortality of whole body irradiated mice. The current study was undertaken to investigate the potential of DRDE-30 to ameliorate radiation induced lung damage. DRDE-30 was administered intra-peritoneally, 30 minutes prior to 13.5 Gy thoracic (60Co-gamma) radiation in C57BL/6 mice. Broncheo- alveolar lavage fluid (BALF) and lung tissues were harvested at 12 and 24 weeks post irradiation for studying inflammatory and fibrotic markers. Lactate dehydrogenase (LDH) leakage, leukocyte count and protein content in BALF were used as parameters to evaluate lung vascular permeability. Inflammatory cell signaling (p38 phosphorylation) and anti-oxidant status (MnSOD and Catalase level) was assessed by Western blot, while X-ray CT scan, H & E staining and trichrome staining were done to study the lung architecture and collagen deposition. Irradiation of the lung increased the total protein content, LDH leakage and total leukocyte count in the BALF, reflecting endothelial barrier dysfunction. These disruptive effects were significantly abolished by DRDE-30, which appear to be linked to the DRDE-30 mediated abrogation of activation of the redox-sensitive pro- inflammatory signaling cascade, the MAPK pathway. Concurrent administration of DRDE-30 with radiation inhibited radiation-induced oxidative stress by strengthening the anti-oxidant defense system and abrogated p38 mitogen-activated protein kinase activation, which was associated with reduced vascular leak and macrophage recruitment to the lungs. Histopathological examination (by H & E staining) of the lung showed radiation-induced inflammation of the lungs, characterized by cellular infiltration, interstitial oedema, alveolar wall thickening, perivascular fibrosis and obstruction of alveolar spaces, which were all reduced by pre-administration of DRDE-30. Structural analysis with X-ray CT indicated lung architecture (linked to the degree of opacity) comparable to un-irradiated mice that correlated well with the lung morphology and reduced collagen deposition. Reduction in the radiation-induced inflammation and fibrosis brought about by DRDE-30 resulted in a profound increase in animal survival (72 % in the combination vs 24% with radiation) observed at the end of 24 weeks following irradiation. These findings establish the potential of the Amifostine analogue, DRDE-30, in reducing radiation induced pulmonary injury by attenuating the inflammatory and fibrotic responses.

Keywords: amifostine, fibrosis, inflammation, lung injury radiation

Procedia PDF Downloads 514
7266 Investment Casting Conditions with Tourmaline In-Situ

Authors: Kageeporn Wongpreedee, Bongkot Phichaikamjornwut, Duangkhae Bootkul

Abstract:

The technique of stone in place casting had been established in jewelry production for two decades. However, the process were not widely used since it was limited to precious stones with high hardness and high stabililty at high temperature. This experiment were tested on tourmaline which is semi-precious gemstone having less hardness and less stability comparing to precious stones. The experiment were designed into two parts. The first part is to understand the phenomena of tourmaline under the heating conditions. Natural tourmaline stones were investigated and compared inclusions inside stones tested at temperature of 500 °C, 600 °C, and 700 °C. The second part is to cast the treated tourmaline with ion-implanation under the stones in place casting conditions. The results showed that stones were able to tolerate as much as at 700 °C showing the growths of inclusions inside the stones. The second part of this experiment were compared tourmaline with ion-implantation and natural tourmaline using on stones in place casting process at different stone setting types. The results showed that the cracks and inclustions of both treat and natural tourmaline with stones in place casting were propagate due to high stress of metal contractions. The stones with ion-implatation were more likely tolerate to cracks and inclusion propagations inside the stones.

Keywords: stone in place casting, tourmaline, ion implantation, metal contraction

Procedia PDF Downloads 221
7265 Analysis of Different Classification Techniques Using WEKA for Diabetic Disease

Authors: Usama Ahmed

Abstract:

Data mining is the process of analyze data which are used to predict helpful information. It is the field of research which solve various type of problem. In data mining, classification is an important technique to classify different kind of data. Diabetes is most common disease. This paper implements different classification technique using Waikato Environment for Knowledge Analysis (WEKA) on diabetes dataset and find which algorithm is suitable for working. The best classification algorithm based on diabetic data is Naïve Bayes. The accuracy of Naïve Bayes is 76.31% and take 0.06 seconds to build the model.

Keywords: data mining, classification, diabetes, WEKA

Procedia PDF Downloads 152
7264 Economic of Chickpea Cultivars as Influenced by Sowing Time and Seed Rate

Authors: Indu Bala Sethi, Meena Sewhag, Rakesh Kumar, Parveen Kumar

Abstract:

Field experiment was conducted at Pulse Research Area of CCS Haryana Agricultural University, Hisar during rabi 2012-13 to study the economics of chickpea cultivars as influenced by sowing time and seed rate on sandy loam soils under irrigated conditions. The factorial experiment consisting of 24 treatment combinations with two sowing time (1st fortnight of November and 1st fortnight of December.) and four cultivars (H09-23, H08-18, C-235 and HC-1) kept in main plots while three seed rates viz. 40 kg ha-1, 50 kg ha-1 and 60 kg ha-1 was laid out in split plot design with three replications. The crop was sown with common row spacing of 30 cm as per the dates of sowing. The fertilizer was applied in the form of di- ammonium phosphate. The soil of the experimental site was deep sandy loam having pH of 7.9, EC of 0.13 dS/m and low in organic carbon (0.34%), low in available N status (193.36 kg ha-1), medium in available P2O5 (32.18 kg ha-1) and high in available K2O (249.67 kg ha-1). The crop was irrigated as and when required so as to maintain adequate soil moisture in the root zone The crop was sprayed with monocrotophos (1.25 l/ha) at initiation of flowering and at pod filling stage to protect the crop from pod borer attack. The yield was measured at the time of harvest. The cost of field preparation, sowing of seeds, thinning, weeding, plant protection, harvesting and cleaning contributed to fixed cost. The experiment was laid out in a split plot design with two sowing time (1st fortnight of November and 1st fortnight of December.) and four cultivars (H09-23, H08-18, C-235 and HC-1) kept in main plots while three seed rates viz. 40 kg ha-1, 50 kg ha-1 and 60 kg ha-1 were kept in subplots and replicated thrice. Results revealed that 1st fortnight of November sowing recorded significantly higher gross (Rs.1, 01,254 ha-1), net returns (Rs. 68,504 ha-1) and BC (3.09) ratio as compared to delayed crop of chickpea. Highest gross (Rs.91826 ha-1), net returns (Rs. 59076ha-1) and BC ratio (2.81) was recorded with H08-18. Higher value of cost of cultivation of chickpea was observed in higher seed rate than the lower ones. However no significant variation in net and gross returns was observed due to seed rates. Highest BC (2.72) ratio was recorded with 50 kg ha-1 which differs significantly from 60 kg ha-1 but was at par with 40 kg ha-1. This is because of higher grain yield obtained with 50 kg ha-1 seed rate. Net profit for farmers growing chickpea with seed rate of 50 kg ha-1 was higher than the farmers growing chickpea with seed rate of 40 and 60 kg ha.

Keywords: chickpea, cultivars, seed rate, sowing time

Procedia PDF Downloads 446
7263 The Role of Txnrd2 Deficiency in Epithelial-to-Mesenchymal-Transition (EMT) and Tumor Formation in Pancreatic Cancer

Authors: Chao Wu

Abstract:

Thioredoxin reductase 2 is a mitochondrial enzyme that belongs to the cellular defense against oxidative stress. We deleted mitochondrial Txnrd2 in a KrasG12D-driven pancreatic tumor model. Despite an initial increase in precursor lesions, tumor incidence decreased significantly. We isolated cancer cell lines from these genetically engineered mice and observed an impaired proliferation and colony formation. Reactive Oxygen Species, as determined by DCF fluorescence, were increased. We detected a higher mitochondrial copy number in Txnrd2-deficient cells (KTP). However, measurement of mitochondrial bioenergetics showed no impairment of mitochondrial function and comparable O₂-consumption and extracellular acidification rates. In addition, the mitochondrial complex composition was affected in Txnrd2 deleted cell lines. To gain better insight into the role of Txnrd2, we deleted Txnrd2 in clones from parental KrasG12D cell lines using Crispr/Cas9 technology. The deletion was confirmed by western blot and activity assay. Interestingly, and in line with previous RNA expression analysis, we saw changes in EMT markers in Txnrd2 deleted cell lines and control cell lines. This might help us explain the reduced tumor incidence in KrasG12D; Txnrd2∆panc mice.

Keywords: PDAC, TXNRD2, epithelial-to-mesenchymal-transition, ROS

Procedia PDF Downloads 125
7262 On Definition of Modulus of Deformation of Ground by Laboratory Method

Authors: Olgha Giorgishvili

Abstract:

The work is mainly concerned with the determination of modulus of deformation by laboratory method. It is known that a modulus of deformation is defining by laboratory and field methods. By laboratory method the modulus of deformation is defined in the compressive devices. Our goal is to conduct experiments by both methods and finally make to interpret the obtained results. In this article is considered the definition by new offered laboratory method of deformation modulus that is closer to the real deformation modulus. Finally, the obtained results gives the possibility to us to raise the issue of change the state norms for determining ground by laboratory method.

Keywords: building, soil mechanic, deformation moulus, compression methods

Procedia PDF Downloads 420
7261 Comparison of Vessel Detection in Standard vs Ultra-WideField Retinal Images

Authors: Maher un Nisa, Ahsan Khawaja

Abstract:

Retinal imaging with Ultra-WideField (UWF) view technology has opened up new avenues in the field of retinal pathology detection. Recent developments in retinal imaging such as Optos California Imaging Device helps in acquiring high resolution images of the retina to help the Ophthalmologists in diagnosing and analyzing eye related pathologies more accurately. This paper investigates the acquired retinal details by comparing vessel detection in standard 450 color fundus images with the state of the art 2000 UWF retinal images.

Keywords: color fundus, retinal images, ultra-widefield, vessel detection

Procedia PDF Downloads 450
7260 Skin-Dose Mapping for Patients Undergoing Interventional Radiology Procedures: Clinical Experimentations versus a Mathematical Model

Authors: Aya Al Masri, Stefaan Carpentier, Fabrice Leroy, Thibault Julien, Safoin Aktaou, Malorie Martin, Fouad Maaloul

Abstract:

Introduction: During an 'Interventional Radiology (IR)' procedure, the patient's skin-dose may become very high for a burn, necrosis and ulceration to appear. In order to prevent these deterministic effects, an accurate calculation of the patient skin-dose mapping is essential. For most machines, the 'Dose Area Product (DAP)' and fluoroscopy time are the only information available for the operator. These two parameters are a very poor indicator of the peak skin dose. We developed a mathematical model that reconstructs the magnitude (delivered dose), shape, and localization of each irradiation field on the patient skin. In case of critical dose exceeding, the system generates warning alerts. We present the results of its comparison with clinical studies. Materials and methods: Two series of comparison of the skin-dose mapping of our mathematical model with clinical studies were performed: 1. At a first time, clinical tests were performed on patient phantoms. Gafchromic films were placed on the table of the IR machine under of PMMA plates (thickness = 20 cm) that simulate the patient. After irradiation, the film darkening is proportional to the radiation dose received by the patient's back and reflects the shape of the X-ray field. After film scanning and analysis, the exact dose value can be obtained at each point of the mapping. Four experimentation were performed, constituting a total of 34 acquisition incidences including all possible exposure configurations. 2. At a second time, clinical trials were launched on real patients during real 'Chronic Total Occlusion (CTO)' procedures for a total of 80 cases. Gafchromic films were placed at the back of patients. We performed comparisons on the dose values, as well as the distribution, and the shape of irradiation fields between the skin dose mapping of our mathematical model and Gafchromic films. Results: The comparison between the dose values shows a difference less than 15%. Moreover, our model shows a very good geometric accuracy: all fields have the same shape, size and location (uncertainty < 5%). Conclusion: This study shows that our model is a reliable tool to warn physicians when a high radiation dose is reached. Thus, deterministic effects can be avoided.

Keywords: clinical experimentation, interventional radiology, mathematical model, patient's skin-dose mapping.

Procedia PDF Downloads 147
7259 Near-Peer Mentoring/Curriculum and Community Enterprise for Environmental Restoration Science

Authors: Lauren B. Birney

Abstract:

The BOP-CCERS (Billion Oyster Project- Curriculum and Community Enterprise for Restoration Science) Near-Peer Mentoring Program provides the long-term (five-year) support network to motivate and guide students toward restoration science-based CTE pathways. Students are selected from middle schools with actively participating BOP-CCERS teachers. Teachers will nominate students from grades 6-8 to join cohorts of between 10 and 15 students each. Cohorts are comprised primarily of students from the same school in order to facilitate mentors' travel logistics as well as to sustain connections with students and their families. Each cohort is matched with an exceptional undergraduate or graduate student, either a BOP research associate or STEM mentor recruited from collaborating City University of New York (CUNY) partner programs. In rare cases, an exceptional high school junior or senior may be matched with a cohort in addition to a research associate or graduate student. In no case is a high school student or minor be placed individually with a cohort. Mentors meet with students at least once per month and provide at least one offsite field visit per month, either to a local STEM Hub or research lab. Keeping with its five-year trajectory, the near-peer mentoring program will seek to retain students in the same cohort with the same mentor for the full duration of middle school and for at least two additional years of high school. Upon reaching the final quarter of 8th grade, the mentor will develop a meeting plan for each individual mentee. The mentee and the mentor will be required to meet individually or in small groups once per month. Once per quarter, individual meetings will be substituted for full cohort professional outings. The mentor will organize the entire cohort on a field visit or educational workshop with a museum or aquarium partner. In addition to the mentor-mentee relationship, each participating student will also be asked to conduct and present his or her own BOP field research. This research is ideally carried out with the support of the students’ regular high school STEM subject teacher; however, in cases where the teacher or school does not permit independent study, the student will be asked to conduct the research on an extracurricular basis. Near-peer mentoring affects students’ social identities and helps them to connect to role models from similar groups, ultimately giving them a sense of belonging. Qualitative and quantitative analytics were performed throughout the study. Interviews and focus groups also ensued. Additionally, an external evaluator was utilized to ensure project efficacy, efficiency, and effectiveness throughout the entire project. The BOP-CCERS Near Peer Mentoring program is a peer support network in which high school students with interest or experience in BOP (Billion Oyster Project) topics and activities (such as classroom oyster tanks, STEM Hubs, or digital platform research) provide mentorship and support for middle school or high school freshmen mentees. Peer mentoring not only empowers those students being taught but also increases the content knowledge and engagement of mentors. This support provides the necessary resources, structure, and tools to assist students in finding success.

Keywords: STEM education, environmental science, citizen science, near peer mentoring

Procedia PDF Downloads 95
7258 Green Roofs and Xeriscape Planting that Contribute to Sustainable Urban Green Space

Authors: Derya Sarı, Banu Karasah

Abstract:

In the recent years, urban green areas decrease dramatically as a result of increasing industrialization and population growth. At the same time, green spaces provide many ecosystem services such as controls of air pollution, noise reduction, prevents flooding and reduces the stress in the urban areas. Therefore, the plants help to these areas to get more livable and active, and also plants are one of the most significant identity elements in these open spaces. Roof gardens comes significant design comprehension as a result of global warming and also they contribute to cities with regard to ecological, economic, visual and recreational aspects. This study is mainly based on evaluation potential of green roofs and xeriscape planting design approach of Artvin (Turkey) known that generally has a remarkable floristic richness. Artvin is located on a sloping terrain, and the amount of green spaces that can be used is very limited in this city. Therefore, green roofs approach should be evaluated to supply urban green space sustainability. This study shows that it is appropriate about 20 perennial plants for green roofs and xeriscape planting design in Artvin city center. Usage of native plant species would be support to sustainable urban green spaces.

Keywords: Artvin, green roofs, urban green spaces, xeriscape planting

Procedia PDF Downloads 477
7257 Modified Plastic-Damage Model for FRP-Confined Repaired Concrete Columns

Authors: I. A Tijani, Y. F Wu, C.W. Lim

Abstract:

Concrete Damaged Plasticity Model (CDPM) is capable of modeling the stress-strain behavior of confined concrete. Nevertheless, the accuracy of the model largely depends on its parameters. To date, most research works mainly focus on the identification and modification of the parameters for fiber reinforced polymer (FRP) confined concrete prior to damage. And, it has been established that the FRP-strengthened concrete behaves differently to FRP-repaired concrete. This paper presents a modified plastic damage model within the context of the CDPM in ABAQUS for modelling of a uniformly FRP-confined repaired concrete under monotonic loading. The proposed model includes infliction damage, elastic stiffness, yield criterion and strain hardening rule. The distinct feature of damaged concrete is elastic stiffness reduction; this is included in the model. Meanwhile, the test results were obtained from a physical testing of repaired concrete. The dilation model is expressed as a function of the lateral stiffness of the FRP-jacket. The finite element predictions are shown to be in close agreement with the obtained test results of the repaired concrete. It was observed from the study that with necessary modifications, finite element method is capable of modeling FRP-repaired concrete structures.

Keywords: Concrete, FRP, Damage, Repairing, Plasticity, and Finite element method

Procedia PDF Downloads 141
7256 Soot Formation in the Field of Combustion

Authors: Nacira Mecheri, N. Boussid

Abstract:

A new chemical mechanism designed to study the process of forming the first aromatic ring (benzene) and polycyclic aromatic hydrocarbons (PAH) from a flame of acetylene (C2H2) has been developed. The mechanism developed, contains 50 chemical species involved in 268 reversible elementary reactions. The comparison between the results from modelling and experimental measurements allowed us to test the validity of the postulated mechanism in specific experimental conditions. Kinetic analysis of the flame by calculating the maximum rates for each elementary reaction, allowed us to identify key reactions pathways of consumption and formation of main precursors of soot.

Keywords: benzene, PAH, acetylene, modeling, flame, soot

Procedia PDF Downloads 343
7255 Purple Sweet Potato Anthocyanin Attenuates the Fat-Induced Mortality in Drosophila Melanogaster

Authors: Lijun Wang, Zhen-Yu Chen

Abstract:

A high-fat diet induces the accumulation of lipid hydroperoxides, accelerates the ageing process and causes a greater mortality in Drosophila melanogaster. The purple sweet potato is rich in antioxidant anthocyanin. The present study was to examine if supplementation of purple sweet potato anthocyanin (PSPA) could reduce the mortality of fruit flies fed a high-fat diet. Results showed that the mean lifespan of fruit fly was shortened from 56 to 35 days in a dose-dependent manner when lard in the diet increased from 0% to 20%. PSPA supplementation attenuated partially the lard-induced mortality. The maximum lifespan and 50% survival time were 49 and 27 days for the 10% lard control flies, in contrast, they increased to 57 and 30 days in the PSPA-supplemented fruit flies. PSPA-supplemented diet significantly up-regulated the mRNA of superoxide dismutase, catalase and Rpn11, compared with those in the control lard diet. In addition, PSPA supplementation could restore the climbing ability of fruit flies fed a 10% lard diet. It was concluded that the lifespan-prolonging activity of PSPA was most likely mediated by modulating the genes of SOD, CAT and Rpn11.

Keywords: purple sweet potato, anthocyanin, high-fat diet, oxidative stress

Procedia PDF Downloads 273
7254 Heater and Substrate Profile Optimization for Low Power Portable Breathalyzer to Diagnose Diabetes Mellitus

Authors: Ramji Kalidoss, Snekhalatha Umapathy, V. Dhinakaran, J. M. Mathana

Abstract:

Chemi-resistive sensors used in breathalyzers have become a hotspot between the international breath research communities. These sensors exhibit a significant change in its resistance depending on the temperature it gets heated thus demanding high power leading to non-portable instrumentation. In this work, numerical simulation to identify the suitable combination of substrate and heater profile using COMSOL multiphysics was studied. Ni-Cr and Pt-100 joule resistive heater with various profiles were studied beneath the square and circular alumina substrates. The temperature distribution was uniform throughout the square substrate with the meander shaped pt100 heater with 48 mW power consumption for 200 oC. Moreover, this heater profile induced minimal stress on the substrate with 0.5 mm thick. A novel Graphene based ternary metal oxide nanocomposite (GO/SnO2/TiO2) was coated on the optimized substrate and heater to elucidate the response of diabetes biomarker (acetone). The sensor exhibited superior gas sensing performance towards acetone in the exhaled breath concentration range for diabetes (0.25 – 3 ppm). These results indicated the importance of substrate and heater properties along with sensing material for low power portable breathalyzers.

Keywords: Breath Analysis, Chemical Sensors, Diabetes Mellitus, Graphene Nanocomposites, Heater, Substrate

Procedia PDF Downloads 140
7253 Effect of Varying Stocking Densities and Vitamin C (Ascorbic Acid) Supplementation on Growth Performance of Japanese Quails

Authors: T. S. Olugbemi, T. S. Friday, O. O. Olusola

Abstract:

This experiment was carried out to assess the effect of different stocking densities and vitamin C supplementation on the performance of Japanese quails. Five hundred and twenty (520) unsexed quail birds of two (2) weeks of age were allotted randomly into nine (9) groups with 3 replicates each in a 3x3 factorial arrangement (3 stocking density levels and 3 graded vitamin C levels) with densities of 150, 120, 90 cm2/bird(11, 16, 21 birds). During the five weeks growing trial (2- 6 weeks), results showed that stocking density had significant effects on final weight (131.59g compared to 111.10g for the lowest), total and daily weight gain. No significance difference was observed for feed conversion ratio, age at first lay and first egg weight. Observations on haematological parameters (packed cell volume (PCV), total protein (TP), haemoglobin, red blood cell (RBC), lymphocyte, heterophil) on stocking density showed no significant differences. Vitamin C supplementation at 50mg/kg and 100mg/kg did not have any significant effect on the growth performance parameters of growing quails. Stocking density at 150cm2/bird had a better performance with or without vitamin C supplementation hence it is recommended that stocking rates of quails between the ages of 2 – 6 weeks should not be below 150cm2/bird.

Keywords: anti-oxidants, performance, stress, stocking density

Procedia PDF Downloads 650
7252 FPGA Implementation of the BB84 Protocol

Authors: Jaouadi Ikram, Machhout Mohsen

Abstract:

The development of a quantum key distribution (QKD) system on a field-programmable gate array (FPGA) platform is the subject of this paper. A quantum cryptographic protocol is designed based on the properties of quantum information and the characteristics of FPGAs. The proposed protocol performs key extraction, reconciliation, error correction, and privacy amplification tasks to generate a perfectly secret final key. We modeled the presence of the spy in our system with a strategy to reveal some of the exchanged information without being noticed. Using an FPGA card with a 100 MHz clock frequency, we have demonstrated the evolution of the error rate as well as the amounts of mutual information (between the two interlocutors and that of the spy) passing from one step to another in the key generation process.

Keywords: QKD, BB84, protocol, cryptography, FPGA, key, security, communication

Procedia PDF Downloads 190
7251 Durability Assessment of Nanocomposite-Based Bone Fixation Device Consisting of Bioabsorbable Polymer and Ceramic Nanoparticles

Authors: Jisoo Kim, Jin-Young Choi, MinSu Lee, Sunmook Lee

Abstract:

Effects of ceramic nanoparticles on the improvement of durability of bone fixation devices have been investigated by assessing the durability of nanocomposite materials consisting of bioabsorbable polymer and ceramic nanoparticles, which could be applied for bone fixation devices such as plates and screws. Various composite ratios were used for the synthesis of nanocomposite materials by blending polylactic acid (PLA) and polyglycolic acid (PGA) as bioabsorbable polymer, and hydroxyapatite (HA) and tri-calcium phosphate (TCP) as ceramic nanoparticles. It was found that the addition of ceramic nanoparticles significantly enhanced the mechanical properties of the bone fixation devices compared to those fabricated with pure biopolymers. Particularly, the layer-by-layer approach for the fabrication of nanocomposites also had an effect on the improvement of bending strength. Durability tests were performed by measuring the changes in the bending strength of nanocomposite samples under varied temperature conditions for the accelerated degradation tests. It was found that Weibull distribution was the most proper one for describing the life distribution of devices in the present study. The mean lifetime was predicted by adopting Arrhenius Eq. Model for Stress-Life relationship.

Keywords: bioabsorbable, bone fixation device, ceramic nanoparticles, durability assessment, nanocomposite

Procedia PDF Downloads 333
7250 Quality and Quality Assurance in Education: Examining the Possible Relationship

Authors: Rodoula Stavroula Gkarnara, Nikolaos Andreadakis

Abstract:

The purpose of this paper is to examine the relationship between quality and quality assurance in education. It constitutes a critical review of the bibliography regarding quality and its delimitation in the field of education, as well as the quality assurance in education and the approaches identified for its extensive study. The two prevailing and opposite views on the correlation of the two concepts are that on the one hand there is an inherent distance between these concepts as they are two separate terms and on the other hand they are interrelated and interdependent concepts that contribute to the improvement of quality in education. Finally, the last part of the paper, adopting the second view, refers to the contribution of quality assurance to quality, where it is pointed out that the first concept leads to the improvement of the latter by quality assurance being the means of feedback for the quality achieved.

Keywords: education, quality, quality assurance, quality improvement

Procedia PDF Downloads 220
7249 Modification of Polyurethane Adhesive for OSB/EPS Panel Production

Authors: Stepan Hysek, Premysl Sedivka, Petra Gajdacova

Abstract:

Currently, structural composite materials contain cellulose-based particles (wood chips, fibers) bonded with synthetic adhesives containing formaldehyde (urea-formaldehyde, melamine-formaldehyde adhesives and others). Formaldehyde is classified as a volatile substance with provable carcinogenic effects on live organisms, and an emphasis has been put on continual reduction of its content in products. One potential solution could be the development of an agglomerated material which does not contain adhesives releasing formaldehyde. A potential alternative to formaldehyde-based adhesives could be polyurethane adhesives containing no formaldehyde. Such adhesives have been increasingly used in applications where a few years ago formaldehyde-based adhesives were the only option. Advantages of polyurethane adhesive in comparison with others in the industry include the high elasticity of the joint, which is able to resist dynamic stress, and resistance to increased humidity and climatic effects. These properties predict polyurethane adhesives to be used in OSB/EPS panel production. The objective of this paper is to develop an adhesive for bonding of sandwich panels made of material based on wood and other materials, e.g. SIP) and optimization of input components in order to obtain an adhesive with required properties suitable for bonding of the given materials without involvement of formaldehyde. It was found that polyurethane recyclate as a filler is suitable modification of polyurethane adhesive and results have clearly revealed that modified adhesive can be used for OSB/EPS panel production.

Keywords: adhesive, polyurethane, recyclate, SIP

Procedia PDF Downloads 278
7248 The Physical Impact of Nano-Layer Due to Dispersions of Carbon Nano-Tubes through an Absorbent Channel: A Numerical Nano-Fluid Flow Model

Authors: Muhammad Zubair Akbar Qureshi, Abdul Bari Farooq

Abstract:

The intention of the current study to analyze the significance of nano-layer in incompressible magneto-hydrodynamics (MHD) flow of a Newtonian nano-fluid consisting of carbon nano-materials has been considered through an absorbent channel with moving porous walls. Using applicable similarity transforms, the governing equations are converted into a system of nonlinear ordinary differential equations which are solved by using the 4th-order Runge-Kutta technique together with shooting methodology. The phenomena of nano-layer have also been modeled mathematically. The inspiration behind this segment is to reveal the behavior of involved parameters on velocity and temperature profiles. A detailed table is presented in which the effects of involved parameters on shear stress and heat transfer rate are discussed. Specially presented the impact of the thickness of the nano-layer and radius of the particle on the temperature profile. We observed that due to an increase in the thickness of the nano-layer, the heat transfer rate increases rapidly. The consequences of this research may be advantageous to the applications of biotechnology and industrial motive.

Keywords: carbon nano-tubes, magneto-hydrodynamics, nano-layer, thermal conductivity

Procedia PDF Downloads 131
7247 Optimal Design of Composite Cylindrical Shell Based on Nonlinear Finite Element Analysis

Authors: Haider M. Alsaeq

Abstract:

The present research is an attempt to figure out the best configuration of composite cylindrical shells of the sandwich type, i.e. the lightest design of such shells required to sustain a certain load over a certain area. The optimization is based on elastic-plastic geometrically nonlinear incremental-iterative finite element analysis. The nine-node degenerated curved shell element is used in which five degrees of freedom are specified at each nodal point, with a layered model. The formulation of the geometrical nonlinearity problem is carried out using the well-known total Lagrangian principle. For the structural optimization problem, which is dealt with as a constrained nonlinear optimization, the so-called Modified Hooke and Jeeves method is employed by considering the weight of the shell as the objective function with stress and geometrical constraints. It was concluded that the optimum design of composite sandwich cylindrical shell that have a rigid polyurethane foam core and steel facing occurs when the area covered by the shell becomes almost square with a ratio of core thickness to facing thickness lies between 45 and 49, while the optimum height to length ration varies from 0.03 to 0.08 depending on the aspect ratio of the shell and its boundary conditions.

Keywords: composite structure, cylindrical shell, optimization, non-linear analysis, finite element

Procedia PDF Downloads 394
7246 Application of Adaptive Neuro Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel AASTM A516 Grade 70

Authors: Omar Al Denali, Abdelaziz Badi

Abstract:

The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of post-weld heat treatment (PWHT) experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556 %, which confirms the high accuracy of the model.

Keywords: prediction, post-weld heat treatment, adaptive neuro-fuzzy inference system, mean absolute percentage error

Procedia PDF Downloads 161
7245 Development of Verification System of Workspace Clashes Between Construction Activities

Authors: Hyeon-Seung Kim, Sang-Mi Park, Min-Seo Kim, Jong-Myeung Shin, Leen-Seok Kang

Abstract:

Recently, the use of Building Information Modeling (BIM) in public construction works has become mandatory in some countries and it is anticipated that BIM will be applied to the actual field of civil engineering projects. However, the BIM system is still focused on the architectural project and the design phase. Because the civil engineering project is linear type project and is focused on the construction phase comparing with architectural project, 3D simulation is difficult to visualize them. This study suggests a method and a prototype system to solve workspace conflictions among construction activities using BIM simulation tool.

Keywords: BIM, workspace, confliction, visualization

Procedia PDF Downloads 413
7244 The Effects of Health Education Programme on Knowledge and Prevention of Cerebrovascular Disease among Hypertensive Patients in University College Hospital, Ibadan

Authors: T. A. Ajiboye

Abstract:

This study examines the effects of health education programme on knowledge and prevention of cerebrovascular disease among hypertensive patients in University College Hospital, Ibadan. A quasi-experimental design was adopted for the study. 100 hypertensive patients were conveniently selected from general outpatient department in UCH. Data generated were analyzed using ANOVA at 0.05 alpha levels. The findings of the study revealed that health education programme significantly influenced both the knowledge of hypertensive patients (F=22.70; DF=1/99; p < .05) and their attitude (F=10.377; DF=1/99; p < .05) on cerebrovascular disease. Findings also discovered that health education programme significantly reduce the complication of hypertension to cerebrovascular disease (F= 16.41; DF=7/286; p < 0.05) among the hypertensive patients at UCH. Based on the findings, it is recommended that hypertensive patients should relieve themselves from stress, engage themselves on regular exercises, compliance with drug and diet regimes coupled with keeping up of regular appointment. Government should design health information that will center on hypertension and cerebrovascular disease so as to keep health and community development problems to the barest minimum. Finally, there should be provision of social amenities and recreational centers, as this will prevents hypertension problems.

Keywords: cerebrovascular disease, effectiveness, health education, hypertension, knowledge, prevention

Procedia PDF Downloads 304
7243 The Work System Method for Designing Knowledge Mobilization Projects

Authors: Chihab Benmoussa

Abstract:

Could the Work System Approach (WSA) function as a framework for designing high-impact knowledge mobilization systems? This paper put forward arguments in favor of the applicability of WSA for knowledge mobilization design based on evidences from a practical research. Normative approaches for practitioners are highly needed especially in the field of knowledge management (KM), given the abysmal rate of disappointment and failure of KM projects. The paper contrasts knowledge management and knowledge mobilization, presents the WSA and showed how the WSA’s concepts and ideas fit with the approach adopted by a multinational company in designing a successful knowledge mobilization initiative.

Keywords: knowledge management, knowledge mobilizations, work system method

Procedia PDF Downloads 528
7242 Implementing Effective Mathematical-Discussion Programme for Mathematical Competences in Primary School Classroom in South Korea

Authors: Saeyoung Lee

Abstract:

As the enthusiasm for education in Korea is too much high, it is well known by others that children in Korea get good scores in Mathematics. However, behind of this good reputation, children in Korea are easy to get lose self-confidence, tend to complaint and rarely participate in the class because of too much competition which leads to lack of competences. In this regard, the main goals of this paper are, by applying the programme based on peer-communication on Mathematics education field, it would like to improve self-managemental competence to make children gain self-confidence, communicative competence to make them deal with complaint and communitive competence to make them participated in the class for the age of 10 children to solve this problem. 14 children the age of 10 in one primary school in Gangnam, Seoul, Korea had participated in the research from March 2018 to October 2018. They were under the programme based on peer-communication during the period. Every Mathematics class maintained the same way. Firstly a problem was given to children. Secondly, children were asked to find many ways to solve the problem as much as they could by themselves. Thirdly all ways to solve the problem by children were posted on the board and three of the children made a group to distinguish the ways from valid to invalid. Lastly, all children made a discuss to find one way which is the most efficient among valid ways. Pre-test was carried out by the questionnaire based on Likert scale before applying the programme. The result of the pre-test was 3.89 for self-managemental competence, 3.91 for communicative competence and 4.19 for communitive competence. Post-test was carried out by the same questionnaire after applying the programme. The result of the post-test was 3.93 for self-managemental competence, 4.23 for communicative competence and 4.20 for communitive competence. That means by applying the programme based on peer-communication on Mathematics education field, the age of 10 children in Korea could improve self-managemental, communicative and communitive competence. Especially it works very well on communicative competence by increasing 0.32 points as it marked. Considering this research, Korean Mathematics education based on competition which leads to lack of competences should be changed to cooperative structure to make students more competent rather than just getting good scores. In conclusion, innovative teaching methods which are focused on improving competences such as the programme based on peer-communication which was applied in this research are strongly required to be studied and widely used.

Keywords: competences, mathematics education, peer-communication, primary education

Procedia PDF Downloads 138
7241 A Physically-Based Analytical Model for Reduced Surface Field Laterally Double Diffused MOSFETs

Authors: M. Abouelatta, A. Shaker, M. El-Banna, G. T. Sayah, C. Gontrand, A. Zekry

Abstract:

In this paper, a methodology for physically modeling the intrinsic MOS part and the drift region of the n-channel Laterally Double-diffused MOSFET (LDMOS) is presented. The basic physical effects like velocity saturation, mobility reduction, and nonuniform impurity concentration in the channel are taken into consideration. The analytical model is implemented using MATLAB. A comparison of the simulations from technology computer aided design (TCAD) and that from the proposed analytical model, at room temperature, shows a satisfactory accuracy which is less than 5% for the whole voltage domain.

Keywords: LDMOS, MATLAB, RESURF, modeling, TCAD

Procedia PDF Downloads 204
7240 Development of DEMO-FNS Hybrid Facility and Its Integration in Russian Nuclear Fuel Cycle

Authors: Yury S. Shpanskiy, Boris V. Kuteev

Abstract:

Development of a fusion-fission hybrid facility based on superconducting conventional tokamak DEMO-FNS runs in Russia since 2013. The main design goal is to reach the technical feasibility and outline prospects of industrial hybrid technologies providing the production of neutrons, fuel nuclides, tritium, high-temperature heat, electricity and subcritical transmutation in Fusion-Fission Hybrid Systems. The facility should operate in a steady-state mode at the fusion power of 40 MW and fission reactions of 400 MW. Major tokamak parameters are the following: major radius R=3.2 m, minor radius a=1.0 m, elongation 2.1, triangularity 0.5. The design provides the neutron wall loading of ~0.2 MW/m², the lifetime neutron fluence of ~2 MWa/m², with the surface area of the active cores and tritium breeding blanket ~100 m². Core plasma modelling showed that the neutron yield ~10¹⁹ n/s is maximal if the tritium/deuterium density ratio is 1.5-2.3. The design of the electromagnetic system (EMS) defined its basic parameters, accounting for the coils strength and stability, and identified the most problematic nodes in the toroidal field coils and the central solenoid. The EMS generates toroidal, poloidal and correcting magnetic fields necessary for the plasma shaping and confinement inside the vacuum vessel. EMC consists of eighteen superconducting toroidal field coils, eight poloidal field coils, five sections of a central solenoid, correction coils, in-vessel coils for vertical plasma control. Supporting structures, the thermal shield, and the cryostat maintain its operation. EMS operates with the pulse duration of up to 5000 hours at the plasma current up to 5 MA. The vacuum vessel (VV) is an all-welded two-layer toroidal shell placed inside the EMS. The free space between the vessel shells is filled with water and boron steel plates, which form the neutron protection of the EMS. The VV-volume is 265 m³, its mass with manifolds is 1800 tons. The nuclear blanket of DEMO-FNS facility was designed to provide functions of minor actinides transmutation, tritium production and enrichment of spent nuclear fuel. The vertical overloading of the subcritical active cores with MA was chosen as prospective. Analysis of the device neutronics and the hybrid blanket thermal-hydraulic characteristics has been performed for the system with functions covering transmutation of minor actinides, production of tritium and enrichment of spent nuclear fuel. A study of FNS facilities role in the Russian closed nuclear fuel cycle was performed. It showed that during ~100 years of operation three FNS facilities with fission power of 3 GW controlled by fusion neutron source with power of 40 MW can burn 98 tons of minor actinides and 198 tons of Pu-239 can be produced for startup loading of 20 fast reactors. Instead of Pu-239, up to 25 kg of tritium per year may be produced for startup of fusion reactors using blocks with lithium orthosilicate instead of fissile breeder blankets.

Keywords: fusion-fission hybrid system, conventional tokamak, superconducting electromagnetic system, two-layer vacuum vessel, subcritical active cores, nuclear fuel cycle

Procedia PDF Downloads 151
7239 The Use of Electrical Resistivity Measurement, Cracking Test and Ansys Simulation to Predict Concrete Hydration Behavior and Crack Tendency

Authors: Samaila Bawa Muazu

Abstract:

Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were separately monitored using non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance method respectively. The results show highest resistivity of C30 at the beginning until reaching the acceleration point when C50 accelerated and overtaken the others, and this period corresponds to its final setting time range, from resistivity derivative curve, hydration process can be divided into dissolution, induction, acceleration and deceleration periods, restrained shrinkage crack and setting time tests demonstrated the earliest cracking and setting time of C50, therefore, this method conveniently and rapidly determines the concrete’s crack potential. The highest inflection time (ti), the final setting time (tf) were obtained and used with crack time in coming up with mathematical models for the prediction of concrete’s cracking age for the range being considered. Finally, ANSYS numerical simulations supports the experimental findings in terms of the earliest crack age of C50 and the crack location that, highest stress concentration is always beneath the artificially introduced expansion joint of C50.

Keywords: concrete hydration, electrical resistivity, restrained shrinkage crack, setting time, simulation

Procedia PDF Downloads 213