Search results for: optical properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9704

Search results for: optical properties

4994 Development of Light-Weight Refractory Bricks

Authors: Liaqat Ali, Furqan Ahmad

Abstract:

The heat losses should be controlled during the high temperature processes from energy conservation point of view. For this purpose, refractories with low thermal conductivity, high porosity and good mechanical strength along with low price are desirable. In this work, various combinations of naturally occurring, locally available, cheap raw materials, namely, clay, rice husk and saw dust were used. Locally produced insulating firebricks (IFBs) cannot be used at higher than a few hundred °C and possess low strength as well. Various process parameters were studied and the refractories with desirable properties were produced, which can be used up to 1200 °C.

Keywords: firebricks, mechanical strength, thermal conductivity, refractory bricks

Procedia PDF Downloads 308
4993 Developing A Third Degree Of Freedom For Opinion Dynamics Models Using Scales

Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle

Abstract:

Opinion dynamics models use an agent-based modeling approach to model people’s opinions. Model's properties are usually explored by testing the two 'degrees of freedom': the interaction rule and the network topology. The latter defines the connection, and thus the possible interaction, among agents. The interaction rule, instead, determines how agents select each other and update their own opinion. Here we show the existence of the third degree of freedom. This can be used for turning one model into each other or to change the model’s output up to 100% of its initial value. Opinion dynamics models represent the evolution of real-world opinions parsimoniously. Thus, it is fundamental to know how real-world opinion (e.g., supporting a candidate) could be turned into a number. Specifically, we want to know if, by choosing a different opinion-to-number transformation, the model’s dynamics would be preserved. This transformation is typically not addressed in opinion dynamics literature. However, it has already been studied in psychometrics, a branch of psychology. In this field, real-world opinions are converted into numbers using abstract objects called 'scales.' These scales can be converted one into the other, in the same way as we convert meters to feet. Thus, in our work, we analyze how this scale transformation may affect opinion dynamics models. We perform our analysis both using mathematical modeling and validating it via agent-based simulations. To distinguish between scale transformation and measurement error, we first analyze the case of perfect scales (i.e., no error or noise). Here we show that a scale transformation may change the model’s dynamics up to a qualitative level. Meaning that a researcher may reach a totally different conclusion, even using the same dataset just by slightly changing the way data are pre-processed. Indeed, we quantify that this effect may alter the model’s output by 100%. By using two models from the standard literature, we show that a scale transformation can transform one model into the other. This transformation is exact, and it holds for every result. Lastly, we also test the case of using real-world data (i.e., finite precision). We perform this test using a 7-points Likert scale, showing how even a small scale change may result in different predictions or a number of opinion clusters. Because of this, we think that scale transformation should be considered as a third-degree of freedom for opinion dynamics. Indeed, its properties have a strong impact both on theoretical models and for their application to real-world data.

Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics

Procedia PDF Downloads 134
4992 A Prediction of Cutting Forces Using Extended Kienzle Force Model Incorporating Tool Flank Wear Progression

Authors: Wu Peng, Anders Liljerehn, Martin Magnevall

Abstract:

In metal cutting, tool wear gradually changes the micro geometry of the cutting edge. Today there is a significant gap in understanding the impact these geometrical changes have on the cutting forces which governs tool deflection and heat generation in the cutting zone. Accurate models and understanding of the interaction between the work piece and cutting tool leads to improved accuracy in simulation of the cutting process. These simulations are useful in several application areas, e.g., optimization of insert geometry and machine tool monitoring. This study aims to develop an extended Kienzle force model to account for the effect of rake angle variations and tool flank wear have on the cutting forces. In this paper, the starting point sets from cutting force measurements using orthogonal turning tests of pre-machined flanches with well-defined width, using triangular coated inserts to assure orthogonal condition. The cutting forces have been measured by dynamometer with a set of three different rake angles, and wear progression have been monitored during machining by an optical measuring collaborative robot. The method utilizes the measured cutting forces with the inserts flank wear progression to extend the mechanistic cutting forces model with flank wear as an input parameter. The adapted cutting forces model is validated in a turning process with commercial cutting tools. This adapted cutting forces model shows the significant capability of prediction of cutting forces accounting for tools flank wear and different-rake-angle cutting tool inserts. The result of this study suggests that the nonlinear effect of tools flank wear and interaction between the work piece and the cutting tool can be considered by the developed cutting forces model.

Keywords: cutting force, kienzle model, predictive model, tool flank wear

Procedia PDF Downloads 82
4991 Preparation of Amorphous silica from Algerian Diatomite and Its Properties

Authors: S. Medeghri, S. Hamzaoui, M. Zerdali, S. Masatomo

Abstract:

In this work there is a facile method to produce pure amorphous silica from Algerian diatomite with an economic and ecological method. The sodium silicate is commonly used as precursor in silica gel diatomite preparation. In this study, the preparation of sodium silicate is preceded by acid washing of raw diatomite; the acid is then slowly added to precipitate silica at different pH values to obtain silica gel. The silica gel is characterized by EDX, ICP-MS and XRD. The EDX revels that the purity of silica from diatom is 98% after purification compared to raw diatom.

Keywords: diatomite, acid cleaning, dissolution, amorphous silica, purity

Procedia PDF Downloads 548
4990 Review in Role of Geotextile on Soil Improvement

Authors: Sandra Ghavam Shirazi, Mohsen Ramezan Shirazi, Mohammadreza Golhashem

Abstract:

Nowadays by development of construction in modern world new techniques are introduced to civil engineering. As for geotechnical problems and demands of soil improvement, engineers are searching for decisive methods to ensure the safety of projects. As a popular material Geotextiles are used in almost every aspect of civil engineering. There is a vast variety of geotextiles and each kind has their own unique characteristics therefor to select the proper geotextile for a specific project their properties must be carefully examined. This review gathers and evaluates different parameters of geotextiles that are used in geotechnical field.

Keywords: geotextile, soft soils, fabric, stabilization, fiber

Procedia PDF Downloads 379
4989 Valorization Bio-Waste Argan Pulp for Green Synthesis of Silver Nanoparticles

Authors: Omar Drissi, Nadia El Harfaoui, Khalid Nouneh, Rachid Hsissou, Badre Daoudi

Abstract:

The pulp endures of having a lower importance, incompletely because of the way that it has been less studied, and it has been recognized as a pivotal product got from biomass that can be utilized in different fields. The current research focuses on pulp of Argania spinosa (L). To this end, the aim is to study the characteristics and properties of Argan pulp, such as shape, chemical and macromineral composition. As a result, X-Ray Fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR), and Scanning Electron Microscopy (SEM) were used in the research.

Keywords: argania spinose, argan pulp, argan bio-waste, green synthesis, silver nanoparticles, valorization

Procedia PDF Downloads 95
4988 Civil Service Reforms in Kazakhstan and Its Influence on Modernization

Authors: Aliya Idrissova

Abstract:

Civil service (public administration) is an important social institution of society properties. Civil service institution had a significant impact on modernization processes in Kazakhstan through ensuring the functioning of all the subsystems of social life. This article is an attempt to analyses the reforms of public service institution in Kazakhstan and to assess its influence on modernization processes.

Keywords: civil service, Kazakhstan, modernization, a national model of civil service, civil service reforms, bureaucracy

Procedia PDF Downloads 360
4987 New Territories: Materiality and Craft from Natural Systems to Digital Experiments

Authors: Carla Aramouny

Abstract:

Digital fabrication, between advancements in software and machinery, is pushing practice today towards more complexity in design, allowing for unparalleled explorations. It is giving designers the immediate capacity to apply their imagined objects into physical results. Yet at no time have questions of material knowledge become more relevant and crucial, as technological advancements approach a radical re-invention of the design process. As more and more designers look towards tactile crafts for material know-how, an interest in natural behaviors has also emerged trying to embed intelligence from nature into the designed objects. Concerned with enhancing their immediate environment, designers today are pushing the boundaries of design by bringing in natural systems, materiality, and advanced fabrication as essential processes to produce active designs. New Territories, a yearly architecture and design course on digital design and materiality, allows students to explore processes of digital fabrication in intersection with natural systems and hands-on experiments. This paper will highlight the importance of learning from nature and from physical materiality in a digital design process, and how the simultaneous move between the digital and physical realms has become an essential design method. It will detail the work done over the course of three years, on themes of natural systems, crafts, concrete plasticity, and active composite materials. The aim throughout the course is to explore the design of products and active systems, be it modular facades, intelligent cladding, or adaptable seating, by embedding current digital technologies with an understanding of natural systems and a physical know-how of material behavior. From this aim, three main themes of inquiry have emerged through the varied explorations across the three years, each one approaching materiality and digital technologies through a different lens. The first theme involves crossing the study of naturals systems as precedents for intelligent formal assemblies with traditional crafts methods. The students worked on designing performative facade systems, starting from the study of relevant natural systems and a specific craft, and then using parametric modeling to develop their modular facades. The second theme looks at the cross of craft and digital technologies through form-finding techniques and elastic material properties, bringing in flexible formwork into the digital fabrication process. Students explored concrete plasticity and behaviors with natural references, as they worked on the design of an exterior seating installation using lightweight concrete composites and complex casting methods. The third theme brings in bio-composite material properties with additive fabrication and environmental concerns to create performative cladding systems. Students experimented in concrete composites materials, biomaterials and clay 3D printing to produce different cladding and tiling prototypes that actively enhance their immediate environment. This paper thus will detail the work process done by the students under these three themes of inquiry, describing their material experimentation, digital and analog design methodologies, and their final results. It aims to shed light on the persisting importance of material knowledge as it intersects with advanced digital fabrication and the significance of learning from natural systems and biological properties to embed an active performance in today’s design process.

Keywords: digital fabrication, design and craft, materiality, natural systems

Procedia PDF Downloads 107
4986 Strong Microcapsules with Macroporous Polymer Shells

Authors: Eve S. A. Loiseau, Marion Frey, Yves Blickenstorfer, Fabian Niedermair, André R. Studart

Abstract:

Porous microcapsules have a broad range of applications that require a robust shell. We propose a new method to produce macroporous polymer capsules with controlled size, shell thickness, porosity and mechanical properties using co-flow flow-focusing glass capillary devices. The porous structure was investigated through SEM and the permeability through confocal microscopy. Compression tests on single capsules were performed. We obtained microcapsules with tailored permeability from open to close pores structures and able to withstand loads up to 150 g.

Keywords: microcapsules, micromechanics, porosity, polymer shells

Procedia PDF Downloads 423
4985 Experimental Investigation of Bituminous Roads with Waste Plastic

Authors: Arjita Biswas, Sandeep Potnis

Abstract:

Plastic roads (bituminous roads using waste plastic in the wearing course ) have now become familiar in the Road Construction Sector in India. With the Indian Road Congress Code (IRC SP: 98 -2013), many agencies are coming forward to implement Plastic Roads in India. This paper discuss and compare about the various properties of bituminous mix with 8% waste plastic and normal bituminous mix. This paper also signifies the performance of both the types of roads after 4 months of age under loading conditions. Experiments were carried out to evaluate its performance. The result shows improved performance of plastic roads.

Keywords: bituminous roads, experiments, performance, plastic roads

Procedia PDF Downloads 187
4984 Aspectual Verbs in Modern Standard Arabic

Authors: Yasir Alotaibi

Abstract:

The aim of this paper is to discuss the syntactic analysis of aspectual or phasal verbs in Modern Standard Arabic (MSA). Aspectual or phasal verbs refer to a class of verbs that require a verbal complement and denote the inception, duration, termination ...etc. of a state or event. This paper will discuss two groups of aspectual verbs in MSA. The first group includes verbs such as ̆gacala, tafiqa, ?akhatha, ?ansha?a, sharaca and bada?a and these verbs are used to denote the inception of an event. The second group includes verbs such as ?awshaka, kaada and karaba and the meaning of these verbs is equivalent to be near/almost . The following examples illustrate the use of the verb bada?a ‘begin’ which is from the first group: a. saalim-un bada?a yuthaakiru. Salem-NOM begin.PFV.3SGM study.IPFV.3SGM ‘Salem began to study’ b.*saalim-un bada?a ?an yuthaakiru. Salem-NOM begin.PFV.3SGM COMP study.IPFV.3SGM ‘Salem began to study’ The example in (1a) is grammatical because the aspectual verb is used with a verbal complement that is not introduced by a complementizer. In contrast, example (1b) is not grammatical because the verbal complement is introduced by the complementizer ?an ‘that’. In contrast, the following examples illustrate the use of the verb kaada ‘be almost’ which is from the second group. However, the two examples are grammatical and this means that the verbal complement of this verb can be without (as in example (2a)) or with ( as in example (2b)) a complementizer. (2) a. saalim-un kaada yuthaakiru. Salem-NOM be.almost.PFV.3SGM study.IPFV.3SGM ‘Salem was almost to study’ b. saalim-un kaada ?an yuthaakiru. Salem-NOM be.almost.PFV.3SGM COMP study.IPFV.3SGM ‘Salem was almost to study’ The salient properties of this class of verbs are that they require a verbal complement, there is no a complementizer that can introduce the complement with the first group while it is possible with the second and the aspectual verb and the embedded verb share and agree with the same subject. To the best of knowledge, aspectual verbs in MSA are discussed in traditional grammar only and have not been studied in modern syntactic theories. This paper will consider the analysis of aspectual verbs in MSA within the Lexical Functional Grammar (LFG) framework. It will use some evidence such as modifier or negation to find out whether these verbs have PRED values and head their f-structures or they form complex predicates with their complements. If aspectual verbs show the properties of heads, then the paper will explore what kind of heads they are. In particular, they should be raising or control verbs. The paper will use some tests such as agreement, selectional restrictions...etc. to find out what kind of verbs they are.

Keywords: aspectual verbs, biclausal, monoclausal, raising

Procedia PDF Downloads 33
4983 Electrospun Nanofibers from Amphiphlic Block Copolymers and Their Graphene Nanocomposites

Authors: Hussein M. Etmimi, Peter E. Mallon

Abstract:

Electrospinning uses an electrical charge to draw very fine fibers (typically on the micro or nano scale) from a liquid or molten precursor. Over the years, this method has become a widely used and a successful technique to process polymer materials and their composites into nanofibers. The main focus of this work is to study the electrospinning of multi-phase amphiphilic copolymers and their nanocomposites, which contain graphene as the nanofiller material. In such amphiphilic materials, the constituents segments are incompatible and thus the solid state morphology will be determined by the composition of the various constituents as well as the method of preparation. In this study, amphiphilic block copolymers of poly(dimethyl siloxane) and poly(methyl methacrylate) (PDMS-b-PMMA) with well-defined structures were synthesized and the solution electrospinning of these materials and their properties were investigated. Atom transfer radical polymerization (ATRP) was used to obtain the controlled block copolymers with relatively high molar masses and narrow dispersity. First, PDMS macroinitiators with different chain length of 1000, 5000 and 10000 g/mol were synthesized by the reaction of monocarbinol terminated PDMS with α-bromoisobutyryl bromide initiator. The obtained macroinitiators were used for the polymerization of methyl methacrylate monomer to obtain the desired block copolymers using the ATRP process. Graphene oxide (GO) of different loading was then added to the copolymer solution and the resultant nanocomposites were successfully electrospun into nanofibers. The electrospinning was achieved using dimethylformamide/chloroform mixture (60:40 vl%) as electrospinning solution medium. Scanning electron microscopy (SEM) showed the successful formation of the electrospun fibers with dimensions in the nanometer range. X-ray diffraction indicated that the GO nanosheets were of an exfoliated structure, irrespective of the filler loading. Thermogravimetric analysis also showed that the thermal stability of the nanofibers was improved in the presence of GO, which was not a function of the filler loading. Differential scanning calorimetry also showed that the mechanical properties (measured as glass transition temperature) of the nanofibers was improved significantly in the presence of GO, which was a function of the filler loading.

Keywords: elctrospinning, graphene oxide, nanofibers, polymethyl methacrylate (PMMA)

Procedia PDF Downloads 283
4982 Electrostatic Solitary Waves in Degenerate Relativistic Quantum Plasmas

Authors: Sharmin Sultana, Reinhard Schlickeiser

Abstract:

A degenerate relativistic quantum plasma (DRQP) system (containing relativistically degenerate electrons, degenerate/non-degenerate light nuclei, and non-degenerate heavy nuclei) is considered to investigate the propagation characteristics of electrostatic solitary waves (in the ionic scale length) theoretically and numerically. The ion-acoustic solitons are found to be associated with the modified ion-acoustic waves (MIAWs) in which inertia (restoring force) is provided by mass density of the light or heavy nuclei (degenerate pressure of the cold electrons). A mechanical-motion analog (Sagdeev-type) pseudo-potential approach is adopted to study the properties of large amplitude solitary waves. The basic properties of the large amplitude MIAWs and their existence domain in terms of soliton speed (Mach number) are examined. On the other hand, a multi-scale perturbation approach, leading to an evolution equation for the envelope dynamics, is adopted to derive the cubic nonlinear Schrödinger equation (NLSE). The criteria for the occurrence of modulational instability (MI) of the MIAWs are analyzed via the nonlinear dispersion relation of the NLSE. The possibility for the formation of highly energetic localized modes (e.g. peregrine solitons, rogue waves, etc.) is predicted in such DRQP medium. Peregrine solitons or rogue waves with amplitudes of several times of the background are observed to form in DRQP. The basic features of these modulated waves (e.g. envelope solitons, peregrine solitons, and rogue waves), which are found to form in DRQP, and their MI criteria (on the basis of different intrinsic plasma parameters), are investigated. It is emphasized that our results should be useful in understanding the propagation characteristics of localized disturbances and the modulation dynamics of envelope solitons, and their instability criteria in astrophysical DRQP system (e.g. white dwarfs, neutron stars, etc., where matters under extreme conditions are assumed to exist) and also in ultra-high density experimental plasmas.

Keywords: degenerate plasma, envelope solitons, modified ion-acoustic waves, modulational instability, rogue waves

Procedia PDF Downloads 179
4981 Mechanical Properties of Hybrid Cement Based Mortars Containing Two Biopolymers

Authors: Z. Abdollahnejad, M. Kheradmand, F. Pacheco-Torgal

Abstract:

The use of bio-based admixtures on construction materials is a recent trend that is gaining momentum. However, to our knowledge, no studies have been reported concerning the use of biopolymers on hybrid cement based mortars. This paper reports experimental results regarding the study of the influence of mix design of 43 hybrid cement mortars containing two different biopolymers on its mechanical performance. The results show that the use of the biopolymer carrageenan is much more effective than the biopolymer xanthan concerning the increase in compressive strength. An optimum biopolymer content was found.

Keywords: waste reuse, fly ash, waste glass, hybrid cement, biopolymers, mechanical strength

Procedia PDF Downloads 279
4980 A New Distribution and Application on the Lifetime Data

Authors: Gamze Ozel, Selen Cakmakyapan

Abstract:

We introduce a new model called the Marshall-Olkin Rayleigh distribution which extends the Rayleigh distribution using Marshall-Olkin transformation and has increasing and decreasing shapes for the hazard rate function. Various structural properties of the new distribution are derived including explicit expressions for the moments, generating and quantile function, some entropy measures, and order statistics are presented. The model parameters are estimated by the method of maximum likelihood and the observed information matrix is determined. The potentiality of the new model is illustrated by means of real life data set.

Keywords: Marshall-Olkin distribution, Rayleigh distribution, estimation, maximum likelihood

Procedia PDF Downloads 476
4979 Risk and Reliability Based Probabilistic Structural Analysis of Railroad Subgrade Using Finite Element Analysis

Authors: Asif Arshid, Ying Huang, Denver Tolliver

Abstract:

Finite Element (FE) method coupled with ever-increasing computational powers has substantially advanced the reliability of deterministic three dimensional structural analyses of a structure with uniform material properties. However, railways trackbed is made up of diverse group of materials including steel, wood, rock and soil, while each material has its own varying levels of heterogeneity and imperfections. It is observed that the application of probabilistic methods for trackbed structural analysis while incorporating the material and geometric variabilities is deeply underworked. The authors developed and validated a 3-dimensional FE based numerical trackbed model and in this study, they investigated the influence of variability in Young modulus and thicknesses of granular layers (Ballast and Subgrade) on the reliability index (-index) of the subgrade layer. The influence of these factors is accounted for by changing their Coefficients of Variance (COV) while keeping their means constant. These variations are formulated using Gaussian Normal distribution. Two failure mechanisms in subgrade namely Progressive Shear Failure and Excessive Plastic Deformation are examined. Preliminary results of risk-based probabilistic analysis for Progressive Shear Failure revealed that the variations in Ballast depth are the most influential factor for vertical stress at the top of subgrade surface. Whereas, in case of Excessive Plastic Deformations in subgrade layer, the variations in its own depth and Young modulus proved to be most important while ballast properties remained almost indifferent. For both these failure moods, it is also observed that the reliability index for subgrade failure increases with the increase in COV of ballast depth and subgrade Young modulus. The findings of this work is of particular significance in studying the combined effect of construction imperfections and variations in ground conditions on the structural performance of railroad trackbed and evaluating the associated risk involved. In addition, it also provides an additional tool to supplement the deterministic analysis procedures and decision making for railroad maintenance.

Keywords: finite element analysis, numerical modeling, probabilistic methods, risk and reliability analysis, subgrade

Procedia PDF Downloads 116
4978 Investigations on Geopolymer Concrete Slabs

Authors: Akhila Jose

Abstract:

The cement industry is one of the major contributors to the global warming due to the release of greenhouse gases. The primary binder in conventional concrete is Ordinary Portland cement (OPC) and billions of tons are produced annually all over the world. An alternative binding material to OPC is needed to reduce the environmental impact caused during the cement manufacturing process. Geopolymer concrete is an ideal material to substitute cement-based binder. Geopolymer is an inorganic alumino-silicate polymer. Geopolymer Concrete (GPC) is formed by the polymerization of aluminates and silicates formed by the reaction of solid aluminosilicates with alkali hydroxides or alkali silicates. Various Industrial bye- products like Fly Ash (FA), Rice Husk Ash (RHA), Ground granulated Blast Furnace Slag (GGBFS), Silica Fume (SF), Red mud (RM) etc. are rich in aluminates and silicates. Using by-products from other industries reduces the carbon dioxide emission and thus giving a sustainable way of reducing greenhouse gas emissions and also a way to dispose the huge wastes generated from the major industries like thermal plants, steel plants, etc. The earlier research about geopolymer were focused on heat cured fly ash based precast members and this limited its applications. The heat curing mechanism itself is highly cumbersome and costly even though they possess high compressive strength, low drying shrinkage and creep, and good resistance to sulphate and acid environments. GPC having comparable strength and durability characteristics of OPC were able to develop under ambient cured conditions is the solution making it a sustainable alternative in future. In this paper an attempt has been made to review and compare the feasibility of ambient cured GPC over heat cured geopolymer concrete with respect to strength and serviceability characteristics. The variation on the behavior of structural members is also reviewed to identify the research gaps for future development of ambient cured geopolymer concrete. The comparison and analysis of studies showed that GPC most importantly ambient cured type has a comparable behavior with respect to OPC based concrete in terms strength and durability criteria.

Keywords: geopolymer concrete, oven heated, durability properties, mechanical properties

Procedia PDF Downloads 160
4977 Biodiesel Production from Edible Oil Wastewater Sludge with Bioethanol Using Nano-Magnetic Catalysis

Authors: Wighens Ngoie Ilunga, Pamela J. Welz, Olewaseun O. Oyekola, Daniel Ikhu-Omoregbe

Abstract:

Currently, most sludge from the wastewater treatment plants of edible oil factories is disposed to landfills, but landfill sites are finite and potential sources of environmental pollution. Production of biodiesel from wastewater sludge can contribute to energy production and waste minimization. However, conventional biodiesel production is energy and waste intensive. Generally, biodiesel is produced from the transesterification reaction of oils with alcohol (i.e., Methanol, ethanol) in the presence of a catalyst. Homogeneously catalysed transesterification is the conventional approach for large-scale production of biodiesel as reaction times are relatively short. Nevertheless, homogenous catalysis presents several challenges such as high probability of soap. The current study aimed to reuse wastewater sludge from the edible oil industry as a novel feedstock for both monounsaturated fats and bioethanol for the production of biodiesel. Preliminary results have shown that the fatty acid profile of the oilseed wastewater sludge is favourable for biodiesel production with 48% (w/w) monounsaturated fats and that the residue left after the extraction of fats from the sludge contains sufficient fermentable sugars after steam explosion followed by an enzymatic hydrolysis for the successful production of bioethanol [29% (w/w)] using a commercial strain of Saccharomyces cerevisiae. A novel nano-magnetic catalyst was synthesised from mineral processing alkaline tailings, mainly containing dolomite originating from cupriferous ores using a modified sol-gel. The catalyst elemental chemical compositions and structural properties were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR) and the BET for the surface area with 14.3 m²/g and 34.1 nm average pore diameter. The mass magnetization of the nano-magnetic catalyst was 170 emu/g. Both the catalytic properties and reusability of the catalyst were investigated. A maximum biodiesel yield of 78% was obtained, which dropped to 52% after the fourth transesterification reaction cycle. The proposed approach has the potential to reduce material costs, energy consumption and water usage associated with conventional biodiesel production technologies. It may also mitigate the impact of conventional biodiesel production on food and land security, while simultaneously reducing waste.

Keywords: biodiesel, bioethanol, edible oil wastewater sludge, nano-magnetism

Procedia PDF Downloads 120
4976 Effect of Tissue Preservation Chemicals on Decomposition in Different Soil Types

Authors: Onyekachi Ogbonnaya Iroanya, Taiye Abdullahi Gegele, Frank Tochukwu Egwuatu

Abstract:

Introduction: Forensic taphonomy is a multifaceted area that incorporates decomposition, chemical and biological cadaver exposure in post-mortem event chronology and reconstruction to predict the Post Mortem Interval (PMI). The aim of this study was to evaluate the integrity of DNA extracted from the remains of embalmed decomposed Sus domesticus tissues buried in different soil types. Method: A total of 12 limbs of Sus domesticus weighing between 0.7-1.4 kg were used. Each of the samples across the groups was treated with 10% formaldehyde, absolute methanol and 50% Pine oil for 24 hours before burial except the control samples, which were buried immediately. All samples were buried in shallow simulated Clay, Sandy and Loamy soil graves for 12 months. The DNA for each sample was extracted and quantified with Nanodrop Spectrophotometer (6305 JENWAY spectrometers). The rate of decomposition was examined through the modified qualitative decomposition analysis. Extracted DNA was amplified through PCR and bands visualized via gel electrophoresis. A biochemical enzyme assay was done for each burial grave soil. Result: The limbs in all burial groups had lost weight over the burial period. There was a significant increase in the soil urease level in the samples preserved in formaldehyde across the 3 soil type groups (p≤0.01). Also, the control grave soils recorded significantly higher alkaline phosphatase, dehydrogenase and calcium carbonate values compared to experimental grave soils (p≤0.01). The experimental samples showed a significant decrease in DNA concentration and purity when compared to the control groups (p≤0.01). Obtained findings of the soil biochemical analysis showed the embalming treatment altered the relationship between organic matter decomposition and soil biochemical properties as observed in the fluctuations that were recorded in the soil biochemical parameters. The PCR amplified DNA showed no bands on the gel electrophoresis plates. Conclusion: In criminal investigations, factors such as burial grave soil, grave soil biochemical properties, antemortem exposure to embalming chemicals should be considered in post-mortem interval (PMI) determination.

Keywords: forensic taphonomy, post-mortem interval (PMI), embalmment, decomposition, grave soil

Procedia PDF Downloads 138
4975 Molecularly Imprinted Nanoparticles (MIP NPs) as Non-Animal Antibodies Substitutes for Detection of Viruses

Authors: Alessandro Poma, Kal Karim, Sergey Piletsky, Giuseppe Battaglia

Abstract:

The recent increasing emergency threat to public health of infectious influenza diseases has prompted interest in the detection of avian influenza virus (AIV) H5N1 in humans as well as animals. A variety of technologies for diagnosing AIV infection have been developed. However, various disadvantages (costs, lengthy analyses, and need for high-containment facilities) make these methods less than ideal in their practical application. Molecularly Imprinted Polymeric Nanoparticles (MIP NPs) are suitable to overcome these limitations by having high affinity, selectivity, versatility, scalability and cost-effectiveness with the versatility of post-modification (labeling – fluorescent, magnetic, optical) opening the way to the potential introduction of improved diagnostic tests capable of providing rapid differential diagnosis. Here we present our first results in the production and testing of MIP NPs for the detection of AIV H5N1. Recent developments in the solid-phase synthesis of MIP NPs mean that for the first time a reliable supply of ‘soluble’ synthetic antibodies can be made available for testing as potential biological or diagnostic active molecules. The MIP NPs have the potential to detect viruses that are widely circulating in farm animals and indeed humans. Early and accurate identification of the infectious agent will expedite appropriate control measures. Thus, diagnosis at an early stage of infection of a herd or flock or individual maximizes the efficiency with which containment, prevention and possibly treatment strategies can be implemented. More importantly, substantiating the practicability’s of these novel reagents should lead to an initial reduction and eventually to a potential total replacement of animals, both large and small, to raise such specific serological materials.

Keywords: influenza virus, molecular imprinting, nanoparticles, polymers

Procedia PDF Downloads 324
4974 Reactions of 4-Aryl-1H-1,2,3-Triazoles with Cycloalkenones and Epoxides: Synthesis of 2,4- and 1,4-Disubstituted 1,2,3-Triazoles

Authors: Ujjawal Kumar Bhagat, Kamaluddin, Rama Krishna Peddinti

Abstract:

The Huisgen’s 1,3-dipolar [3+2] cycloaddition of organic azides and alkynes often give the mixtures of both the regioisomers 1,4- and 1,5- disubstituted 1,2,3-triazoles. Later, in presence of metal salts (click chemistry) such as copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) was used for the synthesis of 1,4-disubstituted 1,2,3-triazoles as a sole products regioselectively. Also, the ‘click reactions’ of Ruthenium-catalyzed azides-alkynes cycloaddition (RuAAC) is used for the synthesis of 1,5-disubstituted 1,2,3-triazoles as a single isomer. The synthesis of 1,4- and 1.5-disubstituted 1,2,3-triazoles has become the gold standard of ‘click chemistry’ due to its reliability, specificity, and biocompatibility. The 1,4- and 1,5-disubstituted 1,2,3-triazoles have emerged as one of the most powerful entities in the varieties of biological properties like antibacterial, antitubercular, antitumor, antifungal and antiprotozoal activities. Some of the 1,4,5-trisubstituted 1,2,3-triazoles exhibit Hsp90 inhibiting properties. The 1,4-disubstituted 1,2,3-triazoles also play a big role in the area of material sciences. The triazole-derived oligomeric, polymeric structures are the potential materials for the preparation of organic optoelectronics, silicon elastomers and unimolecular block copolymers. By the virtue of hydrogen bonding and dipole interactions, the 1,2,3-triazole moiety readily associates with the biological targets. Since, the 4-aryl-1H-1,2,3-triazoles are stable entities, they are chemically robust and very less reactive. In this regard, the addition of 4-aryl-1H-1,2,3-triazoles as nucleophiles to α,β-unsaturated carbonyls and nucleophilic substitution with the epoxides constitutes a powerful and challenging synthetic approach for the generation of disubstituted 1,2,3-triazoles. Herein, we have developed aza-Michael addition of 4-aryl-1H-1,2,3-triazoles to 2-cycloalken-1-ones in the presence of an organic base (DABCO) in acetonotrile solvent leading to the formation of disubstituted 1,2,3-triazoles. The reaction provides 1,4-disubstituted triazoles, 3-(4-aryl-1H-1,2,3-triazol-1-yl)cycloalkanones in major amount along with 1,5-disubstituted 1,2,3-triazoles, minor regioisomers with excellent combined chemical yields (upto99%). The nucleophilic behavior of 4-aryl-1H-1,2,3-triazoles was also tested in the ring opening of meso-epoxides in the presence of organic bases (DABCO/Et3N) in acetonotrile solvent furnishing the two regioisomers1,4- and 1,5-disubstituted 1,2,3-triazoles. Thus, the novelty of this methodology is synthesis of diversified disubstituted 1,2,3-triazoles under metal free condition.The results will be presented in detail.

Keywords: aza-Michael addition, cycloalkenones, epoxides, triazoles

Procedia PDF Downloads 299
4973 Dairy Wastewater Treatment by Electrochemical and Catalytic Method

Authors: Basanti Ekka, Talis Juhna

Abstract:

Dairy industrial effluents originated by the typical processing activities are composed of various organic and inorganic constituents, and these include proteins, fats, inorganic salts, antibiotics, detergents, sanitizers, pathogenic viruses, bacteria, etc. These contaminants are harmful to not only human beings but also aquatic flora and fauna. Because consisting of large classes of contaminants, the specific targeted removal methods available in the literature are not viable solutions on the industrial scale. Therefore, in this on-going research, a series of coagulation, electrochemical, and catalytic methods will be employed. The bulk coagulation and electrochemical methods can wash off most of the contaminants, but some of the harmful chemicals may slip in; therefore, specific catalysts designed and synthesized will be employed for the removal of targeted chemicals. In the context of Latvian dairy industries, presently, work is under progress on the characterization of dairy effluents by total organic carbon (TOC), Inductively Coupled Plasma Mass Spectrometry (ICP-MS)/ Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), High-Performance Liquid Chromatography (HPLC), Gas Chromatography-Mass Spectrometry (GC-MS), and Mass Spectrometry. After careful evaluation of the dairy effluents, a cost-effective natural coagulant will be employed prior to advanced electrochemical technology such as electrocoagulation and electro-oxidation as a secondary treatment process. Finally, graphene oxide (GO) based hybrid materials will be used for post-treatment of dairy wastewater as graphene oxide has been widely applied in various fields such as environmental remediation and energy production due to the presence of various oxygen-containing groups. Modified GO will be used as a catalyst for the removal of remaining contaminants after the electrochemical process.

Keywords: catalysis, dairy wastewater, electrochemical method, graphene oxide

Procedia PDF Downloads 113
4972 Reliability-Simulation of Composite Tubular Structure under Pressure by Finite Elements Methods

Authors: Abdelkader Hocine, Abdelhakim Maizia

Abstract:

The exponential growth of reinforced fibers composite materials use has prompted researchers to step up their work on the prediction of their reliability. Owing to differences between the properties of the materials used for the composite, the manufacturing processes, the load combinations and types of environment, the prediction of the reliability of composite materials has become a primary task. Through failure criteria, TSAI-WU and the maximum stress, the reliability of multilayer tubular structures under pressure is the subject of this paper, where the failure probability of is estimated by the method of Monte Carlo.

Keywords: composite, design, monte carlo, tubular structure, reliability

Procedia PDF Downloads 435
4971 The Conjugated Polymers in improving the Organic Solar Cells Efficiency

Authors: Samia Moulebhar, Chahrazed Bendenia, Souhila Bendenia, Hanaa Merad-dib, Sarra Merabet, Sid Ahmed Khantar, Baghdad Hadri

Abstract:

The photovoltaic solar field is today experiencing exponential advancement with the exploitation of new technological sectors of nanoparticles, namely the field of solar cells based on organic polymer materials. These cells are flexible, easy to process and low cost. This work includes a presentation of the conjugated polymer materials used in the design of photovoltaic technology devices while determining their properties and then the models used for the modeling of thin film photovoltaic cells heterojunction.

Keywords: photovoltaic, cells, nanoparticles, organic

Procedia PDF Downloads 48
4970 Polyphenol Stability and Antioxidant Properties of Freeze-Dried Sour Cherry Encapsulates

Authors: Gordana Ćetković, Vesna Tumbas Šaponjac, Jasna Čanadanović-Brunet, Sonja Đilas, Slađana Stajčić, Jelena Vulić, Mirjana Jakišić

Abstract:

Despite the recommended amount of daily intake of fruits, the consumption in modern age remains very low. Therefore there is a need for delivering valuable phytochemicals into the human body through different foods by developing functional food products fortified with natural bioactive compounds from plant sources. Recently, a growing interest rises in exploiting the fruit and vegetable by-products as sources of phytochemicals such as polyphenols, carotenoids, vitamins etc. Cherry contain high amounts of polyphenols, which are known to display a wide range of biological activities like antioxidant, anti-inflammatory, antimicrobial or anti-carcinogenic activities, improvement of vision, induction of apoptosis and neuroprotective effects. Also, cherry pomace, a by-product in juice processing, can also be promising source of phenolic compounds. However, the application of polyphenols as food additives is limited because after extraction these compounds are susceptible to degradation. Microencapsulation is one of the alternative approaches to protect bioactive compounds from degradation during processing and storage. Freeze-drying is one of the most used microencapsulation methods for the protection of thermosensitive and unstable molecules. In this study sour cherry pomace was extracted with food-grade solvent (50% ethanol) to be suitable for application in products for human use. Extracted polyphenols have been concentrated and stabilized on whey (WP) and soy (SP) proteins. Encapsulation efficiency in SP was higher (94.90%), however not significantly (p<0.05) from the one in WP (90.10%). Storage properties of WP and SP encapsulate in terms of total polyphenols, anthocyanins and antioxidant activity was tested for 6 weeks. It was found that the retention of polyphenols after 6 weeks in WP and SP (67.33 and 69.30%, respectively) was similar. The content of anthocyanins has increased in WP (for 47.97%), while their content in SP has very slightly decreased (for 1.45%) after 6-week storage period. In accordance with anthocyanins the decrease in antioxidant activity in WP (87.78%) was higher than in SP (43.02%). According to the results obtained in this study, the technique reported herewith can be used for obtaining quality encapsulates for their further use as functional food additives, and, on the other hand, for fruit waste valorization.

Keywords: cherry pomace, microencapsulation, polyphenols, storage

Procedia PDF Downloads 341
4969 The Application of Whole-Cell Luminescent Biosensors for Assessing Bactericidal Properties of Medicinal Plants

Authors: Yuliya Y. Gavrichenko

Abstract:

Background and Aims: The increasing bacterial resistance to almost all the available antibiotics has encouraged scientists to search for alternative sources of antibacterial agents. Nowadays, it is known that many plant secondary metabolites have diverse biological activity. These compounds can be potentially active against human bacterial and viral infections. Extended research has been carried out to explore the use of the luminescent bacterial test as a rapid, accurate and inexpensive method to assess the antibacterial properties and to predict the biological activity spectra for plant origin substances. Method: Botanical material of fifteen species was collected from their natural and cultural habitats on the Crimean peninsula. The aqueous extracts of following plants were tested: Robinia pseudoacacia L., Sideritis comosa, Cotinus coggygria Scop., Thymus serpyllum L., Juglans regia L., Securigera varia L., Achillea millefolium L., Phlomis taurica, Corylus avellana L., Sambucus nigra L., Helichrysum arenarium L., Glycyrrhiza glabra L., Elytrigia repens L., Echium vulgare L., Conium maculatum L. The test was carried out using luminous strains of marine bacteria Photobacterium leiognathi, which was isolated from the Sea of Azov as well as four Escherichia coli MG1655 recombinant strains harbouring Vibrio fischeri luxCDABE genes. Results: The bactericidal capacity of plant extracts showed significant differences in the study. Cotinus coggygria, Phlomis taurica, Juglans regia L. proved to be the most toxic to P. leiognathi. (EC50 = 0.33 g dried plant/l). Glycyrrhiza glabra L., Robinia pseudoacacia L., Sideritis comosa and Helichrysum arenarium L. had moderate inhibitory effects (EC50 = 3.3 g dried plant/l). The rest of the aqueous extracts have decreased the luminescence of no more than 50% at the lowest concentration (16.5 g dried plant/l). Antibacterial activity of herbal extracts against constitutively luminescent E. coli MG1655 (pXen7-lux) strain was observed at approximately the same level as for P. leiognathi. Cotinus coggygria and Conium maculatum L. extracts have increased light emission in the mutant E. coli MG1655 (pFabA-lux) strain which is associated with cell membranes damage. Sideritis comosa, Phlomis taurica, Juglans regia induced SOS response in E. coli (pColD-lux) strain. Glycyrrhiza glabra L. induced protein damage response in E. coli MG1655 (pIbpA-lux) strain. Conclusion: The received results have shown that the plants’ extracts had nonspecific antimicrobial effects against both E. coli (pXen7-lux) and P. leiognathi biosensors. Mutagenic, cytotoxic and protein damage effects have been observed. In general, the bioluminescent inhibition test result correlated with the traditional use of screened plants. It leads to the following conclusion that whole-cell luminescent biosensors could be the indicator of overall plants antibacterial capacity. The results of the investigation have shown a possibility of bioluminescent method in medicine and pharmacy as an approach to research the antibacterial properties of medicinal plants.

Keywords: antibacterial property, bioluminescence, medicinal plants, whole-cell biosensors

Procedia PDF Downloads 100
4968 Heliport Remote Safeguard System Based on Real-Time Stereovision 3D Reconstruction Algorithm

Authors: Ł. Morawiński, C. Jasiński, M. Jurkiewicz, S. Bou Habib, M. Bondyra

Abstract:

With the development of optics, electronics, and computers, vision systems are increasingly used in various areas of life, science, and industry. Vision systems have a huge number of applications. They can be used in quality control, object detection, data reading, e.g., QR-code, etc. A large part of them is used for measurement purposes. Some of them make it possible to obtain a 3D reconstruction of the tested objects or measurement areas. 3D reconstruction algorithms are mostly based on creating depth maps from data that can be acquired from active or passive methods. Due to the specific appliance in airfield technology, only passive methods are applicable because of other existing systems working on the site, which can be blinded on most spectral levels. Furthermore, reconstruction is required to work long distances ranging from hundreds of meters to tens of kilometers with low loss of accuracy even with harsh conditions such as fog, rain, or snow. In response to those requirements, HRESS (Heliport REmote Safeguard System) was developed; which main part is a rotational head with a two-camera stereovision rig gathering images around the head in 360 degrees along with stereovision 3D reconstruction and point cloud combination. The sub-pixel analysis introduced in the HRESS system makes it possible to obtain an increased distance measurement resolution and accuracy of about 3% for distances over one kilometer. Ultimately, this leads to more accurate and reliable measurement data in the form of a point cloud. Moreover, the program algorithm introduces operations enabling the filtering of erroneously collected data in the point cloud. All activities from the programming, mechanical and optical side are aimed at obtaining the most accurate 3D reconstruction of the environment in the measurement area.

Keywords: airfield monitoring, artificial intelligence, stereovision, 3D reconstruction

Procedia PDF Downloads 98
4967 Spectroscopic Studies of Dy³⁺ Ions in Alkaline-Earth Boro Tellurite Glasses for Optoelectronic Devices

Authors: K. Swapna

Abstract:

A Series of Alkali-Earth Boro Tellurite (AEBT) glasses doped with different concentrations of Dy³⁺ ions have been prepared by using melt quenching technique and characterized through spectroscopic techniques such as optical absorption, excitation, emission and photoluminescence decay to understand their utility in optoelectronic devices such as lasers and white light emitting diodes (w-LEDs). Raman spectrum recorded for an undoped glass is used to measure the phonon energy of the host glass and various functional groups present in the host glass (AEBT). The intensities of the electronic transitions and the ligand environment around the Dy³⁺ ions were studied by applying Judd-Ofelt (J-O) theory to the recorded absorption spectra of the glasses. The evaluated J-O parameters are subsequently used to measure various radiative parameters such as transition probability (AR), radiative branching ratio (βR) and radiative lifetimes (τR) for the prominent fluorescent levels of Dy³⁺ ions in the as-prepared glasses. The luminescence spectra recorded at 387 nm excitation show three emission transitions (⁴F9/2→⁶H15/2 (blue), ⁴F9/2→⁶H13/2 (yellow) and ⁴F9/2 → ⁶H11/2 (red)) of which the yellow transition observed at 575 nm is found to be highly intense. The experimental branching ratio (βexp) and stimulated emission crosssection (σse) were measured from luminescence spectra. The experimental lifetimes (τexp) measured from the decay spectral profiles are combined with radiative lifetimes to measure quantum efficiencies of the as-prepared glasses. The yellow to blue intensity ratios and chromaticity color coordinates are found to vary with Dy³⁺ ion concentrations. The aforementioned results reveal that these glasses are aptly suitable for w-LEDs and laser devices.

Keywords: glasses, J-O parameters, photoluminescence, I-H model

Procedia PDF Downloads 129
4966 Utilization Of Guar Gum As Functional Fat Replacer In Goshtaba, A Traditional Indian Meat Product

Authors: Sajad A. Rather, F. A. Masoodi, Rehana Akhter, S. M. Wani, Adil Gani

Abstract:

Modern trend towards convenience foods has resulted in increased production and consumption of restructured meat products and are of great importance to the meat industry. In meat products fat plays an important role in cooking properties, texture & sensory scores, however, high fat contents in particular animal fats provide high amounts of saturated fatty acids and cholesterol and are associated with several types of non communicable diseases such as obesity, hypertension and coronary heart diseases. Thus, fat reduction has generally been seen as an important strategy to produce healthier meat products. This study examined the effects of reducing fat level from 20% to 10% and substituting mutton back fat with guar gum (0.5%, 1% & 1.5%) on cooking properties, proximate composition, lipid and protein oxidation, texture, microstructure and sensory characteristics of goshtaba- a traditional meat product of J & K, India were investigated and compared with high fat counterparts. Reduced- fat goshtaba samples containing guar gum had significantly (p ≤ 0.05) higher yield, less shrinkage, more moisture retention and more protein content than the control sample. TBARs and protein oxidation (carbonyl content) values of the control was significantly (p ≤ 0.05) higher than reduced fat goshtaba samples and showed a positive correlation between lipid and protein oxidation. Hardness, gumminess & chewiness of the control (20%) were significantly higher than reduced fat goshtaba samples. Microstructural differences were significant (p ≤ 0.05) between control and treated samples due to an increased moisture content in the reduced fat samples. Sensory evaluation showed significant (p ≤ 0.05) reduction in texture, flavour and overall acceptability scores of treatment products; however the scores for 0.5% and 1% treated samples were in the range of acceptability. Guar gum may also be used as a source of soluble dietary fibre in food products and a number of clinical studies have shown a reduction in postprandial glycemia and insulinemia on consumption of guar gum, with the mechanism being attributed to an increased transit time in the stomach and small intestine, which may have been due to the viscosity of the meal hindering the access of glucose to the epithelium.

Keywords: goshtaba, guar gum, traditional, fat reduction, acceptability

Procedia PDF Downloads 257
4965 Optically Active Material Based on Bi₂O₃@Yb³⁺, Nd³⁺ with High Intensity of Upconversion Luminescence in Red and Green Region

Authors: D. Artamonov, A. Tsibulnikova, I. Samusev, V. Bryukhanov, A. Kozhevnikov

Abstract:

The synthesis and luminescent properties of Yb₂O₃, Nd₂O₃@Bi₂O₃ complex with upconversion generation are discussed in this work. The obtained samples were measured in the visible region of the spectrum under excitation with a wavelength of 980 nm. The studies showed that the obtained complexes have a high degree of stability and intense luminescence in the wavelength range of 400-750 nm. Consideration of the time dependence of the intensity of the upconversion luminescence allowed us to conclude that the enhancement of the intensity occurs in the time interval from 5 to 30 min, followed by the appearance of a stationary mode.

Keywords: lasers, luminescence, upconversion photonics, rare earth metals

Procedia PDF Downloads 56