Search results for: efficiency gas turbine combustion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7536

Search results for: efficiency gas turbine combustion

2826 A Creative Strategy to Functionalize TiN/CNC Composites as Cathode for High-Energy Zinc Ion Capacitors

Authors: Ye Ling, Jiang Yuting, Ruan Haihui

Abstract:

Zinc ion capacitors (ZICs) have garnered tremendous interest recently from researchers due to the perfect integration of batteries and supercapacitors (SC). However, ZICs are currently still facing two major challenges, one is low specific capacitance because of the limited capacity of capacitive cathode materials. In this work, TiN/CNC composites were obtained by a creative method composed of simple mixing and calcination treatment of tetrabutyl titanate (TBOT) and ZIF-8. The formed TiN particles are of ultra-small size and distributed uniformly on the nanoporous carbon matrix, which enhances the conductivity of the composites and the micropores caused by the evaporation of zinc during the calcination process and can serve as the reservoir of electrolytes; both are beneficial to zinc ion storage. When it was used as a cathode with zinc metal and 2M ZnSO₄ as the anode and electrolyte, respectively, in a ZIC device, the assembled device delivered a maximum energy density as high as 153 Wh kg-¹ at a power density of 269.4 W kg-¹, which is superior to many ZICs as reported. Also, it can maintain an energy density of 83.7 Wh kg-¹ at a peak power density of 8.6 kW kg-¹, exhibiting good rate performance. Moreover, when it was charged/discharged for 5000 cycles at a current density of 5 A g-¹, it remained at 85.8% of the initial capacity with a Coulombic efficiency (CE) of nearly 100%.

Keywords: zinc ion capacitor, metal nitride, zif-8, supercapacitor

Procedia PDF Downloads 46
2825 Imputing Missing Data in Electronic Health Records: A Comparison of Linear and Non-Linear Imputation Models

Authors: Alireza Vafaei Sadr, Vida Abedi, Jiang Li, Ramin Zand

Abstract:

Missing data is a common challenge in medical research and can lead to biased or incomplete results. When the data bias leaks into models, it further exacerbates health disparities; biased algorithms can lead to misclassification and reduced resource allocation and monitoring as part of prevention strategies for certain minorities and vulnerable segments of patient populations, which in turn further reduce data footprint from the same population – thus, a vicious cycle. This study compares the performance of six imputation techniques grouped into Linear and Non-Linear models on two different realworld electronic health records (EHRs) datasets, representing 17864 patient records. The mean absolute percentage error (MAPE) and root mean squared error (RMSE) are used as performance metrics, and the results show that the Linear models outperformed the Non-Linear models in terms of both metrics. These results suggest that sometimes Linear models might be an optimal choice for imputation in laboratory variables in terms of imputation efficiency and uncertainty of predicted values.

Keywords: EHR, machine learning, imputation, laboratory variables, algorithmic bias

Procedia PDF Downloads 85
2824 Effect of Initial pH and Fermentation Duration on Total Phenolic Content and Antioxidant Activity of Carob Kibble Fermented with Saccharomyces cerevisiae

Authors: Thi Huong Vu, Haelee Fenton, Thi Huong Tra Nguyen, Gary Dykes

Abstract:

In the present study, a submerged fermentation of carob kibble with Saccharomyces cerevisiae (S. cerevisiae) was performed. The total phenolic content and antioxidant activity in fermented carob kibble were determined by Folin–Ciocalteu method and scavenging capacity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The study showed that S. cerevisiae improved total phenolic content by 45 % and 50 % in acetone and water extracts respectively. Similarly, the antioxidant capacity of water extracts increased by 25 % and 41%, while acetone extracts indicated by 70% and 80% in DPPH and ABTS respectively. It is also found that initial pH 7.0 was more effective in improvement of total phenolic content and antioxidant activity. The efficiency of treatment was recorded at 15 h. This report suggested that submerged fermentation with S. cerevisiae is a potential and cost effective manner to further increase bioactive compounds in carob kibble, which are in use for food, cosmetic and pharmaceutical industries.

Keywords: antioxidant activity, carob kibble, saccharomyces cerevisiae, submerged fermentation, total phenolics

Procedia PDF Downloads 306
2823 Comparison of Non-Organic (Suspended and Solved) Solids Removal with and without Sediments in Treatment of an Industrial Wastewater with and without Ozonation

Authors: Amir Hajiali, Gevorg P. Pirumyan

Abstract:

In this research, removal of Non-Organic Suspended Solids and Non-Organic Solved Solids with and without sediment in treatment of an industrial wastewater system before and after ozonation was studied and compared. The most hazardous part of these substances is monomers of chlorophenolic combinations which in biological reactors in a liquid phase could be absorbed much easier and with a high velocity. These monomers and particularly monomers with high molecular weights are seen a lot in such wastewater treatment systems. After the treatment, the measured non-organic solved and suspended solids contents in the cyclic ozonation-biotreatment system compared to the non-organic solved and suspended solids values in the treatment method without ozonation. Sedimentation was the other factor which was considered in this experiment.The solids removals were measured with and without sediments. The comparison revealed that the remarkable efficiency of the cyclic ozonation-biotreatment system in removing the non-organic solids both with and without sediments is extremely considerable. Results of the experiments showed that ozone can be dramatically effective for solving most organic materials in activated sludge in such a wastewater or for making them mineral. Moreover, bio dissolubility increase related to the solved materials was reported.

Keywords: non-organic solids, ozonation, sediment, wastewater treatment

Procedia PDF Downloads 187
2822 Combined Influence of Charge Carrier Density and Temperature on Open-Circuit Voltage in Bulk Heterojunction Organic Solar Cells

Authors: Douglas Yeboah, Monishka Narayan, Jai Singh

Abstract:

One of the key parameters in determining the power conversion efficiency (PCE) of organic solar cells (OSCs) is the open-circuit voltage, however, it is still not well understood. In order to examine the performance of OSCs, it is necessary to understand the losses associated with the open-circuit voltage and how best it can be improved. Here, an analytical expression for the open-circuit voltage of bulk heterojunction (BHJ) OSCs is derived from the charge carrier densities without considering the drift-diffusion current. The open-circuit voltage thus obtained is dependent on the donor-acceptor band gap, the energy difference between the highest occupied molecular orbital (HOMO) and the hole quasi-Fermi level of the donor material, temperature, the carrier density (electrons), the generation rate of free charge carriers and the bimolecular recombination coefficient. It is found that open-circuit voltage increases when the carrier density increases and when the temperature decreases. The calculated results are discussed in view of experimental results and agree with them reasonably well. Overall, this work proposes an alternative pathway for improving the open-circuit voltage in BHJ OSCs.

Keywords: charge carrier density, open-circuit voltage, organic solar cells, temperature

Procedia PDF Downloads 373
2821 Microarray Data Visualization and Preprocessing Using R and Bioconductor

Authors: Ruchi Yadav, Shivani Pandey, Prachi Srivastava

Abstract:

Microarrays provide a rich source of data on the molecular working of cells. Each microarray reports on the abundance of tens of thousands of mRNAs. Virtually every human disease is being studied using microarrays with the hope of finding the molecular mechanisms of disease. Bioinformatics analysis plays an important part of processing the information embedded in large-scale expression profiling studies and for laying the foundation for biological interpretation. A basic, yet challenging task in the analysis of microarray gene expression data is the identification of changes in gene expression that are associated with particular biological conditions. Careful statistical design and analysis are essential to improve the efficiency and reliability of microarray experiments throughout the data acquisition and analysis process. One of the most popular platforms for microarray analysis is Bioconductor, an open source and open development software project based on the R programming language. This paper describes specific procedures for conducting quality assessment, visualization and preprocessing of Affymetrix Gene Chip and also details the different bioconductor packages used to analyze affymetrix microarray data and describe the analysis and outcome of each plots.

Keywords: microarray analysis, R language, affymetrix visualization, bioconductor

Procedia PDF Downloads 480
2820 Towards a Biologically Inspired Supercritical Airfoil Adapted for Gliding Cross-Domain Vehicles

Authors: Hanyue Shen, Jiaying Zhang, Xingwei Kong

Abstract:

Growing research on cross-domain vehicles (CDVs) has addressed the requirement to balance airfoil efficiency in air and water. No existing airfoil is specifically developed to adapt to the large Reynold’s number range CDVs operate in. This research proposes a supercritical airfoil biologically inspired by Atlantic Puffins. The initial airfoil is parameterized with the composite Karman-Trefftz method, optimized with a series of multi-stage gradient descend procedures, and compared with other airfoils with Xfoil. Results from Xfoil are also validated via Fluent and experiment considering curvatures on the designed airfoil might affect the accuracy of Xfoil. The results indicate that while CFD and Xfoil results closely align, Xfoil produces results closest to the experimental value. The bionic airfoil demonstrates superior performance in the range Re = 2·10⁴ to Re = 2·10⁵ compared to other studied airfoils, satisfying design requirements. This airfoil and its future counterparts are probable solutions to be implemented on fixed-wing CDVs desiring to glide in the given working conditions, providing an efficient and structurally simple pathway.

Keywords: fluid dynamics, airfoil design, biomimicry, cross domain vehicle

Procedia PDF Downloads 55
2819 Corrosion Inhibition of AA2024 Alloy with Graphene Oxide Derivative: Electrochemical and Surface Analysis

Authors: Nisrine Benzbiria, Abderrahmane Thoume, Mustapha Zertoubi

Abstract:

The goal of this research is to investigate the corrosion inhibition potential of functionalized graphene oxide (GO) with oxime derivative on AA2024-T3 surface in synthetic seawater. The utilization of functionalized graphene oxide is creating a category of corrosion inhibitors known as organically modified nanomaterials. In our work, the functionalization of GO by chalcone oxime enables graphene oxide to have enhanced water solubility and a good corrosion mitigation capacity. Fourier-transform infrared (FT-IR) spectroscopy was utilized to evaluate the main functional groups of the inhibitor. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves (PDP) showed that the inhibitor acts as a mixed-type inhibitor. The inhibitory efficiency (IE) improved as the concentration increased to a value of 96% after one hour of exposure to a medium containing 60 mg/L ppm of the inhibitor. According to thermodynamic calculations, the adsorption of the inhibitor on the AA2024-T3 surface in 3% NaCl followed the Langmuir isotherm. The formation of a barrier layer was further confirmed by surface analysis. The protective film prevented the alloy dissolution and limited the accessibility of attacking ions, as evinced by solution analysis techniques.

Keywords: AA2024-T3, NaCl, electrochemical methods, FT-IR, SEM/AFM, DFT, MC simulation

Procedia PDF Downloads 60
2818 A Case Study Report on Acoustic Impact Assessment and Mitigation of the Hyprob Research Plant

Authors: D. Bianco, A. Sollazzo, M. Barbarino, G. Elia, A. Smoraldi, N. Favaloro

Abstract:

The activities, described in the present paper, have been conducted in the framework of the HYPROB-New Program, carried out by the Italian Aerospace Research Centre (CIRA) promoted and funded by the Italian Ministry of University and Research (MIUR) in order to improve the National background on rocket engine systems for space applications. The Program has the strategic objective to improve National system and technology capabilities in the field of liquid rocket engines (LRE) for future Space Propulsion Systems applications, with specific regard to LOX/LCH4 technology. The main purpose of the HYPROB program is to design and build a Propulsion Test Facility (HIMP) allowing test activities on Liquid Thrusters. The development of skills in liquid rocket propulsion can only pass through extensive test campaign. Following its mission, CIRA has planned the development of new testing facilities and infrastructures for space propulsion characterized by adequate sizes and instrumentation. The IMP test cell is devoted to testing articles representative of small combustion chambers, fed with oxygen and methane, both in liquid and gaseous phase. This article describes the activities that have been carried out for the evaluation of the acoustic impact, and its consequent mitigation. The impact of the simulated acoustic disturbance has been evaluated, first, using an approximated method based on experimental data by Baumann and Coney, included in “Noise and Vibration Control Engineering” edited by Vér and Beranek. This methodology, used to evaluate the free-field radiation of jet in ideal acoustical medium, analyzes in details the jet noise and assumes sources acting at the same time. It considers as principal radiation sources the jet mixing noise, caused by the turbulent mixing of jet gas and the ambient medium. Empirical models, allowing a direct calculation of the Sound Pressure Level, are commonly used for rocket noise simulation. The model named after K. Eldred is probably one of the most exploited in this area. In this paper, an improvement of the Eldred Standard model has been used for a detailed investigation of the acoustical impact of the Hyprob facility. This new formulation contains an explicit expression for the acoustic pressure of each equivalent noise source, in terms of amplitude and phase, allowing the investigation of the sources correlation effects and their propagation through wave equations. In order to enhance the evaluation of the facility acoustic impact, including an assessment of the mitigation strategies to be set in place, a more advanced simulation campaign has been conducted using both an in-house code for noise propagation and scattering, and a commercial code for industrial noise environmental impact, CadnaA. The noise prediction obtained with the revised Eldred-based model has then been used for formulating an empirical/BEM (Boundary Element Method) hybrid approach allowing the evaluation of the barrier mitigation effect, at the design. This approach has been compared with the analogous empirical/ray-acoustics approach, implemented within CadnaA using a customized definition of sources and directivity factor. The resulting impact evaluation study is reported here, along with the design-level barrier optimization for noise mitigation.

Keywords: acoustic impact, industrial noise, mitigation, rocket noise

Procedia PDF Downloads 146
2817 A Full-Scale Test of Coping-Girder Integrated Bridge

Authors: Heeyoung Lee, Woosung Bin, Kangseog Seo, Hyojeong Yun, Zuog An

Abstract:

Recently, a new continuous bridge system has been proposed to increase the space under the bridge and to improve aesthetic aspect of the urban area. The main feature of the proposed bridge is to connect steel I-girders and coping by means of prestressed high-strength steel bars and steel plate. The proposed bridge is able to lower the height of the bridge to ensure the workability and efficiency through a reduction of the cost of road construction. This study presents the experimental result of the full-scale connection between steel I-girders and coping under the negative bending moment. The composite behavior is thoroughly examined and discussed under the specific load levels such as service load, factored load and crack load. Structural response showed full composite action until the final load level because no relative displacement between coping and girder was observed. It was also found prestressing force into high-strength bars was able to control tensile stresses of deck slab. This indicated that cracks in deck slab can be controlled by above-mentioned prestressing force.

Keywords: coping, crack, integrated bridge, full-scale test

Procedia PDF Downloads 441
2816 Evaluation of the Efficiency of Intelligent Systems in Traffic Congestion Pricing Schemes in Urban Streets

Authors: Saeed Sayyad Hagh Shomar

Abstract:

Traffic congestion pricing as one of the demand management strategies constrains expenditure to network users so that it helps reduction in traffic congestion and environment pollution like air pollution. Despite the development of congestion pricing schemes for traffic in our country, the matters of traditional toll collection, drivers’ waste of time and delay in traffic are still widespread. Electronic toll collection as a part of the intelligent transportation system provides the possibility of collecting tolls without car-stop and traffic disruption. Unlike the satisfying outcomes of using intelligent systems in congestion pricing schemes, implementation costs and technological problems are the barriers in these schemes. In this research first, a variety of electronic pay toll systems and their components are introduced then their functional usage is discussed. In the following, by analyzing and comparing the barriers, limitations and advantages, the selection criteria of intelligent systems are described and the results show that the choice of the best technology depends on the various parameters which, by examining them, it is concluded that in a long-term run and by providing the necessary conditions, DSRC technology as the main system in the schemes and ANPR as a major backup system of the main one can be employed.

Keywords: congestion pricing, electronic toll collection, intelligent systems, technology, traffic

Procedia PDF Downloads 610
2815 Spectroscopic Investigations of Nd³⁺ Doped Lithium Lead Alumino Borate Glasses for 1.06μM Laser Applications

Authors: Nisha Deopa, A. S. Rao

Abstract:

Neodymium doped lithium lead alumino borate glasses were synthesized with the molar composition 10Li₂O – 10PbO – (10-x) Al₂O₃ – 70B₂O₃ – xNd₂O₃ (where, x = 0.1, 0.5, 1.0, 1.5, 2.0 and 2.5 mol %) via conventional melt quenching technique to understand their lasing potentiality. From the absorption spectra, Judd-Ofelt intensity parameters along with various spectroscopic parameters have been estimated. The emission spectra recorded for the as-prepared glasses under investigation exhibit two emission transitions, ⁴F₃/₂→⁴I₁₁/₂ (1063 nm) and ⁴F₃/₂→⁴I₉/₂ (1350 nm) for which radiative parameters have been evaluated. The emission intensity increases with increase in Nd³⁺ ion concentration up to 1 mol %, and beyond concentration quenching took place. The decay profile shows single exponential nature for lower Nd³⁺ ions concentration and non-exponential for higher concentration. To elucidate the nature of energy transfer process, non-exponential decay curves were well fitted to Inokuti-Hirayama model. The relatively high values of emission cross-section, branching ratio, lifetimes and quantum efficiency suggest that 1.0 mol% of Nd³⁺ in LiPbAlB glasses is aptly suitable to generate lasing action in NIR region at 1063 nm.

Keywords: energy transfer, glasses, J-O parameters, photoluminescence

Procedia PDF Downloads 189
2814 Aerodynamic Analysis of Dimple Effect on Aircraft Wing

Authors: E. Livya, G. Anitha, P. Valli

Abstract:

The main objective of aircraft aerodynamics is to enhance the aerodynamic characteristics and maneuverability of the aircraft. This enhancement includes the reduction in drag and stall phenomenon. The airfoil which contains dimples will have comparatively less drag than the plain airfoil. Introducing dimples on the aircraft wing will create turbulence by creating vortices which delays the boundary layer separation resulting in decrease of pressure drag and also increase in the angle of stall. In addition, wake reduction leads to reduction in acoustic emission. The overall objective of this paper is to improve the aircraft maneuverability by delaying the flow separation point at stall and thereby reducing the drag by applying the dimple effect over the aircraft wing. This project includes both computational and experimental analysis of dimple effect on aircraft wing, using NACA 0018 airfoil. Dimple shapes of Semi-sphere, hexagon, cylinder, square are selected for the analysis; airfoil is tested under the inlet velocity of 30m/s at different angle of attack (5˚, 10˚, 15˚, 20˚, and 25˚). This analysis favours the dimple effect by increasing L/D ratio and thereby providing the maximum aerodynamic efficiency, which provides the enhanced performance for the aircraft.

Keywords: airfoil, dimple effect, turbulence, boundary layer separation

Procedia PDF Downloads 533
2813 Probabilistic Modeling of Post-Liquefaction Ground Deformation

Authors: Javad Sadoghi Yazdi, Robb Eric S. Moss

Abstract:

This paper utilizes a probabilistic liquefaction triggering method for modeling post-liquefaction ground deformation. This cone penetration test CPT-based liquefaction triggering is employed to estimate the factor of safety against liquefaction (FSL) and compute the maximum cyclic shear strain (γmax). The study identifies a maximum PL value of 90% across various relative densities, which challenges the decrease from 90% to 70% as relative density decreases. It reveals that PL ranges from 5% to 50% for volumetric strain (εvol) less than 1%, while for εvol values between 1% and 3.2%, PL spans from 50% to 90%. The application of the CPT-based simplified liquefaction triggering procedures has been employed in previous researches to estimate liquefaction ground-failure indices, such as the Liquefaction Potential Index (LPI) and Liquefaction Severity Number (LSN). However, several studies have been conducted to highlight the variability in liquefaction probability calculations, suggesting a more accurate depiction of liquefaction likelihood. Consequently, the utilization of these simplified methods may not offer practical efficiency. This paper further investigates the efficacy of various established liquefaction vulnerability parameters, including LPI and LSN, in explaining the observed liquefaction-induced damage within residential zones of Christchurch, New Zealand using results from CPT database.

Keywords: cone penetration test (CPT), liquefaction, postliquefaction, ground failure

Procedia PDF Downloads 71
2812 Utilization of a Composite of Oil Ash, Scoria, and Expanded Perlite with Polyethylene Glycol for Energy Storage Systems

Authors: Khaled Own Mohaisen, Md. Hasan Zahir, Salah U. Al-Dulaijan, Shamsad Ahmad, Mohammed Maslehuddin

Abstract:

Shape-stabilized phase change materials (ss-PCMs) for energy storage systems were developed using perlite, scoria, and oil ash as a carrier, with polyethylene glycol (PEG) with a molecular weight of 6000 as phase change material (PCM). Physical mixing using simple impregnation of ethanol evaporation technique method was carried out to fabricate the form stabilized PCM. The fabricated PCMs prevent leakage, reduce the supercooling effect and minimize recalescence problems of the PCM. The differential scanning calorimetry (DSC) results show that perlite composite (ExPP) has the highest latent heat of melting and freezing values of (141.6 J/g and 143.7 J/g) respectively, compared with oil ash (OAP) and scoria (SCP) composites. Moreover, ExPP has the highest impregnation ratio, energy storage efficiency, and energy storage capacity compared with OAP and SCP. However, OAP and SCP have higher thermal conductivity values compared to ExPP composites which accelerate the thermal storage response in the composite. These results were confirmed with DSC, and the characteristic of the PCMs was investigated by using XRD and FE-SEM techniques.

Keywords: expanded perlite, oil ash, scoria, energy storage material

Procedia PDF Downloads 91
2811 Thermodynamic Analysis of Ventilated Façades under Operating Conditions in Southern Spain

Authors: Carlos A. Domínguez Torres, Antonio Domínguez Delgado

Abstract:

In this work we study the thermodynamic behavior of some ventilated facades under summer operating conditions in Southern Spain. Under these climatic conditions, indoor comfort implies a high energetic demand due to high temperatures that usually are reached in this season in the considered geographical area. The aim of this work is to determine if during summer operating conditions in Southern Spain, ventilated façades provide some energy saving compared to the non-ventilated façades and to deduce their behavior patterns in terms of energy efficiency. The modeling of the air flow in the channel has been performed by using Navier-Stokes equations for thermodynamic flows. Numerical simulations have been carried out with a 2D Finite Element approach. This way, we analyze the behavior of ventilated façades under different weather conditions as variable wind, variable temperature and different levels of solar irradiation. CFD computations show that the combined effect of the shading of the external wall and the ventilation by the natural convection into the air gap achieve a reduction of the heat load during the summer period. This reduction has been evaluated by comparing the thermodynamic performances of two ventilated and two unventilated façades with the same geometry and thermophysical characteristics.

Keywords: passive cooling, ventilated façades, energy-efficient building, CFD, FEM

Procedia PDF Downloads 355
2810 Exploration of Graphite Nano-Particles as Anti-Wear Additive for Performance Enhancement of Oil

Authors: Manoj Kumar Gupta, Jayashree Bijwe

Abstract:

Additives in lubricating oils are the focus of research attention since the further reduction in friction and wear properties of oils would lead to the further saving of tribo-materials and energy apart from improving their efficiency. Remarkable tribo-performance enhancement is reported in the literature due to addition of particles of solid lubricants in lubricating oils; especially that of nano-sizes. In the present work graphite nano-particles (NPs) in various amounts (1, 2, 3 and 4 wt. %) were used to explore the possible anti-wear (AW) performance enhancement in Group III oil. Polyisobutylene succinimide (PIBSI- 1 wt. %) was used as a dispersant for dispersing these NPs and to enhance the stability of these nano-suspensions. It was observed that PIBSI inclusion enhanced the stability of oil almost by eight times. NPs in all amounts enhanced the AW performance of oil considerably. The optimum amount was three wt. %, which led to the highest enhancement under all loads. The extent of benefits, however, were dependent on load. At the lowest (392 N) and highest loads (784 N), the benefits were not profound. At moderate load (588 N), highest improvement (around 60 %) was recorded. The SEM and AFM studies were done on the worn ball surfaces to reveal the detailed features of films transferred and proved useful to correlate the wear performance of oils.

Keywords: dispersant, graphite, nano-lubricant, anti-wear additive

Procedia PDF Downloads 162
2809 Risk Management in an Islamic Framework

Authors: Magid Maatallah

Abstract:

The problem is, investment management in modern conditions boils down to risk management which is very underdeveloped in Islamic financial theory and practice. Add to this the fact that, in Islamic perception, this is one of the areas of conventional finance in need of drastic reforms. This need was recently underlined by the story of Long Term Capital Management (LTCM ), ( told by Roger Lowenstein in his book, When Genius Failed, Random House, 2000 ). So we face a double challenge, to develop Islamic techniques of risk management and to see that these new techniques are free from the ills with which conventional methods are suffering. This is different from the challenge faced in the middle of twentieth century, to develop a method of financial intermediation free of interest.Risk was always there, especially in business. But industrialization brought risks unknown in trade and agriculture. Industrial production often involves long periods of time .The longer the period of production the more the uncertainty. The scope of the market has expanded to cover the whole world, introducing new kinds of risk. More than a thousand years ago, when Islamic laws were being written, the nature and scope of risk and uncertainty was different. However, something can still be learnt which, in combination with the modern experience, should enable us to realize the Shariah objectives of justice, fairness and efficiency.

Keywords: financial markets, Islamic framework, risk management, investment

Procedia PDF Downloads 552
2808 The Effect of Biological Fertilizers on Yield and Yield Components of Maize with Different Levels of Chemical Fertilizers in Normal and Difficit Irrigation Conditions

Authors: Felora Rafiei, Shahram Shoaei

Abstract:

The aim of this studies was to evaluate effect of nitroxin, super nitro plus and biophosphorus on yield and yield components of maize (Zea mays) under different levels of chemical fertilizers in the condition of normal and difficiet irrigation. Experiment laid out as split plot factorial based on randomized complete block design with three replications. Main plots includes two irrigation treatments of 70 (I1), 120(I2) mm evaporation from class A pan. Sub plots were biological fertilizer and chemical fertilizer as factorial biological fertilizer consisting of nitroxin: Azospirillium lipoferum, Azospirillium brasilens, Azotobacter chroococcum Azotobacter agilis (108 CFU ml-1) (B1), super nitro plus (Azospirillium spp, + Pseudomonas fluorescence + Bacillus subtilis (108 CFU ml-1) + biological fungicide) (B2), biophosphorus (Pseudomonas spp + Bacillus spp (107 CFU ml-1) (B3), and chemical fertilizer consisting of NPK (C1), N5oP5oK5o (C2) and NoPoKo (C3).The results showed that usage of biological fertilizer have positive effects on chemical fertilizers use efficiency and tolerance to drought stress in maize. Also with use of biological fertilizer can decrease usage of chemical fertilizers.

Keywords: biological fertilizer, chemical fertilizer, yield component, yield, corn

Procedia PDF Downloads 366
2807 Performance of Derna Steam Power Plant at Varying Super-Heater Operating Conditions Based on Exergy

Authors: Idris Elfeituri

Abstract:

In the current study, energy and exergy analysis of a 65 MW steam power plant was carried out. This study investigated the effect of variations of overall conductance of the super heater on the performance of an existing steam power plant located in Derna, Libya. The performance of the power plant was estimated by a mathematical modelling which considers the off-design operating conditions of each component. A fully interactive computer program based on the mass, energy and exergy balance equations has been developed. The maximum exergy destruction has been found in the steam generation unit. A 50% reduction in the design value of overall conductance of the super heater has been achieved, which accordingly decreases the amount of the net electrical power that would be generated by at least 13 MW, as well as the overall plant exergy efficiency by at least 6.4%, and at the same time that would cause an increase of the total exergy destruction by at least 14 MW. The achieved results showed that the super heater design and operating conditions play an important role on the thermodynamics performance and the fuel utilization of the power plant. Moreover, these considerations are very useful in the process of the decision that should be taken at the occasions of deciding whether to replace or renovate the super heater of the power plant.

Keywords: Exergy, Super-heater, Fouling; Steam power plant; Off-design., Fouling;, Super-heater, Steam power plant

Procedia PDF Downloads 333
2806 Assessing the Current State of Software Engineering and Information Technology in Ghana

Authors: David Yartel

Abstract:

Drawing on the current state of software engineering and information technology in Ghana, the study documents its significant contribution to the development of Ghanaian industries. The study focuses on the application of modern trends in technology and the barriers faced in the area of software engineering and information technology. A thorough analysis of a dozen of interviews with stakeholders in software engineering and information technology via interviews reveals how modern trends in software engineering pose challenges to the industry in Ghana. Results show that to meet the expectation of modern software engineering and information technology trends, stakeholders must have skilled professionals, adequate infrastructure, and enhanced support for technology startups. Again, individuals should be encouraged to pursue a career in software engineering and information technology, as it has the propensity to increase the efficiency and effectiveness of work-related activities. This study recommends that stakeholders in software engineering and technology industries should invest enough in training more professionals by collaborating with international institutions well-versed in the area by organizing frequent training and seminars. The government should also provide funding opportunities for small businesses in the technology sector to drive creativity and development in order to bring about growth and development.

Keywords: software engineering, information technology, Ghana, development

Procedia PDF Downloads 94
2805 Exploring the Application of Additive Manufacturing in the Production of Aerogels for the Purpose of Creating Environmentally Friendly Agricultural Formulations with Controlled Release Properties

Authors: Pram Abhayawardhana, Ali Reza Nazmi, Hossein Najaf Zadeh

Abstract:

This study examines the use of additive manufacturing (AM) to develop sustainable and intelligent agricultural formulations that can gradually release fertilisers. AM offers the ability to design customised formulations with precise geometries and controlled release properties while taking into account their mechanical, chemical, and environmental properties. The study specifically investigates the use of an aerogel matrix mixed with a potential fertiliser in agriculture. Highly porous 3D printed aerogel structures were designed to enable the slow release of fertilisers. The performance of the formulated mixture is evaluated against other commonly used materials for slow-release applications. The findings suggest that the 3D printed gel made has great potential for slow-release fertilisers, providing an environmentally friendly solution for agricultural practices. The combination of AM technology and sustainable materials can play a vital role in mitigating the negative environmental impact of traditional fertilisers, as well as improving the efficiency and sustainability of agricultural production.

Keywords: 3D printing, hydrogel, aerogel, fertiliser, agriculture

Procedia PDF Downloads 94
2804 Made on Land, Ends Up in the Water "I-Clare" Intelligent Remediation System for Removal of Harmful Contaminants in Water using Modified Reticulated Vitreous Carbon Foam

Authors: Sabina Żołędowska, Tadeusz Ossowski, Robert Bogdanowicz, Jacek Ryl, Paweł Rostkowski, Michał Kruczkowski, Michał Sobaszek, Zofia Cebula, Grzegorz Skowierzak, Paweł Jakóbczyk, Lilit Hovhannisyan, Paweł Ślepski, Iwona Kaczmarczyk, Mattia Pierpaoli, Bartłomiej Dec, Dawid Nidzworski

Abstract:

The circular economy of water presents a pressing environmental challenge in our society. Water contains various harmful substances, such as drugs, antibiotics, hormones, and dioxides, which can pose silent threats. Water pollution has severe consequences for aquatic ecosystems. It disrupts the balance of ecosystems by harming aquatic plants, animals, and microorganisms. Water pollution poses significant risks to human health. Exposure to toxic chemicals through contaminated water can have long-term health effects, such as cancer, developmental disorders, and hormonal imbalances. However, effective remediation systems can be implemented to remove these contaminants using electrocatalytic processes, which offer an environmentally friendly alternative to other treatment methods, and one of them is the innovative iCLARE system. The project's primary focus revolves around a few main topics: Reactor design and construction, selection of a specific type of reticulated vitreous carbon foams (RVC), analytical studies of harmful contaminants parameters and AI implementation. This high-performance electrochemical reactor will be build based on a novel type of electrode material. The proposed approach utilizes the application of reticulated vitreous carbon foams (RVC) with deposited modified metal oxides (MMO) and diamond thin films. The following setup is characterized by high surface area development and satisfactory mechanical and electrochemical properties, designed for high electrocatalytic process efficiency. The consortium validated electrode modification methods that are the base of the iCLARE product and established the procedures for the detection of chemicals detection: - deposition of metal oxides WO3 and V2O5-deposition of boron-doped diamond/nanowalls structures by CVD process. The chosen electrodes (porous Ferroterm electrodes) were stress tested for various parameters that might occur inside the iCLARE machine–corosis, the long-term structure of the electrode surface during electrochemical processes, and energetic efficacy using cyclic polarization and electrochemical impedance spectroscopy (before and after electrolysis) and dynamic electrochemical impedance spectroscopy (DEIS). This tool allows real-time monitoring of the changes at the electrode/electrolyte interphase. On the other hand, the toxicity of iCLARE chemicals and products of electrolysis are evaluated before and after the treatment using MARA examination (IBMM) and HPLC-MS-MS (NILU), giving us information about the harmfulness of using electrode material and the efficiency of iClare system in the disposal of pollutants. Implementation of data into the system that uses artificial intelligence and the possibility of practical application is in progress (SensDx).

Keywords: waste water treatement, RVC, electrocatalysis, paracetamol

Procedia PDF Downloads 88
2803 Advances in Membrane Technologies for Wastewater Treatment

Authors: Deniz Sahin

Abstract:

This study provides a literature review of the special issue on wastewater treatment technologies, especially membrane technologies. Currently, wastewater is a serious and increasing worldwide problem with an adverse effect on the environment and living organisms. For this reason, many technologies have been developed to treat wastewater before discharging it to water bodies. We have been discussed membrane technologies to remove contaminants from wastewater such as heavy metals, dyes, pesticides, etc., which represent the main pollutants in wastewater. All the properties of these technologies including performance, economics, simplicity, and operability are also compared with other wastewater treatment technologies. The conventional water treatment technologies have the disadvantages of low separation efficiency, high energy consumption, and strict operating temperature. To overcome these difficulties, membrane technologies have been developed and used in wastewater treatment. Membrane technology uses a selectively permeable membrane to remove suspended and dissolved solids from water. This membrane is a very thin film of synthetic organic or inorganic materials, that can allow a very selective separation between a mixture and its components. Examples of membrane technologies include microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), electrodialysis (ED), gas separation, etc. Most of these technologies have been used extensively for the treatment of heavy metal wastewater. For instance, wastewater that contains Cu²⁺, Cd²⁺, Pb²⁺, Zn²⁺ was treated by ultrafiltration technology. It was shown that complete removal of metal ions could be achieved.

Keywords: industrial pollution, membrane technologies, metal ions, wastewater

Procedia PDF Downloads 197
2802 Measurement of Radionuclide Concentrations and Study on Transfer from Soil to Plant in Sfax-Tunisia

Authors: Sonia Machraoui, Salam Labidi, Karunakara Naregundi

Abstract:

Environmental radiation measurements are useful to identify areas of potential natural radiation hazard particularly in areas of phosphate industries where enhanced radiation levels are expected to be present. Measurements of primordial radionuclides concentrations have been carried out in samples collected from Sfax City around the SIAPE phosphate industry of Tunis. The samples analysed include fish, beef meat, egg, and vegetables as well as in soil and grass. Measurements were performed by gamma spectrometry method using a 42% relative efficiency N-type HPGe detector. The activity concentrations of radionuclides were measured by gamma ray spectrometry. As expected, the concentrations of radionuclides belonging to uranium and thorium series were low in food materials. In all the samples analysed, the 137Cs concentration was below detection level, except meat samples which showed the activity concentration of 2.4 Bq kg-1 (dry wt.) The soil to grass transfer factor was found to be similar to those reported in literature. The effective dose to the population due to intake of food products were also estimated and are presented in this paper.

Keywords: effective doses, phosphate industry, transfer coefficients, Tunisia

Procedia PDF Downloads 219
2801 Integration of a Load Switch with DC/DC Buck Converter for Power Distribution in Low Cost Educational Nanosatellite

Authors: Bentoutou Houari, Boutte Aissa, Belaidi El Yazid, Limam Lakhdar

Abstract:

The integration of a load switch with a DC/DC buck converter using LM2596 for power distribution in low-cost educational nanosatellites is a technique that aims to efficiently manage the power distribution system in these small spacecraft. The converter is based on the LM2596 regulator and designed to step down the input voltage of +16.8V to +12V, +5V, and +3.3V output, which are suitable for the nanosatellite's various subsystems. The load switch is based on MOSFET and is used to turn on or off the power supply to a particular load and protect the nanosatellite from power surges. A prototype of a +12V DC/DC buck converter with a high side load switch has been realized and tested, which meets our requirements and shows a good efficiency of 89%. In addition, the prototype features a capacitor between the source and gate of the MOSFET, which has effectively reduced the inrush current, demonstrating the effectiveness of this approach in reducing surges of current when the load is connected. The output current and voltage were measured at 0.7A and 11.89V, respectively, making this design suitable for use in low-cost educational nanosatellites.

Keywords: DC/DC buck converter, load switch, LM2596, electrical power subsystems, nanosatellite, inrush current

Procedia PDF Downloads 101
2800 Breast Cancer Early Recognition, New Methods of Screening, and Analysis

Authors: Sahar Heidary

Abstract:

Breast cancer is a main public common obstacle global. Additionally, it is the second top reason for tumor death across women. Considering breast cancer cure choices can aid private doctors in precaution for their patients through future cancer treatment. This article reviews usual management centered on stage, histology, and biomarkers. The growth of breast cancer is a multi-stage procedure including numerous cell kinds and its inhibition residues stimulating in the universe. Timely identification of breast cancer is one of the finest methods to stop this illness. Entirely chief therapeutic administrations mention screening mammography for women aged 40 years and older. Breast cancer metastasis interpretations for the mainstream of deaths from breast cancer. The discovery of breast cancer metastasis at the initial step is essential for managing and estimate of breast cancer development. Developing methods consuming the exploration of flowing cancer cells illustrate talented outcomes in forecasting and classifying the initial steps of breast cancer metastasis in patients. In public, mammography residues are the key screening implement though the efficiency of medical breast checks and self-checkup is less. Innovative screening methods are doubtful to exchange mammography in the close upcoming for screening the overall people.

Keywords: breast cancer, screening, metastasis, methods

Procedia PDF Downloads 169
2799 Analysis on Heat Transfer in Solar Parabolic Trough Collectors

Authors: Zaid H. Yaseen, Jamel A. Orfi, Zeyad A. Alsuhaibani

Abstract:

Solar power has a huge potential to be employed in the fields of electricity production, water desalination, and multi-generation. There are various types of solar collectors, and parabolic trough collectors (PTCs) are common among these types. In PTCs, a mirror is used to direct the incident radiation on an absorber tube to utilize the heat in power generation. In this work, a PTC covered with a glass tube is presented and analyzed. Results showed that temperatures of 510℃ for steam can be reached for certain parameters. The work also showed the viability of using Benzene as the working fluid in the absorber tube. Also, some analysis regarding changing the absorber’s tube diameter and the efficiency of the solar collector was demonstrated in this work. The effect of changing the heat transfer correlations for the convection phenomena of the working fluid was illustrated. In fact, two heat transfer correlations, the Dittus-Boelter and Gnielinski correlations, were used, and the outcomes showed a resemblance in the results for the maximum attainable temperature in the working fluid.

Keywords: absorber tube, glass tube, incident radiation, parabolic trough collector

Procedia PDF Downloads 11
2798 Evaluating the Location of Effective Product Advertising on Facebook Ads

Authors: Aulia F. Hadining, Atya Nur Aisha, Dimas Kurninatoro Aji

Abstract:

Utilization of social media as a marketing tool is growing rapidly, including for SMEs. Social media allows the user to give product evaluation and recommendations to the public. In addition, the social media facilitate word-of-mouth marketing communication. One of the social media that can be used is Facebook, with Facebook Ads. This study aimed to evaluate the location of Facebook Ads, to obtain an appropriate advertising design. There are three alternatives location consist of desktop, right-hand column and mobile. The effectiveness and efficiency of advertising will be measured based on advertising metrics such as reach, click, Cost per Click (CUC) and Unique Click-Through-Rate (UCTR). Facebook's Ads Manager was used for seven days, targeted by age (18-24), location (Bandung), language (Indonesia) and keywords. The result was 13,999 total reach, as well as 342 clicks. Based on the results of comparison using ANOVA, there was a significant difference for each placement location based on advertising metrics. Mobile location was chosen to be successful ads, because it produces the lowest CUC, amounting to Rp 691,- per click and 14% UCTR. Results of this study showed Facebook Ads was useful and cost-effective media to promote the product of SME, because it could be view by many people in the same time.

Keywords: marketing communication, social media, Facebook Ads, mobile location

Procedia PDF Downloads 354
2797 A Neural Network System for Predicting the Hardness of Titanium Aluminum Nitrite (TiAlN) Coatings

Authors: Omar M. Elmabrouk

Abstract:

The cutting tool, in the high-speed machining process, is consistently dealing with high localized stress at the tool tip, tip temperature exceeds 800°C and the chip slides along the rake face. These conditions are affecting the tool wear, the cutting tool performances, the quality of the produced parts and the tool life. Therefore, a thin film coating on the cutting tool should be considered to improve the tool surface properties while maintaining its bulks properties. One of the general coating processes in applying thin film for hard coating purpose is PVD magnetron sputtering. In this paper, the prediction of the effects of PVD magnetron sputtering coating process parameters, sputter power in the range of (4.81-7.19 kW), bias voltage in the range of (50.00-300.00 Volts) and substrate temperature in the range of (281.08-600.00 °C), were studied using artificial neural network (ANN). The results were compared with previously published results using RSM model. It was found that the ANN is more accurate in prediction of tool hardness, and hence, it will not only improve the tool life of the tool but also significantly enhances the efficiency of the machining processes.

Keywords: artificial neural network, hardness, prediction, titanium aluminium nitrate coating

Procedia PDF Downloads 554