Search results for: Spatial Data Analyses
23936 The Search of New Laws for a Gluten Kingdom
Authors: Mohammed Saleem Tariq
Abstract:
The enthusiasm for gluten avoidance in a growing market is met by improvements in sensitive detection methods for analysing gluten content. Paradoxically, manufacturers employ no such systems in the production process but continue to market their product as gluten free, a significant risk posed to an undetermined coeliac population. The paper resonates with an immunological response that causes gastrointestinal scarring and villous atrophy with the conventional description of personal injury. The current developing regime in the UK however, it is discussed, has avoided creating specific rules to provide an adequate level of protection for this type of vulnerable ‘characteristic’. Due to the struggle involved with identifying an appropriate cause of action, this paper analyses whether a claim brought in misrepresentation, negligence and/or under the Consumer Protect Act 1987 could be sustained. A necessary comparison is then made with the approach adopted by the Americans with Disability Act 1990 which recognises this chronic disease as a disability. The ongoing failure to introduce a level of protection which matches that afforded to those who fall into any one of the ‘protected characteristics’ under the Equality Act 2010, is inconceivable given the outstanding level of legal vulnerability.Keywords: coeliac, litigation, misrepresentation, negligence
Procedia PDF Downloads 36523935 Synthesis of Novel Organic Dyes Based on Indigo for Dye-Sensitized Solar Cells
Authors: M. Hosseinnejad, K. Gharanjig, S. Moradian
Abstract:
A novel metal free organic dyes based on indigo was prepared and used as sensitizers in dye-sensitized solar cells. The synthesized dye together with its corresponding intermediates were purified and characterized by analytical techniques. Such techniques confirmed the corresponding structures of dye and its intermediate and the yield of all the stages of dye preparation were calculated to be above 85%. Fluorometric analyses show fluorescence in the green region of the visible spectrum for dye. Oxidation potential measurements for dye ensured an energetically permissible and thermodynamically favourable charge transfer throughout the continuous cycle of photo-electric conversion. Finally, dye sensitized solar cells were fabricated in order to determine the photovoltaic behaviour and conversion efficiencies of dye. Such evaluations demonstrate rather medium conversion efficiencies of 2.33% for such simple structured synthesized dye. Such conversion efficiencies demonstrate the potentiality of future use of such dye structures in dye-sensitized solar cells with respect to low material costs, ease of molecular tailoring, high yields of reactions, high performance and ease of recyclability.Keywords: conversion efficiency, Dye-sensitized solar cells, indigo, photonic material
Procedia PDF Downloads 36923934 Detection of Change Points in Earthquakes Data: A Bayesian Approach
Authors: F. A. Al-Awadhi, D. Al-Hulail
Abstract:
In this study, we applied the Bayesian hierarchical model to detect single and multiple change points for daily earthquake body wave magnitude. The change point analysis is used in both backward (off-line) and forward (on-line) statistical research. In this study, it is used with the backward approach. Different types of change parameters are considered (mean, variance or both). The posterior model and the conditional distributions for single and multiple change points are derived and implemented using BUGS software. The model is applicable for any set of data. The sensitivity of the model is tested using different prior and likelihood functions. Using Mb data, we concluded that during January 2002 and December 2003, three changes occurred in the mean magnitude of Mb in Kuwait and its vicinity.Keywords: multiple change points, Markov Chain Monte Carlo, earthquake magnitude, hierarchical Bayesian mode
Procedia PDF Downloads 45623933 Study of Functional Relevant Conformational Mobility of β-2 Adrenoreceptor by Means of Molecular Dynamics Simulation
Authors: G. V. Novikov, V. S. Sivozhelezov, S. S. Kolesnikov, K. V. Shaitan
Abstract:
The study reports about the influence of binding of orthosteric ligands as well as point mutations on the conformational dynamics of β-2-adrenoreceptor. Using molecular dynamics simulation we found that there was a little fraction of active states of the receptor in its apo (ligand free) ensemble corresponded to its constitutive activity. Analysis of MD trajectories indicated that such spontaneous activation of the receptor is accompanied by the motion in intracellular part of its alpha-helices. Thus receptor’s constitutive activity directly results from its conformational dynamics. On the other hand the binding of a full agonist resulted in a significant shift of the initial equilibrium towards its active state. Finally, the binding of the inverse agonist stabilized the receptor in its inactive state. It is likely that the binding of inverse agonists might be a universal way of constitutive activity inhibition in vivo. Our results indicate that ligand binding redistribute pre-existing conformational degrees of freedom (in accordance to the Monod-Wyman-Changeux-Model) of the receptor rather than cause induced fit in it. Therefore, the ensemble of biologically relevant receptor conformations is encoded in its spatial structure, and individual conformations from that ensemble might be used by the cell in conformity with the physiological behaviour.Keywords: seven-transmembrane receptors, constitutive activity, activation, x-ray crystallography, principal component analysis, molecular dynamics simulation
Procedia PDF Downloads 25723932 Correlation between Seismic Risk Insurance Indexes and Uninhabitability Indexes of Buildings in Morocco
Authors: Nabil Mekaoui, Nacer Jabour, Abdelhamid Allaoui, Abderahim Oulidi
Abstract:
The reliability of several insurance indexes of the seismic risk is evaluated and compared for an efficient seismic risk coverage of buildings in Morocco, thus, reducing the basic risk. A large database of earthquake ground motions is established from recent seismic events in Morocco and synthetic ground motions compatible with the design spectrum in order to conduct nonlinear time history analyses on three building models representative of the building stock in Morocco. The uninhabitability index is evaluated based on the simulated damage index, then correlated with preselected insurance indexes. Interestingly, the commonly used peak ground acceleration index showed poor correlation when compared with other indexes, such as spectral accelerations at low periods. Recommendations on the choice of suitable insurance indexes are formulated for efficient seismic risk coverage in Morocco.Keywords: catastrophe modeling, damage, earthquake, reinsurance, seismic hazard, trigger index, vulnerability
Procedia PDF Downloads 6923931 Productivity and Structural Design of Manufacturing Systems
Authors: Ryspek Usubamatov, Tan San Chin, Sarken Kapaeva
Abstract:
Productivity of the manufacturing systems depends on technological processes, a technical data of machines and a structure of systems. Technology is presented by the machining mode and data, a technical data presents reliability parameters and auxiliary time for discrete production processes. The term structure of manufacturing systems includes the number of serial and parallel production machines and links between them. Structures of manufacturing systems depend on the complexity of technological processes. Mathematical models of productivity rate for manufacturing systems are important attributes that enable to define best structure by criterion of a productivity rate. These models are important tool in evaluation of the economical efficiency for production systems.Keywords: productivity, structure, manufacturing systems, structural design
Procedia PDF Downloads 58523930 The Effect of Tacit Knowledge for Intelligence Cycle
Authors: Bahadir Aydin
Abstract:
It is difficult to access accurate knowledge because of mass data. This huge data make environment more and more caotic. Data are main piller of intelligence. The affiliation between intelligence and knowledge is quite significant to understand underlying truths. The data gathered from different sources can be modified, interpreted and classified by using intelligence cycle process. This process is applied in order to progress to wisdom as well as intelligence. Within this process the effect of tacit knowledge is crucial. Knowledge which is classified as explicit and tacit knowledge is the key element for any purpose. Tacit knowledge can be seen as "the tip of the iceberg”. This tacit knowledge accounts for much more than we guess in all intelligence cycle. If the concept of intelligence cycle is scrutinized, it can be seen that it contains risks, threats as well as success. The main purpose of all organizations is to be successful by eliminating risks and threats. Therefore, there is a need to connect or fuse existing information and the processes which can be used to develop it. Thanks to this process the decision-makers can be presented with a clear holistic understanding, as early as possible in the decision making process. Altering from the current traditional reactive approach to a proactive intelligence cycle approach would reduce extensive duplication of work in the organization. Applying new result-oriented cycle and tacit knowledge intelligence can be procured and utilized more effectively and timely.Keywords: information, intelligence cycle, knowledge, tacit Knowledge
Procedia PDF Downloads 51423929 Analyses and Optimization of Physical and Mechanical Properties of Direct Recycled Aluminium Alloy (AA6061) Wastes by ANOVA Approach
Authors: Mohammed H. Rady, Mohd Sukri Mustapa, S Shamsudin, M. A. Lajis, A. Wagiman
Abstract:
The present study is aimed at investigating microhardness and density of aluminium alloy chips when subjected to various settings of preheating temperature and preheating time. Three values of preheating temperature were taken as 450 °C, 500 °C, and 550 °C. On the other hand, three values of preheating time were chosen (1, 2, 3) hours. The influences of the process parameters (preheating temperature and time) were analyzed using Design of Experiments (DOE) approach whereby full factorial design with center point analysis was adopted. The total runs were 11 and they comprise of two factors of full factorial design with 3 center points. The responses were microhardness and density. The results showed that the density and microhardness increased with decreasing the preheating temperature. The results also found that the preheating temperature is more important to be controlled rather than the preheating time in microhardness analysis while both the preheating temperature and preheating time are important in density analysis. It can be concluded that setting temperature at 450 °C for 1 hour resulted in the optimum responses.Keywords: AA6061, density, DOE, hot extrusion, microhardness
Procedia PDF Downloads 34923928 Evaluation of the CRISP-DM Business Understanding Step: An Approach for Assessing the Predictive Power of Regression versus Classification for the Quality Prediction of Hydraulic Test Results
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Digitalisation in production technology is a driver for the application of machine learning methods. Through the application of predictive quality, the great potential for saving necessary quality control can be exploited through the data-based prediction of product quality and states. However, the serial use of machine learning applications is often prevented by various problems. Fluctuations occur in real production data sets, which are reflected in trends and systematic shifts over time. To counteract these problems, data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets to extract stable features. Successful process control of the target variables aims to centre the measured values around a mean and minimise variance. Competitive leaders claim to have mastered their processes. As a result, much of the real data has a relatively low variance. For the training of prediction models, the highest possible generalisability is required, which is at least made more difficult by this data availability. The implementation of a machine learning application can be interpreted as a production process. The CRoss Industry Standard Process for Data Mining (CRISP-DM) is a process model with six phases that describes the life cycle of data science. As in any process, the costs to eliminate errors increase significantly with each advancing process phase. For the quality prediction of hydraulic test steps of directional control valves, the question arises in the initial phase whether a regression or a classification is more suitable. In the context of this work, the initial phase of the CRISP-DM, the business understanding, is critically compared for the use case at Bosch Rexroth with regard to regression and classification. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. Suitable methods for leakage volume flow regression and classification for inspection decision are applied. Impressively, classification is clearly superior to regression and achieves promising accuracies.Keywords: classification, CRISP-DM, machine learning, predictive quality, regression
Procedia PDF Downloads 14423927 Implementation Association Rule Method in Determining the Layout of Qita Supermarket as a Strategy in the Competitive Retail Industry in Indonesia
Authors: Dwipa Rizki Utama, Hanief Ibrahim
Abstract:
The development of industry retail in Indonesia is very fast, various strategy was undertaken to boost the customer satisfaction and the productivity purchases to boost the profit, one of which is implementing strategies layout. The purpose of this study is to determine the layout of Qita supermarket, a retail industry in Indonesia, in order to improve customer satisfaction and to maximize the rate of products’ sale as a whole, so as the infrequently purchased products will be purchased. This research uses a literature study method, and one of the data mining methods is association rule which applied in market basket analysis. Data were tested amounted 100 from 160 after pre-processing data, so then the distribution department and 26 departments corresponding to the data previous layout will be obtained. From those data, by the association rule method, customer behavior when purchasing items simultaneously can be studied, so then the layout of the supermarket based on customer behavior can be determined. Using the rapid miner software by the minimal support 25% and minimal confidence 30% showed that the 14th department purchased at the same time with department 10, 21st department purchased at the same time with department 13, 15th department purchased at the same time with department 12, 14th department purchased at the same time with department 12, and 10th department purchased at the same time with department 14. From those results, a better supermarket layout can be arranged than the previous layout.Keywords: industry retail, strategy, association rule, supermarket
Procedia PDF Downloads 18823926 Preparing Data for Calibration of Mechanistic-Empirical Pavement Design Guide in Central Saudi Arabia
Authors: Abdulraaof H. Alqaili, Hamad A. Alsoliman
Abstract:
Through progress in pavement design developments, a pavement design method was developed, which is titled the Mechanistic Empirical Pavement Design Guide (MEPDG). Nowadays, the evolution in roads network and highways is observed in Saudi Arabia as a result of increasing in traffic volume. Therefore, the MEPDG currently is implemented for flexible pavement design by the Saudi Ministry of Transportation. Implementation of MEPDG for local pavement design requires the calibration of distress models under the local conditions (traffic, climate, and materials). This paper aims to prepare data for calibration of MEPDG in Central Saudi Arabia. Thus, the first goal is data collection for the design of flexible pavement from the local conditions of the Riyadh region. Since, the modifying of collected data to input data is needed; the main goal of this paper is the analysis of collected data. The data analysis in this paper includes processing each: Trucks Classification, Traffic Growth Factor, Annual Average Daily Truck Traffic (AADTT), Monthly Adjustment Factors (MAFi), Vehicle Class Distribution (VCD), Truck Hourly Distribution Factors, Axle Load Distribution Factors (ALDF), Number of axle types (single, tandem, and tridem) per truck class, cloud cover percent, and road sections selected for the local calibration. Detailed descriptions of input parameters are explained in this paper, which leads to providing of an approach for successful implementation of MEPDG. Local calibration of MEPDG to the conditions of Riyadh region can be performed based on the findings in this paper.Keywords: mechanistic-empirical pavement design guide (MEPDG), traffic characteristics, materials properties, climate, Riyadh
Procedia PDF Downloads 22623925 Behavioral Finance: Anomalies at Real Markets, Weekday Effect
Authors: Vera Jancurova
Abstract:
The financial theory is dominated by the believe that weekday effect has disappeared from current markets. The purpose of this article is to study anomalies, especially weekday effect, at real markets that disrupt the efficiency of financial markets. The research is based on the analyses of historical daily exchange rates of significant world indices to determine the presence of weekday effects on financial markets. The methodology used for the study is based on the analyzes of daily averages of particular indexes for different time periods. Average daily gains were analyzed for their whole time interval and then for particular five and ten years periods with the aim to detect the presence on current financial markets. The results confirm the presence of weekday effect at the most significant indices - for example: Nasdaq, S & P 500, FTSE 100 and the Hang Seng. It was confirmed that in the last ten years, the weekend effect disappeared from financial markets. However in last year’s the indicators show that weekday effect is coming back. The study shows that weekday effect has to be taken into consideration on financial markets, especially in the past years.Keywords: indices, anomalies, behavioral finance, weekday effect
Procedia PDF Downloads 33923924 Characterization and Antimicrobial Properties of Functional Polypropylene Films Incorporated with AgSiO2, AgZn, and AgZ Useful as Returnable Packaging in Seafood Distribution
Authors: Suman Singh, Myungho Lee, Insik Park, Yangjai Shin, Youn Suk Lee
Abstract:
Active antimicrobial films prepared by incorporating AgSiO2, AgZn, and AgZ at 1%, 3%, 5%, 10% (w/w) into polypropylene (PP) matrix. Complete thermal, structural, mechanical and functional characterization were carried out of all formulations and determined the antimicrobial efficiency and returnable antimicrobial efficiency according to the Japanese Industrial Standard method. The morphology of the films showed agglomerates of particles in the composites. The active formulation had decreased elongation compared to the pure PP sample. Thermal analyses indicated that the active formulation compositions had increased thermal stability. The films showed 50% antimicrobial properties after the fifth wash against the tested microorganisms, presenting better activity against Gram negative organisms than Gram positive ones. These findings suggest that PP films with AgSiO2, AgZn, and AgZ particles could provide a significant contribution to the quality and safety of seafood in the distribution chain.Keywords: antimicrobial film, properties and characterization, returnable packaging, sea food
Procedia PDF Downloads 36423923 Transforming Data Science Curriculum Through Design Thinking
Authors: Samar Swaid
Abstract:
Today, corporates are moving toward the adoption of Design-Thinking techniques to develop products and services, putting their consumer as the heart of the development process. One of the leading companies in Design-Thinking, IDEO (Innovation, Design, Engineering Organization), defines Design-Thinking as an approach to problem-solving that relies on a set of multi-layered skills, processes, and mindsets that help people generate novel solutions to problems. Design thinking may result in new ideas, narratives, objects or systems. It is about redesigning systems, organizations, infrastructures, processes, and solutions in an innovative fashion based on the users' feedback. Tim Brown, president and CEO of IDEO, sees design thinking as a human-centered approach that draws from the designer's toolkit to integrate people's needs, innovative technologies, and business requirements. The application of design thinking has been witnessed to be the road to developing innovative applications, interactive systems, scientific software, healthcare application, and even to utilizing Design-Thinking to re-think business operations, as in the case of Airbnb. Recently, there has been a movement to apply design thinking to machine learning and artificial intelligence to ensure creating the "wow" effect on consumers. The Association of Computing Machinery task force on Data Science program states that" Data scientists should be able to implement and understand algorithms for data collection and analysis. They should understand the time and space considerations of algorithms. They should follow good design principles developing software, understanding the importance of those principles for testability and maintainability" However, this definition hides the user behind the machine who works on data preparation, algorithm selection and model interpretation. Thus, the Data Science program includes design thinking to ensure meeting the user demands, generating more usable machine learning tools, and developing ways of framing computational thinking. Here, describe the fundamentals of Design-Thinking and teaching modules for data science programs.Keywords: data science, design thinking, AI, currculum, transformation
Procedia PDF Downloads 8123922 Economized Sensor Data Processing with Vehicle Platooning
Authors: Henry Hexmoor, Kailash Yelasani
Abstract:
We present vehicular platooning as a special case of crowd-sensing framework where sharing sensory information among a crowd is used for their collective benefit. After offering an abstract policy that governs processes involving a vehicular platoon, we review several common scenarios and components surrounding vehicular platooning. We then present a simulated prototype that illustrates efficiency of road usage and vehicle travel time derived from platooning. We have argued that one of the paramount benefits of platooning that is overlooked elsewhere, is the substantial computational savings (i.e., economizing benefits) in acquisition and processing of sensory data among vehicles sharing the road. The most capable vehicle can share data gathered from its sensors with nearby vehicles grouped into a platoon.Keywords: cloud network, collaboration, internet of things, social network
Procedia PDF Downloads 19423921 Exchange Rate Forecasting by Econometric Models
Authors: Zahid Ahmad, Nosheen Imran, Nauman Ali, Farah Amir
Abstract:
The objective of the study is to forecast the US Dollar and Pak Rupee exchange rate by using time series models. For this purpose, daily exchange rates of US and Pakistan for the period of January 01, 2007 - June 2, 2017, are employed. The data set is divided into in sample and out of sample data set where in-sample data are used to estimate as well as forecast the models, whereas out-of-sample data set is exercised to forecast the exchange rate. The ADF test and PP test are used to make the time series stationary. To forecast the exchange rate ARIMA model and GARCH model are applied. Among the different Autoregressive Integrated Moving Average (ARIMA) models best model is selected on the basis of selection criteria. Due to the volatility clustering and ARCH effect the GARCH (1, 1) is also applied. Results of analysis showed that ARIMA (0, 1, 1 ) and GARCH (1, 1) are the most suitable models to forecast the future exchange rate. Further the GARCH (1,1) model provided the volatility with non-constant conditional variance in the exchange rate with good forecasting performance. This study is very useful for researchers, policymakers, and businesses for making decisions through accurate and timely forecasting of the exchange rate and helps them in devising their policies.Keywords: exchange rate, ARIMA, GARCH, PAK/USD
Procedia PDF Downloads 56123920 Short Term Distribution Load Forecasting Using Wavelet Transform and Artificial Neural Networks
Authors: S. Neelima, P. S. Subramanyam
Abstract:
The major tool for distribution planning is load forecasting, which is the anticipation of the load in advance. Artificial neural networks have found wide applications in load forecasting to obtain an efficient strategy for planning and management. In this paper, the application of neural networks to study the design of short term load forecasting (STLF) Systems was explored. Our work presents a pragmatic methodology for short term load forecasting (STLF) using proposed two-stage model of wavelet transform (WT) and artificial neural network (ANN). It is a two-stage prediction system which involves wavelet decomposition of input data at the first stage and the decomposed data with another input is trained using a separate neural network to forecast the load. The forecasted load is obtained by reconstruction of the decomposed data. The hybrid model has been trained and validated using load data from Telangana State Electricity Board.Keywords: electrical distribution systems, wavelet transform (WT), short term load forecasting (STLF), artificial neural network (ANN)
Procedia PDF Downloads 43623919 Education and Development: An Overview of Islam
Authors: Rasheed Sanusi Adeleke
Abstract:
Several attempts have been made by scholars, both medieval and contemporary on the impact of Islam on scientific discovery. Lesser attention, however, is always accorded to the historical antecedents of the earlier Muslim scholars, who made frantic efforts towards the discoveries. Islam as a divine religion places high premium on the acquisition of knowledge especially that of sciences. It considers knowledge as a comprehensive whole, which covers both spiritual and material aspects of human life. Islam torches every aspect of human life for the growth, development and advancement of society. Acquisition of knowledge of humanity, social sciences as well as the pure and applied sciences is comprehensively expressed in Islamic education. Not only this, the history portrays the leading indelible roles played by the early Muslims on these various fields of knowledge. That is why Islam has declared acquisition of knowledge compulsory for all Muslims. This paper therefore analyses the contributions of Islam to civilization with particular reference to sciences. It also affirms that Islam is beyond the religion of prayers and rituals. The work is historic, analytic and explorative in nature. Recommendations are also also put forward as suggestions for the present generation cum posterity in general and Muslims in particular.Keywords: education, development, Islam, development and Islam
Procedia PDF Downloads 43423918 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul
Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini
Abstract:
The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.Keywords: decision tree, breast cancer, probability, data mining
Procedia PDF Downloads 13823917 Image Steganography Using Least Significant Bit Technique
Authors: Preeti Kumari, Ridhi Kapoor
Abstract:
In any communication, security is the most important issue in today’s world. In this paper, steganography is the process of hiding the important data into other data, such as text, audio, video, and image. The interest in this topic is to provide availability, confidentiality, integrity, and authenticity of data. The steganographic technique that embeds hides content with unremarkable cover media so as not to provoke eavesdropper’s suspicion or third party and hackers. In which many applications of compression, encryption, decryption, and embedding methods are used for digital image steganography. Due to compression, the nose produces in the image. To sustain noise in the image, the LSB insertion technique is used. The performance of the proposed embedding system with respect to providing security to secret message and robustness is discussed. We also demonstrate the maximum steganography capacity and visual distortion.Keywords: steganography, LSB, encoding, information hiding, color image
Procedia PDF Downloads 47423916 Towards a Distributed Computation Platform Tailored for Educational Process Discovery and Analysis
Authors: Awatef Hicheur Cairns, Billel Gueni, Hind Hafdi, Christian Joubert, Nasser Khelifa
Abstract:
Given the ever changing needs of the job markets, education and training centers are increasingly held accountable for student success. Therefore, education and training centers have to focus on ways to streamline their offers and educational processes in order to achieve the highest level of quality in curriculum contents and managerial decisions. Educational process mining is an emerging field in the educational data mining (EDM) discipline, concerned with developing methods to discover, analyze and provide a visual representation of complete educational processes. In this paper, we present our distributed computation platform which allows different education centers and institutions to load their data and access to advanced data mining and process mining services. To achieve this, we present also a comparative study of the different clustering techniques developed in the context of process mining to partition efficiently educational traces. Our goal is to find the best strategy for distributing heavy analysis computations on many processing nodes of our platform.Keywords: educational process mining, distributed process mining, clustering, distributed platform, educational data mining, ProM
Procedia PDF Downloads 45423915 Incidence of Listeria monocytogenes in Ready-To-Eat Food Sold in Johannesburg, South Africa
Authors: Hattie Hope Makumbe, Bhekisisa Dlamini, Frederick Tabit
Abstract:
Listeria monocytogenes is one of the most important foodborne pathogens associated with ready-to-eat (RTE) food. This study investigated the incidence of Listeria monocytogenes in 80 RTE food sold in the formal (dairy and processed meat) and informal markets (vegetable salads, beef stew, and rice) of Johannesburg, South Africa. High Enterobacteriaceae, S. aureus, and E. coli counts were obtained, which ranged from 1.9-7.5 log CFU/g. Listeria monocytogenes microbial counts in the food samples ranged from 3.5-6.0 log colony forming unit per gram except in cooked rice. The Listeria monocytogenes isolates were identified using biochemical tests and confirmed with the Biolog identification system and PCR analyses. The percentage incidence for Listeria monocytogenes in ready to eat food was 12.5%. When Minimum Inhibitory Concentrations were under consideration, all disinfectants were effective against Listeria monocytogenes strains. For antimicrobial work, rates of resistance amongst the antibiotics ranged from 17-100%. Therefore, more effective preventive control strategies for Listeria monocytogenes are needed to reduce the prevalence of the pathogen in RTE food that is sold in Johannesburg.Keywords: Listeria monocytogenes, Listeria species, ready to eat food, sanitiser efficacy
Procedia PDF Downloads 16623914 Particle and Photon Trajectories near the Black Hole Immersed in the Nonstatic Cosmological Background
Authors: Elena M. Kopteva, Pavlina Jaluvkova, Zdenek Stuchlik
Abstract:
The question of constructing a consistent model of the cosmological black hole remains to be unsolved and still attracts the interest of cosmologists as far as it is important in a wide set of research problems including the problem of the black hole horizon dynamics, the problem of interplay between cosmological expansion and local gravity, the problem of structure formation in the early universe etc. In this work, the model of the cosmological black hole is built on the basis of the exact solution of the Einstein equations for the spherically symmetric inhomogeneous dust distribution in the approach of the mass function use. Possible trajectories for massive particles and photons near the black hole immersed in the nonstatic dust cosmological background are investigated in frame of the obtained model. The reference system of distant galaxy comoving to cosmological expansion combined with curvature coordinates is used, so that the resulting metric becomes nondiagonal and involves both proper ‘cosmological’ time and curvature spatial coordinates. For this metric the geodesic equations are analyzed for the test particles and photons, and the respective trajectories are built.Keywords: exact solutions for Einstein equations, Lemaitre-Tolman-Bondi solution, cosmological black holes, particle and photon trajectories
Procedia PDF Downloads 33923913 Discriminant Shooting-Related Statistics between Winners and Losers 2023 FIBA U19 Basketball World Cup
Authors: Navid Ebrahmi Madiseh, Sina Esfandiarpour-Broujeni, Rahil Razeghi
Abstract:
Introduction: Quantitative analysis of game-related statistical parameters is widely used to evaluate basketball performance at both individual and team levels. Non-free throw shooting plays a crucial role as the primary scoring method, holding significant importance in the game's technical aspect. It has been explored the predictive value of game-related statistics in relation to various contextual and situational variables. Many similarities and differences also have been found between different age groups and levels of competition. For instance, in the World Basketball Championships after the 2010 rule change, 2-point field goals distinguished winners from losers in women's games but not in men's games, and the impact of successful 3-point field goals on women's games was minimal. The study aimed to identify and compare discriminant shooting-related statistics between winning and losing teams in men’s and women’s FIBA-U19-Basketball-World-Cup-2023 tournaments. Method: Data from 112 observations (2 per game) of 16 teams (for each gender) in the FIBA-U19-Basketball-World-Cup-2023 were selected as samples. The data were obtained from the official FIBA website using Python. Specific information was extracted, organized into a DataFrame, and consisted of twelve variables, including shooting percentages, attempts, and scoring ratio for 3-pointers, mid-range shots, paint shots, and free throws. Made% = scoring type successful attempts/scoring type total attempts¬ (1)Free-throw-pts% (free throw score ratio) = (free throw score/total score) ×100 (2)Mid-pts% (mid-range score ratio) = (mid-range score/total score) ×100 (3) Paint-pts% (paint score ratio) = (Paint score/total score) ×100 (4) 3p_pts% (three-point score ratio) = (three-point score/total score) ×100 (5) Independent t-tests were used to examine significant differences in shooting-related statistical parameters between winning and losing teams for both genders. Statistical significance was p < 0.05. All statistical analyses were completed with SPSS, Version 18. Results: The results showed that 3p-made%, mid-pts%, paint-made%, paint-pts%, mid-attempts, and paint-attempts were significantly different between winners and losers in men (t=-3.465, P<0.05; t=3.681, P<0.05; t=-5.884, P<0.05; t=-3.007, P<0.05; t=2.549, p<0.05; t=-3.921, P<0.05). For women, significant differences between winners and losers were found for 3p-made%, 3p-pts%, paint-made%, and paint-attempt (t=-6.429, P<0.05; t=-1.993, P<0.05; t=-1.993, P<0.05; t=-4.115, P<0.05; t=02.451, P<0.05). Discussion: The research aimed to compare shooting-related statistics between winners and losers in men's and women's teams at the FIBA-U19-Basketball-World-Cup-2023. Results indicated that men's winners excelled in 3p-made%, paint-made%, paint-pts%, paint-attempts, and mid-attempt, consistent with previous studies. This study found that losers in men’s teams had higher mid-pts% than winners, which was inconsistent with previous findings. It has been indicated that winners tend to prioritize statistically efficient shots while forcing the opponent to take mid-range shots. In women's games, significant differences in 3p-made%, 3p-pts%, paint-made%, and paint-attempts were observed, indicating that winners relied on riskier outside scoring strategies. Overall, winners exhibited higher accuracy in paint and 3P shooting than losers, but they also relied more on outside offensive strategies. Additionally, winners acquired a higher ratio of their points from 3P shots, which demonstrates their confidence in their skills and willingness to take risks at this competitive level.Keywords: gender, losers, shoot-statistic, U19, winners
Procedia PDF Downloads 9823912 A Nanofi Brous PHBV Tube with Schwann Cell as Artificial Nerve Graft Contributing to Rat Sciatic Nerve Regeneration across a 30-Mm Defect Bridge
Authors: Esmaeil Biazar
Abstract:
A nanofibrous PHBV nerve conduit has been used to evaluate its efficiency based on the promotion of nerve regeneration in rats. The designed conduits were investigated by physical, mechanical and microscopic analyses. The conduits were implanted into a 30-mm gap in the sciatic nerves of the rats. Four months after surgery, the regenerated nerves were evaluated by macroscopic assessments and histology. This polymeric conduit had sufficiently high mechanical properties to serve as a nerve guide. The results demonstrated that in the nanofibrous graft with cells, the sciatic nerve trunk had been reconstructed with restoration of nerve continuity and formatted nerve fibers with myelination. For the grafts especially the nanofibrous conduits with cells, muscle cells of gastrocnemius on the operated side were uniform in their size and structures. This study proves the feasibility of artificial conduit with Schwann cells for nerve regeneration by bridging a longer defect in a rat model.Keywords: sciatic regeneration, Schwann cell, artificial conduit, nanofibrous PHBV, histological assessments
Procedia PDF Downloads 32323911 Assimilating Remote Sensing Data Into Crop Models: A Global Systematic Review
Authors: Luleka Dlamini, Olivier Crespo, Jos van Dam
Abstract:
Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit.Keywords: crop models, remote sensing, data assimilation, crop yield estimation
Procedia PDF Downloads 13123910 Assimilating Remote Sensing Data into Crop Models: A Global Systematic Review
Authors: Luleka Dlamini, Olivier Crespo, Jos van Dam
Abstract:
Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit.Keywords: crop models, remote sensing, data assimilation, crop yield estimation
Procedia PDF Downloads 8223909 The Use of the TRIGRS Model and Geophysics Methodologies to Identify Landslides Susceptible Areas: Case Study of Campos do Jordao-SP, Brazil
Authors: Tehrrie Konig, Cassiano Bortolozo, Daniel Metodiev, Rodolfo Mendes, Marcio Andrade, Marcio Moraes
Abstract:
Gravitational mass movements are recurrent events in Brazil, usually triggered by intense rainfall. When these events occur in urban areas, they end up becoming disasters due to the economic damage, social impact, and loss of human life. To identify the landslide-susceptible areas, it is important to know the geotechnical parameters of the soil, such as cohesion, internal friction angle, unit weight, hydraulic conductivity, and hydraulic diffusivity. The measurement of these parameters is made by collecting soil samples to analyze in the laboratory and by using geophysical methodologies, such as Vertical Electrical Survey (VES). The geophysical surveys analyze the soil properties with minimal impact in its initial structure. Statistical analysis and mathematical models of physical basis are used to model and calculate the Factor of Safety for steep slope areas. In general, such mathematical models work from the combination of slope stability models and hydrological models. One example is the mathematical model TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope- Stability Model) which calculates the variation of the Factor of Safety of a determined study area. The model relies on changes in pore-pressure and soil moisture during a rainfall event. TRIGRS was written in the Fortran programming language and associates the hydrological model, which is based on the Richards Equation, with the stability model based on the principle of equilibrium limit. Therefore, the aims of this work are modeling the slope stability of Campos do Jordão with TRIGRS, using geotechnical and geophysical methodologies to acquire the soil properties. The study area is located at southern-east of Sao Paulo State in the Mantiqueira Mountains and has a historic landslide register. During the fieldwork, soil samples were collected, and the VES method applied. These procedures provide the soil properties, which were used as input data in the TRIGRS model. The hydrological data (infiltration rate and initial water table height) and rainfall duration and intensity, were acquired from the eight rain gauges installed by Cemaden in the study area. A very high spatial resolution digital terrain model was used to identify the slopes declivity. The analyzed period is from March 6th to March 8th of 2017. As results, the TRIGRS model calculates the variation of the Factor of Safety within a 72-hour period in which two heavy rainfall events stroke the area and six landslides were registered. After each rainfall, the Factor of Safety declined, as expected. The landslides happened in areas identified by the model with low values of Factor of Safety, proving its efficiency on the identification of landslides susceptible areas. This study presents a critical threshold for landslides, in which an accumulated rainfall higher than 80mm/m² in 72 hours might trigger landslides in urban and natural slopes. The geotechnical and geophysics methods are shown to be very useful to identify the soil properties and provide the geological characteristics of the area. Therefore, the combine geotechnical and geophysical methods for soil characterization and the modeling of landslides susceptible areas with TRIGRS are useful for urban planning. Furthermore, early warning systems can be developed by combining the TRIGRS model and weather forecast, to prevent disasters in urban slopes.Keywords: landslides, susceptibility, TRIGRS, vertical electrical survey
Procedia PDF Downloads 17323908 Enhancing Robustness in Federated Learning through Decentralized Oracle Consensus and Adaptive Evaluation
Authors: Peiming Li
Abstract:
This paper presents an innovative blockchain-based approach to enhance the reliability and efficiency of federated learning systems. By integrating a decentralized oracle consensus mechanism into the federated learning framework, we address key challenges of data and model integrity. Our approach utilizes a network of redundant oracles, functioning as independent validators within an epoch-based training system in the federated learning model. In federated learning, data is decentralized, residing on various participants' devices. This scenario often leads to concerns about data integrity and model quality. Our solution employs blockchain technology to establish a transparent and tamper-proof environment, ensuring secure data sharing and aggregation. The decentralized oracles, a concept borrowed from blockchain systems, act as unbiased validators. They assess the contributions of each participant using a Hidden Markov Model (HMM), which is crucial for evaluating the consistency of participant inputs and safeguarding against model poisoning and malicious activities. Our methodology's distinct feature is its epoch-based training. An epoch here refers to a specific training phase where data is updated and assessed for quality and relevance. The redundant oracles work in concert to validate data updates during these epochs, enhancing the system's resilience to security threats and data corruption. The effectiveness of this system was tested using the Mnist dataset, a standard in machine learning for benchmarking. Results demonstrate that our blockchain-oriented federated learning approach significantly boosts system resilience, addressing the common challenges of federated environments. This paper aims to make these advanced concepts accessible, even to those with a limited background in blockchain or federated learning. We provide a foundational understanding of how blockchain technology can revolutionize data integrity in decentralized systems and explain the role of oracles in maintaining model accuracy and reliability.Keywords: federated learning system, block chain, decentralized oracles, hidden markov model
Procedia PDF Downloads 6323907 Multiple Query Optimization in Wireless Sensor Networks Using Data Correlation
Authors: Elaheh Vaezpour
Abstract:
Data sensing in wireless sensor networks is done by query deceleration the network by the users. In many applications of the wireless sensor networks, many users send queries to the network simultaneously. If the queries are processed separately, the network’s energy consumption will increase significantly. Therefore, it is very important to aggregate the queries before sending them to the network. In this paper, we propose a multiple query optimization framework based on sensors physical and temporal correlation. In the proposed method, queries are merged and sent to network by considering correlation among the sensors in order to reduce the communication cost between the sensors and the base station.Keywords: wireless sensor networks, multiple query optimization, data correlation, reducing energy consumption
Procedia PDF Downloads 334