Search results for: second carbon and nitrogen source
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7878

Search results for: second carbon and nitrogen source

3258 Actinomycetes from Protected Forest Ecosystems of Assam, India: Diversity and Antagonistic Activity

Authors: Priyanka Sharma, Ranjita Das, Mohan C. Kalita, Debajit Thakur

Abstract:

Background: Actinomycetes are the richest source of novel bioactive secondary metabolites such as antibiotics, enzymes and other therapeutically useful metabolites with diverse biological activities. The present study aims at the antimicrobial potential and genetic diversity of culturable Actinomycetes isolated from protected forest ecosystems of Assam which includes Kaziranga National Park (26°30˝-26°45˝N and 93°08˝-93°36˝E), Pobitora Wildlife Sanctuary (26º12˝-26º16˝N and 91º58˝-92º05˝E) and Gibbon Wildlife Sanctuary (26˚40˝-26˚45˝N and 94˚20˝-94˚25˝E) which are located in the North-eastern part of India. Northeast India is a part of the Indo-Burma mega biodiversity hotspot and most of the protected forests of this region are still unexplored for the isolation of effective antibiotic-producing Actinomycetes. Thus, there is tremendous possibility that these virgin forests could be a potential storehouse of novel microorganisms, particularly Actinomycetes, exhibiting diverse biological properties. Methodology: Soil samples were collected from different ecological niches of the protected forest ecosystems of Assam and Actinomycetes were isolated by serial dilution spread plate technique using five selective isolation media. Preliminary screening of Actinomycetes for an antimicrobial activity was done by spot inoculation method and the secondary screening by disc diffusion method against several test pathogens, including multidrug resistant Staphylococcus aureus (MRSA). The strains were further screened for the presence of antibiotic synthetic genes such as type I polyketide synthases (PKS-I), type II polyketide synthases (PKS-II) and non-ribosomal peptide synthetases (NRPS) genes. Genetic diversity of the Actinomycetes producing antimicrobial metabolites was analyzed through 16S rDNA-RFLP using Hinf1 restriction endonuclease. Results: Based on the phenotypic characterization, a total of 172 morphologically distinct Actinomycetes were isolated and screened for antimicrobial activity by spot inoculation method on agar medium. Among the strains tested, 102 (59.3%) strains showed activity against Gram-positive bacteria, 98 (56.97%) against Gram-negative bacteria, 92 (53.48%) against Candida albicans MTCC 227 and 130 (75.58%) strains showed activity against at least one of the test pathogens. Twelve Actinomycetes exhibited broad spectrum antimicrobial activity in the secondary screening. The taxonomic identification of these twelve strains by 16S rDNA sequencing revealed that Streptomyces was found to be the predominant genus. The PKS-I, PKS-II and NRPS genes detection indicated diverse bioactive products of these twelve Actinomycetes. Genetic diversity by 16S rDNA-RFLP indicated that Streptomyces was the dominant genus amongst the antimicrobial metabolite producing Actinomycetes. Conclusion: These findings imply that Actinomycetes from the protected forest ecosystems of Assam, India, are a potential source of bioactive secondary metabolites. These areas are as yet poorly studied and represent diverse and largely unscreened ecosystem for the isolation of potent Actinomycetes producing antimicrobial secondary metabolites. Detailed characterization of the bioactive Actinomycetes as well as purification and structure elucidation of the bioactive compounds from the potent Actinomycetes is the subject of ongoing investigation. Thus, to exploit Actinomycetes from such unexplored forest ecosystems is a way to develop bioactive products.

Keywords: Actinomycetes, antimicrobial activity, forest ecosystems, RFLP

Procedia PDF Downloads 380
3257 Utilization of Municipal Solid Waste in Thermal Power Production: A Techno-Economic Study of Kasur City, Punjab, Pakistan

Authors: Hafiz Muhammad Umer Aslam, Mohammad Rafiq Khan

Abstract:

This techno-economic study reports the feasibility of generating thermoelectric power from municipal solid waste (MSW) of Kasur City by incineration process. The data was gathered from different establishments of Kasur, through appropriate permission from their heads, and processed to design different alternative projects for installation of a thermal power plant in the city of Kasur. A technique of discounted cash flow was used to evaluate alternative projects so that their Benefit to Cost Ratio, Net Present Value, Internal Rate of Return and Payback Period can be determined. The study revealed that Kasur City currently consumes 18MWh electricity and generates 179 tons/day MSW. The generated waste has the ability to produce 2.1MWh electricity at the cost of USD 0.0581/unit with an expenditure of USD 3,907,692 as initial fixed investment of forming about 1/7th of consumption of Kasur. The cost from this source, when compared to current rate of electricity in Pakistan (USD 0.1346), is roughly half.

Keywords: Kasur City, resource recovery, thermoelectric power, waste management

Procedia PDF Downloads 152
3256 CO2 Mitigation by Promoting Solar Heating in Housing Sector

Authors: F. Sahnoune, M. Madani, M. Zelmat, M. Belhamel

Abstract:

Home heating and generation of domestic hot water are nowadays important items of expenditure and energy consumption. These are also a major source of pollution and emission of greenhouse gases (GHG). Algeria, like other countries of the southern shore of the Mediterranean has an enormous solar potential (more than 3000 hours of sunshine/year). This potential can be exploited in reducing GHG emissions and contribute to climate change adaptation. This work presents the environmental impact of introduction of solar heating in an individual house in Algerian climate conditions. For this purpose, we determined energy needs for heating and domestic hot water taking into account the thermic heat losses of the no isolated house. Based on these needs, sizing of the solar system was carried out. To compare the performances of solar and classic systems, we conducted also an economic evaluation what is very important for countries like Algeria where conventional energy is subsidized. The study clearly show that environmental and economic benefits are in favor of solar heating development in particular in countries where the thermal insulation of the building and energy efficiency are poorly developed.

Keywords: CO2 mitigation, solar energy, solar heating, environmental impact

Procedia PDF Downloads 382
3255 The Design of Decorative Flower Patterns from Suan Sunandha Palace

Authors: Nawaporn Srisarankullawong

Abstract:

The study on the design of decorative flower patterns from Suan Sunandha Palace is the innovative design using flowers grown in Suan Sunandha Palace as the original sources. The research instrument included: 1) the photographs of flowers in watercolors painted by one of the lady in waiting of Her Royal Highness Princess Saisawareepirom as the source for investigating flowers used to grow in Suan Sunandha Palace, 2) pictures of real flowers used to grow in Suan Sunandha Palace, 3) Adobe Illustrator Program and Adobe Photoshop Program in designing the motif and decorative patterns including the prototype. The researcher chose 3 types of Suan Sunandha Palace flowers; moss rose, orchid, and lignum vitae. The details of the flowers were cut down to make simple motifs which were developed for elaborative decoration. There were 4 motifs adapted from moss roses, 3 motifs adapted from orchids, and 3 motifs adapted from lignum vitae. The patterns were used to decorate photo frames, wrapping paper, and gift boxes or souvenir boxes.

Keywords: Suan Sunandha Palace, design of decorative, flower patterns, decorative flower

Procedia PDF Downloads 271
3254 Antimicrobial Activity of Olive Mill Wastewater Fractions

Authors: Chahinez Ait Si Said, Ouassila Touafek, Mohamed Reda Zahi, Smain Sabour, ‎Mohamed El Hattab ‎

Abstract:

Oil mill wastewater (OMW) is a major effluent of the olive industry resulting from olive ‎oil extraction which is a great source for the development of new drugs. The present ‎study aimed to evaluate the antimicrobial activity of seven different fractions separated ‎from OMW extract. The sample was recovered from an oil mill in the Blida region ‎‎(Algeria). A crude ethyl acetate extract was prepared from OMW according to a well-‎established protocol; the yield of the extract obtained was 4%. From the extract, ‎different fractions were prepared by fractionating the total extract with an open column ‎chromatography. The obtained fractions were submitted to antimicrobial activity ‎screening in a comparative purpose. All the fractions obtained show great antimicrobial ‎potential. ‎Phytochemical study of the different fractions was assessed by evaluating the total ‎phenolic compounds for all fractions studied as the main compounds found in OMW ‎were phenols like hydroxytyrosol, tyrosol, phenolic acids like caffeic, quinic and ferulic ‎acids which show great therapeutic activities. ‎

Keywords: olive mill wastewater, fractionation, total phenolic compound, antimicrobial activity

Procedia PDF Downloads 84
3253 Quality of Romanian Food Products on Rapid Alert System for Food and Feed Notifications

Authors: Silvius Stanciu

Abstract:

Romanian food products sold on European markets have been accused of several non-conformities of quality and safety. Most products incriminated last period were those of animal origin, especially meat and meat products. The study proposed an analysis of the notifications made by network members through Rapid Alert System for Food and Feed on products originating in Romania. As a source of information, the Rapid Alert System portal and the official communications of the National Sanitary Veterinary and Food Safety Authority were used. The research results showed that nearly a quarter of network notifications were rejected and were withdrawn by the European Authority. Although national authorities present these issues as success stories of national quality policies, the large number of notifications related to the volume of exported products is worrying. The paper is of practical and applicative importance for both the business environment and the academic environment, laying the basis for a wider research on the quality differences between Romanian and imported products.

Keywords: food, quality, RASFF, Rapid Alert System for Food and Feed, Romania

Procedia PDF Downloads 150
3252 OBD-Biofertilizer Impact on Crop Yield and Soil Quality in Lowland Rice Production, Badeggi, Niger State, Nigeria

Authors: Ayodele A. Otaiku

Abstract:

Purpose: Nigeria has become the largest importer of rice in Africa and second in the world, 2015. Investigate interactions of organic rice farming on soil quality and health from bio-waste converted to biofertilizer and its environmental impact on rice crop. Methodology: Bio-wastes, poultry waste, organic agriculture wastes, wood ash mixed with microbial inoculant organisms called OBD-Plus microbes (broad spectrum) composted in anaerobic digester to OBD-biofertilizer (2010 - 2012) uses microbes to build humus and other stable carbons. Two field experiments were carried out at Badeggi, Niger state in 2011 and 2012 to evaluate the response of lowland rice production using biofertilizer. The experimental field was laid out in a strip-plot design with five treatments and three replications and at twenty-one day old seedlings of FARO 44 and FARO 52 rice varieties were transplanted. Plots without fertiliser application served as control. Findings: The highest rice grain yield increase of 4.4 t/ha over the control in 2012 against the Nigeria average of lowland rice grain yields of 1.5 t/ha. The utilization of OBD-Biofertilizer can decrease the use of chemical nitrogen fertilizer, prevent the depletion of soil organic matter and reduce environmental pollution. Increasing the floodwater productivity and optimizing the recycling of nutrients cum grazer populations and disease by biocontrols microbes present in the OBD-Biofertilizer. Organic matter in the soil improves by 58% and C/N 15 (2011) and 13.35 (2012). Implications: OBD- Biofertilizer produce plant growth hormones such as indole acetic acid (IAA), glomalin related soil protein and extracellular enzymes as phosphatases that promote soil health and quality. Conclusion: Microorganisms can enhance nutrients use efficiency by increasing root surface area e.g., mycorrhizal, fungi, promoting other beneficial symbioses of the host plant and microbial interactions resulting to increase in soil organic matter. By 2030, climate change is projected to depress cereal production in Africa by 2 to 3 percent. Improved seeds and increased fertilizer use should more than compensate, but this factor will still weigh heavily on efforts to make progress.

Keywords: OBD-plus microbial consortia, OBD-biofertilizer, rice production, soil quality, sustainable agriculture

Procedia PDF Downloads 256
3251 Heritage 3D Digitalization Combining High Definition Photogrammetry with Metrologic Grade Laser Scans

Authors: Sebastian Oportus, Fabrizio Alvarez

Abstract:

3D digitalization of heritage objects is widely used nowadays. However, the most advanced 3D scanners in the market that capture topology and texture at the same time, and are specifically made for this purpose, don’t deliver the accuracy that is needed for scientific research. In the last three years, we have developed a method that combines the use of Metrologic grade laser scans, that allows us to work with a high accuracy topology up to 15 times more precise and combine this mesh with a texture obtained from high definition photogrammetry with up to 100 times more pixel concentrations. The result is an accurate digitalization that promotes heritage preservation, scientific study, high detail reproduction, and digital restoration, among others. In Chile, we have already performed 478 digitalizations of high-value heritage pieces and compared the results with up to five different digitalization methods; the results obtained show a considerable better dimensional accuracy and texture resolution. We know the importance of high precision and resolution for academics and museology; that’s why our proposal is to set a worldwide standard using this open source methodology.

Keywords: 3D digitalization, digital heritage, heritage preservation, digital restauration, heritage reproduction

Procedia PDF Downloads 169
3250 Combination Urea and KCl with Powder Coal Sub-Bituminous to Increase Nutrient Content of Ultisols in Limau Manis Padang West Sumatra

Authors: Amsar Maulana, Rafdea Syafitri, Topanal Gustiranda, Natasya Permatasari, Herviyanti

Abstract:

Coal as an alternative source of humic material that has the potential of 973.92 million tons (sub-bituminous amounted to 673.70 million tons) in West Sumatera. The purpose of this research was to study combination Urea and KCl with powder coal Sub-bituminous to increase nutrient content of Ultisols In Limau Manis Padang West Sumatera. The experiment was designed in Completely Randomized Design with 3 replications, those were T1) 0.5% (50g plot-1) of powder coal Sub-bituminous; T2) T1 and 125% (7.03g plot-1 ) of Urea recommendation; T3) T1 and 125% (5.85g plot-1) of KCl recommendation; T4) 1.0% (100g plot-1) of powder coal Sub-bituminous; T5) T4 and 125% (7.03g plot-1 ) of Urea recommendation; T6) T4 and 125% (5.85g plot-1) of KCl recommendation; T7) 1.5% (150g plot-1) of powder coal Sub-bituminous; T8) T7 and 125% (7.03g plot-1 ) of Urea recommendation; T9) T7 and 125% (5.85g plot-1) of KCl recommendation. The results showed that application 1.5% of powder coal Sub-bituminous and 125% of Urea recommendation could increase nutrient content of Ultisols such as pH by 0.33 unit, Organic – C by 2.03%, total – N by 0.31%, Available P by 14.16 ppm and CEC by 19.38 me 100g-1 after 2 weeks of incubation process.

Keywords: KCl, sub-bituminous, ultisols, urea

Procedia PDF Downloads 250
3249 Sustainability and Energy-Efficiency in Buildings: A review

Authors: Medya Fathi

Abstract:

Moving toward sustainable development is among today’s critical issues worldwide that make all industries, particularly construction, pay increasing attention to a healthy environment and a society with a prosperous economy. One of the solutions is to improve buildings’ energy performance by cutting energy consumption and related carbon emissions, eventually improving the quality of life. Unfortunately, the energy demand for buildings is rising. For instance, in Europe, the building sector accounts for 19% of the global energy-related greenhouse gas (GHGs) emissions, the main contributor to global warming in the last 50 years, and 36% of the total CO2 emissions, according to European Commission 2019. The crisis of energy use demands expanding knowledge and understanding of the potential benefits of energy-efficient buildings. In this regard, the present paper aims to critically review the existing body of knowledge on improving energy efficiency in buildings and detail the significant research contributions. Peer-reviewed journal articles published in the last decade in reputed journals were reviewed using the database Scopus and keywords of Sustainability, Sustainable Development, Energy Performance, Energy Consumption, Energy Efficiency, and Buildings. All contributions will be classified by journal type, publication time, country/region, building occupancy type, applied strategies, and findings. This study will provide an essential basis for researchers working on missing areas and filling the existing gaps in the body of knowledge.

Keywords: sustainability, energy performance, energy efficiency, buildings, review

Procedia PDF Downloads 55
3248 Sky Farming: The Alternative Concept of Green Building Using Vertical Landscape Model in Urban Area as an Effort to Achieve Sustainable Development

Authors: Nadiah Yola Putri, Nesia Putri Sharfina, Traviata Prakarti

Abstract:

This paper is a literature review presented descriptively to review the concept of green building to face the challenge of sustainable development and food in urban areas. In this paper, researchers initiated the concept of green building with sky farming method. Sky farming use vertical landscape system in order to realizing food self-sufficient green city. Sky farming relying on plantings and irrigation system efficiency in the building which is adopted the principles of green building. Planting system is done by applying hydroponic plants with Nutrient Film Technique (NFT) using energy source of solar cell and grey water from the processing of waste treatment plant. The application of sky farming in urban areas can be a recommendation for the design of environmental-friendly construction. In order to keep the land and distance efficiency, this system is a futuristic idea that would be the connector of human civilization in the future.

Keywords: green building, urban area, sky farming, vertical landscape

Procedia PDF Downloads 346
3247 Finite Element Modelling and Optimization of Post-Machining Distortion for Large Aerospace Monolithic Components

Authors: Bin Shi, Mouhab Meshreki, Grégoire Bazin, Helmi Attia

Abstract:

Large monolithic components are widely used in the aerospace industry in order to reduce airplane weight. Milling is an important operation in manufacturing of the monolithic parts. More than 90% of the material could be removed in the milling operation to obtain the final shape. This results in low rigidity and post-machining distortion. The post-machining distortion is the deviation of the final shape from the original design after releasing the clamps. It is a major challenge in machining of the monolithic parts, which costs billions of economic losses every year. Three sources are directly related to the part distortion, including initial residual stresses (RS) generated from previous manufacturing processes, machining-induced RS and thermal load generated during machining. A finite element model was developed to simulate a milling process and predicate the post-machining distortion. In this study, a rolled-aluminum plate AA7175 with a thickness of 60 mm was used for the raw block. The initial residual stress distribution in the block was measured using a layer-removal method. A stress-mapping technique was developed to implement the initial stress distribution into the part. It is demonstrated that this technique significantly accelerates the simulation time. Machining-induced residual stresses on the machined surface were measured using MTS3000 hole-drilling strain-gauge system. The measured RS was applied on the machined surface of a plate to predict the distortion. The predicted distortion was compared with experimental results. It is found that the effect of the machining-induced residual stress on the distortion of a thick plate is very limited. The distortion can be ignored if the wall thickness is larger than a certain value. The RS generated from the thermal load during machining is another important factor causing part distortion. Very limited number of research on this topic was reported in literature. A coupled thermo-mechanical FE model was developed to evaluate the thermal effect on the plastic deformation of a plate. A moving heat source with a feed rate was used to simulate the dynamic cutting heat in a milling process. When the heat source passed the part surface, a small layer was removed to simulate the cutting operation. The results show that for different feed rates and plate thicknesses, the plastic deformation/distortion occurs only if the temperature exceeds a critical level. It was found that the initial residual stress has a major contribution to the part distortion. The machining-induced stress has limited influence on the distortion for thin-wall structure when the wall thickness is larger than a certain value. The thermal load can also generate part distortion when the cutting temperature is above a critical level. The developed numerical model was employed to predict the distortion of a frame part with complex structures. The predictions were compared with the experimental measurements, showing both are in good agreement. Through optimization of the position of the part inside the raw plate using the developed numerical models, the part distortion can be significantly reduced by 50%.

Keywords: modelling, monolithic parts, optimization, post-machining distortion, residual stresses

Procedia PDF Downloads 38
3246 Empirical Exploration for the Correlation between Class Object-Oriented Connectivity-Based Cohesion and Coupling

Authors: Jehad Al Dallal

Abstract:

Attributes and methods are the basic contents of an object-oriented class. The connectivity among these class members and the relationship between the class and other classes play an important role in determining the quality of an object-oriented system. Class cohesion evaluates the degree of relatedness of class attributes and methods, whereas class coupling refers to the degree to which a class is related to other classes. Researchers have proposed several class cohesion and class coupling measures. However, the correlation between class coupling and class cohesion measures have not been thoroughly studied. In this paper, using classes of three open-source Java systems, we empirically investigate the correlation between several measures of connectivity-based class cohesion and coupling. Four connectivity-based cohesion measures and eight coupling measures are considered in the empirical study. The empirical study results show that class connectivity-based cohesion and coupling internal quality attributes are inversely correlated. The strength of the correlation depends highly on the cohesion and coupling measurement approaches.

Keywords: object-oriented class, software quality, class cohesion measure, class coupling measure

Procedia PDF Downloads 306
3245 Ultrafast Ground State Recovery Dynamics of a Cyanine Dye Molecule in Heterogeneous Environment

Authors: Tapas Goswami, Debabrata Goswami

Abstract:

We have studied the changes in ground state recovery dynamics of IR 144 dye using degenerate transient absorption spectroscopy technique when going from homogeneous solution phase to heterogeneous partially miscible liquid/liquid interface. Towards this aim, we set up a partially miscible liquid/liquid interface in which dye is insoluble in one solvent carbon tetrachloride (CCl₄) layer and soluble in other solvent dimethyl sulphoxide (DMSO). A gradual increase in ground state recovery time of the dye molecule is observed from homogenous bulk solution to more heterogeneous environment interface layer. In the bulk solution charge distribution of dye molecule is in equilibrium with polar DMSO solvent molecule. Near the interface micro transportation of non-polar solvent, CCl₄ disturbs the solvent equilibrium in DMSO layer and it relaxes to a new equilibrium state corresponding to a new charge distribution of dye with a heterogeneous mixture of polar and non-polar solvent. In this experiment, we have measured the time required for the dye molecule to relax to the new equilibrium state in different heterogeneous environment. As a result, dye remains longer time in the excited state such that even it can populate more triplet state. The present study of ground state recovery dynamics of a cyanine dye molecule in different solvent environment provides the important characteristics of effect of solvation on excited life time of a dye molecule.

Keywords: excited state, ground state recovery, solvation, transient absorption

Procedia PDF Downloads 269
3244 Triazenes: Unearthing Their Hidden Arsenal Against Malaria and Microbial Menace

Authors: Frans J. Smit, Wisdom A. Munzeiwa, Hermanus C. M. Vosloo, Lyn-Marie Birkholtz, Richard K. Haynes

Abstract:

Malaria and antimicrobial infections remain significant global health concerns, necessitating the continuous search for novel therapeutic approaches. This abstract presents an overview of the potential use of triazenes as effective agents against malaria and various antimicrobial pathogens. Triazenes are a class of compounds characterized by a linear arrangement of three nitrogen atoms, rendering them structurally distinct from their cyclic counterparts. This study investigates the efficacy of triazenes against malaria and explores their antimicrobial activity. Preliminary results revealed significant antimalarial activity of the triazenes, as evidenced by in vitro screening against P. falciparum, the causative agent of malaria. Furthermore, the compounds exhibited broad-spectrum antimicrobial activity, indicating their potential as effective antimicrobial agents. These compounds have shown inhibitory effects on various essential enzymes and processes involved in parasite survival, replication, and transmission. The mechanism of action of triazenes against malaria involves interactions with critical molecular targets, such as enzymes involved in the parasite's metabolic pathways and proteins responsible for host cell invasion. The antimicrobial activity of the triazenes against bacteria and fungi was investigated through disc diffusion screening. The antimicrobial efficacy of triazenes has been observed against both Gram-positive and Gram-negative bacteria, as well as multidrug-resistant strains, making them potential candidates for combating drug-resistant infections. Furthermore, triazenes possess favourable physicochemical properties, such as good stability, solubility, and low toxicity, which are essential for drug development. The structural versatility of triazenes allows for the modification of their chemical composition to enhance their potency, selectivity, and pharmacokinetic properties. These modifications can be tailored to target specific pathogens, increasing the potential for personalized treatment strategies. In conclusion, this study highlights the potential of triazenes as promising candidates for the development of novel antimalarial and antimicrobial therapeutics. Further investigations are necessary to determine the structure-activity relationships and optimize the pharmacological properties of these compounds. The results warrant additional research, including MIC studies, to further explore the antimicrobial activity of the triazenes. Ultimately, these findings contribute to the development of more effective strategies for combating malaria and microbial infections.

Keywords: malaria, anti-microbials, triazene, resistance

Procedia PDF Downloads 85
3243 Synthetic Access to Complex Metal Carbonates and Hydroxycarbonates via Sol-Gel Chemistry

Authors: Schirin Hanf, Carlos Lizandara-Pueyo, Timmo P. Emmert, Ivana Jevtovikj, Roger Gläser, Stephan A. Schunk

Abstract:

Metal alkoxides are very versatile precursors for a broad array of complex functional materials. However, metal alkoxides, especially transition metal alkoxides, tend to form oligomeric structures due to the very strong M–O–M binding motif. This fact hinders their facile application in sol-gel-processes and complicates access to complex carbonate or oxidic compounds after hydrolysis of the precursors. Therefore, the development of a synthetic alternative with the aim to grant access to carbonates and hydroxycarbonates from simple metal alkoxide precursors via hydrolysis is key to this project. Our approach involves the reaction of metal alkoxides with unsaturated isoelectronic molecules, such as carbon dioxide. Subsequently, a stoichiometric insertion of the CO₂ into the alkoxide M–O bond takes place and leads to the formation of soluble metal alkyl carbonates. This strategy is a very elegant approach to solubilize metal alkoxide precursors to make them accessible for sol-gel chemistry. After hydrolysis of the metal alkyl carbonates, crystalline metal carbonates, and hydroxycarbonates can be obtained, which were then utilized for the synthesis of Cu/Zn based bulk catalysts for methanol synthesis. Using these catalysts, a comparable catalytic activity to commercially available MeOH catalysts could be reached. Based on these results, a complement for traditional precipitation techniques, which are usually utilized for the synthesis of bulk methanol catalysts, have been found based on an alternative solubilization strategy.

Keywords: metal alkoxides, metal carbonates, metal hydroxycarbonates, CO₂ insertion, solubilization

Procedia PDF Downloads 174
3242 An Infrared Inorganic Scintillating Detector Applied in Radiation Therapy

Authors: Sree Bash Chandra Debnath, Didier Tonneau, Carole Fauquet, Agnes Tallet, Julien Darreon

Abstract:

Purpose: Inorganic scintillating dosimetry is the most recent promising technique to solve several dosimetric issues and provide quality assurance in radiation therapy. Despite several advantages, the major issue of using scintillating detectors is the Cerenkov effect, typically induced in the visible emission range. In this context, the purpose of this research work is to evaluate the performance of a novel infrared inorganic scintillator detector (IR-ISD) in the radiation therapy treatment to ensure Cerenkov free signal and the best matches between the delivered and prescribed doses during treatment. Methods: A simple and small-scale infrared inorganic scintillating detector of 100 µm diameter with a sensitive scintillating volume of 2x10-6 mm3 was developed. A prototype of the dose verification system has been introduced based on PTIR1470/F (provided by Phosphor Technology®) material used in the proposed novel IR-ISD. The detector was tested on an Elekta LINAC system tuned at 6 MV/15MV and a brachytherapy source (Ir-192) used in the patient treatment protocol. The associated dose rate was measured in count rate (photons/s) using a highly sensitive photon counter (sensitivity ~20ph/s). Overall measurements were performed in IBATM water tank phantoms by following international Technical Reports series recommendations (TRS 381) for radiotherapy and TG43U1 recommendations for brachytherapy. The performance of the detector was tested through several dosimetric parameters such as PDD, beam profiling, Cerenkov measurement, dose linearity, dose rate linearity repeatability, and scintillator stability. Finally, a comparative study is also shown using a reference microdiamond dosimeter, Monte-Carlo (MC) simulation, and data from recent literature. Results: This study is highlighting the complete removal of the Cerenkov effect especially for small field radiation beam characterization. The detector provides an entire linear response with the dose in the 4cGy to 800 cGy range, independently of the field size selected from 5 x 5 cm² down to 0.5 x 0.5 cm². A perfect repeatability (0.2 % variation from average) with day-to-day reproducibility (0.3% variation) was observed. Measurements demonstrated that ISD has superlinear behavior with dose rate (R2=1) varying from 50 cGy/s to 1000 cGy/s. PDD profiles obtained in water present identical behavior with a build-up maximum depth dose at 15 mm for different small fields irradiation. A low dimension of 0.5 x 0.5 cm² field profiles have been characterized, and the field cross profile presents a Gaussian-like shape. The standard deviation (1σ) of the scintillating signal remains within 0.02% while having a very low convolution effect, thanks to lower sensitive volume. Finally, during brachytherapy, a comparison with MC simulations shows that considering energy dependency, measurement agrees within 0.8% till 0.2 cm source to detector distance. Conclusion: The proposed scintillating detector in this study shows no- Cerenkov radiation and efficient performance for several radiation therapy measurement parameters. Therefore, it is anticipated that the IR-ISD system can be promoted to validate with direct clinical investigations, such as appropriate dose verification and quality control in the Treatment Planning System (TPS).

Keywords: IR-Scintillating detector, dose measurement, micro-scintillators, Cerenkov effect

Procedia PDF Downloads 170
3241 Power Quality Improvement Using Interval Type-2 Fuzzy Logic Controller for Five-Level Shunt Active Power Filter

Authors: Yousfi Abdelkader, Chaker Abdelkader, Bot Youcef

Abstract:

This article proposes a five-level shunt active power filter for power quality improvement using a interval type-2 fuzzy logic controller (IT2 FLC). The reference compensating current is extracted using the P-Q theory. The majority of works previously reported are based on two-level inverters with a conventional Proportional integral (PI) controller, which requires rigorous mathematical modeling of the system. In this paper, a IT2 FLC controlled five-level active power filter is proposed to overcome the problem associated with PI controller. The IT2 FLC algorithm is applied for controlling the DC-side capacitor voltage as well as the harmonic currents of the five-level active power filter. The active power filter with a IT2 FLC is simulated in MATLAB Simulink environment. The simulated response shows that the proposed shunt active power filter controller has produced a sinusoidal supply current with low harmonic distortion and in phase with the source voltage.

Keywords: power quality, shunt active power filter, interval type-2 fuzzy logic controller (T2FL), multilevel inverter

Procedia PDF Downloads 159
3240 Numerical Analysis of the Aging Effects of RC Shear Walls Repaired by CFRP Sheets: Application of CEB-FIP MC 90 Model

Authors: Yeghnem Redha, Guerroudj Hicham Zakaria, Hanifi Hachemi Amar Lemiya, Meftah Sid Ahmed, Tounsi Abdelouahed, Adda Bedia El Abbas

Abstract:

Creep deformation of concrete is often responsible for excessive deflection at service loads which can compromise the performance of elements within a structure. Although laboratory test may be undertaken to determine the deformation properties of concrete, these are time-consuming, often expensive and generally not a practical option. Therefore, relatively simple empirically design code models are relied to predict the creep strain. This paper reviews the accuracy of creep and shrinkage predictions of reinforced concrete (RC) shear walls structures strengthened with carbon fibre reinforced polymer (CFRP) sheets, which is characterized by a widthwise varying fibre volume fraction. This review is yielded by CEB-FIB MC90 model. The time-dependent behavior was investigated to analyze their static behavior. In the numerical formulation, the adherents and the adhesives are all modelled as shear wall elements, using the mixed finite element method. Several tests were used to dem¬onstrate the accuracy and effectiveness of the proposed method. Numerical results from the present analysis are presented to illustrate the significance of the time-dependency of the lateral displacements.

Keywords: RC shear walls strengthened, CFRP sheets, creep and shrinkage, CEB-FIP MC90 model, finite element method, static behavior

Procedia PDF Downloads 294
3239 Crop Price Variation and Water Saving Technologies in Iran

Authors: Saeed Yazdani, Shahrbanoo Bagheri, Sepideh Nikravesh

Abstract:

Considering the importance and scarcity of water resources, the efficient management of water resources is of great importance. Adoption of modern irrigation technology is considered to be a key of increasing the efficiency of water used in agriculture. Policy makers have implemented several ways to induce the adoption of new irrigation technology. The empirical studies show that farmers are reluctant to utilize the use of new irrigation methods. This study aims to assess factors affecting on farmer’s decision on the application of water saving technologies with emphasize on crop price variation and water sources. A Logit model was employed to examine the impact of different variables on use of water saving technology. The required data gathered from a sample of 204 farmers in the year 2012. The results indicate that different variables such as crop price variability, water supply source, high-value crops, farm size, income, education, membership in cooperatives have a positive effect and variables such as age and number of plots have a negative impact on the probability of adopting modern water saving technologies.

Keywords: irrigation, water, water saving technology, scarcity

Procedia PDF Downloads 210
3238 Replacing MOSFETs with Single Electron Transistors (SET) to Reduce Power Consumption of an Inverter Circuit

Authors: Ahmed Shariful Alam, Abu Hena M. Mustafa Kamal, M. Abdul Rahman, M. Nasmus Sakib Khan Shabbir, Atiqul Islam

Abstract:

According to the rules of quantum mechanics there is a non-vanishing probability of for an electron to tunnel through a thin insulating barrier or a thin capacitor which is not possible according to the laws of classical physics. Tunneling of electron through a thin insulating barrier or tunnel junction is a random event and the magnitude of current flowing due to the tunneling of electron is very low. As the current flowing through a Single Electron Transistor (SET) is the result of electron tunneling through tunnel junctions of its source and drain the supply voltage requirement is also very low. As a result, the power consumption across a Single Electron Transistor is ultra-low in comparison to that of a MOSFET. In this paper simulations have been done with PSPICE for an inverter built with both SETs and MOSFETs. 35mV supply voltage was used for a SET built inverter circuit and the supply voltage used for a CMOS inverter was 3.5V.

Keywords: ITRS, enhancement type MOSFET, island, DC analysis, transient analysis, power consumption, background charge co-tunneling

Procedia PDF Downloads 511
3237 Saudi Arabian Science and Mathematics Teachers’ Attitudes toward Integrating STEM in Teaching before and after Participating in a Professional Development Workshop

Authors: Abdulwali H. Aldahmash, Naem M. Alamri

Abstract:

The purpose of this study was to analyze Saudi Arabian science and mathematics teachers’ attitudes toward integrating STEM in teaching before and after they participated in a professional development workshop focused on STEM integration in a specific middle school science and mathematics unit. The participants were 48 Saudi Arabian science and mathematics teachers who participated in a three-day workshop held in Riyadh, Saudi Arabia. The research method was a pretest-posttest group design. The primary data source was the instrument for teachers' attitudes toward teaching integrated STEM. The results indicate that Saudi Arabian science and mathematics teachers’ perceptions of difficulties decreased due to their participation in the professional development workshop on integrated STEM. Meanwhile, the teachers' self-efficacy improved following their participation in the STEM professional development (PD) workshop. However, no perceived effect was found for the teachers' perceptions of the relevance of or their anxiety about or enjoyment of integrated STEM teaching due to their participation in the three-day PD workshop.

Keywords: STEM integration, attitude toward STEM, STEM workshop, professional development

Procedia PDF Downloads 192
3236 Optimization of Ultrasonic Assisted Extraction of Antioxidants and Phenolic Compounds from Coleus Using Response Surface Methodology

Authors: Reihaneh Ahmadzadeh Ghavidel

Abstract:

Free radicals such as reactive oxygen species (ROS) have detrimental effects on human health through several mechanisms. On the other hand, antioxidant molecules reduce free radical generation in biologic systems. Synthetic antioxidants, which are used in food industry, have also negative impact on human health. Therefore recognition of natural antioxidants such as anthocyanins can solve these problems simultaneously. Coleus (Solenostemon scutellarioides) with red leaves is a rich source of anthocyanins compounds. In this study we evaluated the effect of time (10, 20 and 30 min) and temperature (40, 50 and 60° C) on optimization of anthocyanin extraction using surface response method. In addition, the study was aimed to determine maximum extraction for anthocyanin from coleus plant using ultrasound method. The results indicated that the optimum conditions for extraction were 39.84 min at 69.25° C. At this point, total compounds were achieved 3.7451 mg 100 ml⁻¹. Furthermore, under optimum conditions, anthocyanin concentration, extraction efficiency, ferric reducing ability, total phenolic compounds and EC50 were registered 3.221931, 6.692765, 223.062, 3355.605 and 2.614045, respectively.

Keywords: anthocyanin, antioxidant, coleus, extraction, sonication

Procedia PDF Downloads 306
3235 Electromagnetic Wave Propagation Equations in 2D by Finite Difference Method

Authors: N. Fusun Oyman Serteller

Abstract:

In this paper, the techniques to solve time dependent electromagnetic wave propagation equations based on the Finite Difference Method (FDM) are proposed by comparing the results with Finite Element Method (FEM) in 2D while discussing some special simulation examples.  Here, 2D dynamical wave equations for lossy media, even with a constant source, are discussed for establishing symbolic manipulation of wave propagation problems. The main objective of this contribution is to introduce a comparative study of two suitable numerical methods and to show that both methods can be applied effectively and efficiently to all types of wave propagation problems, both linear and nonlinear cases, by using symbolic computation. However, the results show that the FDM is more appropriate for solving the nonlinear cases in the symbolic solution. Furthermore, some specific complex domain examples of the comparison of electromagnetic waves equations are considered. Calculations are performed through Mathematica software by making some useful contribution to the programme and leveraging symbolic evaluations of FEM and FDM.

Keywords: finite difference method, finite element method, linear-nonlinear PDEs, symbolic computation, wave propagation equations

Procedia PDF Downloads 131
3234 Competition for Talent: Retaining Graduates in the Euregio Meuse-Rhine

Authors: Julia Reinold, Inge Hooijen, Christoph Meng, Melissa Siegel

Abstract:

This paper investigates whether or not students intend to stay in the Euregio Meuse-Rhine (EMR) after graduation taking into account the role of hard and soft locational factors, social factors as well as demographic aspects in shaping their mobility preferences. Since graduates are considered a convenient source of human capital in today’s knowledge based economy, it is crucial to understand what drives their mobility intentions in order to retain larger numbers of graduates. This is particularly true for peripheral regions, which need to compete with assumed more attractive economic centres. This paper adds a euregional perspective to the existing literature on graduate migration. Using survey data from 2015 from five higher education institutions in the EMR, this paper finds that mobility intentions are determined by students’ perceptions of the quality of life, openness and career opportunities in the euroregion. In addition, distance to the partner and other social ties such as family and friends influence migration intentions.

Keywords: Euroregion, graduate migration, highly skilled migration, human capital

Procedia PDF Downloads 266
3233 The Determination of Pb and Zn Phytoremediation Potential and Effect of Interaction between Cadmium and Zinc on Metabolism of Buckwheat (Fagopyrum Esculentum)

Authors: Nurdan Olguncelik Kaplan, Aysen Akay

Abstract:

Nowadays soil pollution has become a global problem. External added polluters to the soil are destroying and changing the structure of the soil and the problems are becoming more complex and in this sense the correction of these problems is going to be harder and more costly. Cadmium has got a fast mobility in the soil and plant system because of that cadmium can interfere very easily to the human and animal food chain and in the same time this can be very dangerous. The cadmium which is absorbed and stored by the plants is causing to many metabolic changes of the plants like; protein synthesis, nitrogen and carbohydrate metabolism, enzyme (nitrate reductase) activation, photo and chlorophyll synthesis. The biological function of cadmium is not known over the plants and it is not a necessary element. The plant is generally taking in small amounts the cadmium and this element is competing with the zinc. Cadmium is causing root damages. Buckwheat (Fagopyrum esculentum) is an important nutraceutical because of its high content of flavonoids, minerals and vitamins, and their nutritionally balanced amino-acid composition. Buckwheat has relatively high biomass productivity, is adapted to many areas of the world, and can flourish in sterile fields; therefore buckwheat plants are widely used for the phytoremediation process.The aim of this study were to evaluate the phytoremediation capacity of the high-yielding plant Buckwheat (Fagopyrum esculentum) in soils contaminated with Cd and Zn. The soils were applied to differrent doses cd(0-12.5-25-50-100 mg Cd kg−1 soil in the form of 3CdSO4.8H2O ) and Zn (0-10-30 mg Zn kg−1 soil in the form of ZnSO4.7H2O) and incubated about 60 days. Later buckwheat seeds were sown and grown for three mounth under greenhouse conditions. The test plants were irrigated by using pure water after the planting process. Buckwheat seeds (Gunes and Aktas species) were taken from Bahri Dagdas International Agricultural Research. After harvest, Cd and Zn concentrations of plant biomass and grain, yield and translocation factors (TFs) for Cd and Cd were determined. Cadmium accumulation in biomass and grain significantly increased in dose-dependent manner. Long term field trials are required to further investigate the potential of buckwheat to reclaimed the soil. But this could be undertaken in conjunction with actual remediation schemes. However, the differences in element accumulation among the genotypes were affected more by the properties of genotypes than by the soil properties. Gunes genotype accumulated higher lead than Aktas genotypes.

Keywords: buckwheat, cadmium, phytoremediation, zinc

Procedia PDF Downloads 406
3232 Flywheel Energy Storage Control Using SVPWM for Small Satellites Application

Authors: Noha El-Gohary, Thanaa El-Shater, A. A. Mahfouz, M. M. Sakr

Abstract:

Searching for high power conversion efficiency and long lifetime are important goals when designing a power supply subsystem for satellite applications. To fulfill these goals, this paper presents a power supply subsystem for small satellites in which flywheel energy storage system is used as a secondary power source instead of chemical battery. In this paper, the model of flywheel energy storage system is introduced; a DC bus regulation control algorithm for charging and discharging of flywheel based on space vector pulse width modulation technique and motor current control is also introduced. Simulation results showed the operation of the flywheel for charging and discharging mode during illumination and shadowed period. The advantages of the proposed system are confirmed by the simulation results of the power supply system.

Keywords: small-satellites, flywheel energy storage system, space vector pulse width modulation, power conversion

Procedia PDF Downloads 387
3231 Effects of Tillage and Crop Residues Management in Improving Rainfall-Use Efficiency in Dryland Crops under Sandy Soils

Authors: Cosmas Parwada, Ronald Mandumbu, Handseni Tibugari, Trust Chinyama

Abstract:

A 3-yr field experiment to evaluate effects of tillage and residue management on soil water storage (SWS), grain yield, harvest index (HI) and water use efficiency (WUE) of sorghum was done in sandy soils. Treatments were conventional (CT) and minimum (MT) tillage without residue retention and conventional (CT × RT) and minimum (MT × RT) tillage with residue retention. Change in SWS was higher under CT and MT than in CT × RT and MT × RT, especially in the 0-10 cm soil layer. Grain yield and HI were significantly (P < 0.05) lower in CT and MT than CT × RT and MT × RT. Grain yield and HI were significantly (P < 0.05) positively correlated to WUE but WUE significantly (P < 0.05) negatively correlated to sand (%) particle content. The SWS was lower in winter but higher in summer and was significantly correlated to soil organic carbon (SOC), sand (%), grain yield (t/ha), HI and WUE. The WUE linearly increasing from first to last cropping seasons in tillage with returned residues; higher in CT × RT and MT × RT that promoted SOC buildup than where crop residues were removed. Soil tillage decreased effects of residues on SWS, WUE, grain yield and HI. Minimum tillage coupled to residue retention sustainably enhanced WUE but further research to investigate the interaction effects of the tillage on WUE and soil fertility management is required. Understanding and considering the WUE in crops can be a primary condition for cropping system designs. The findings pave way for further research and crop management programmes, allowing to valorize the water in crop production.

Keywords: evapotranspiration, infiltration rate, organic mulch, sand, water use efficiency

Procedia PDF Downloads 201
3230 Seasonal Short-Term Effect of Air Pollution on Cardiovascular Mortality in Belgium

Authors: Natalia Bustos Sierra, Katrien Tersago

Abstract:

It is currently proven that both extremes of temperature are associated with increased mortality and that air pollution is associated with temperature. This relationship is complex, and in countries with important seasonal variations in weather such as Belgium, some effects can appear as non-significant when the analysis is done over the entire year. We, therefore, analyzed the effect of short-term outdoor air pollution exposure on cardiovascular mortality during the warmer and colder months separately. We used daily cardiovascular deaths from acute cardiovascular diagnostics according to the International Classification of Diseases, 10th Revision (ICD-10: I20-I24, I44-I49, I50, I60-I66) during the period 2008-2013. The environmental data were population-weighted concentrations of particulates with an aerodynamic diameter less than 10 µm (PM₁₀) and less than 2.5 µm (PM₂.₅) (daily average), nitrogen dioxide (NO₂) (daily maximum of the hourly average) and ozone (O₃) (daily maximum of the 8-hour running mean). A Generalized linear model was applied adjusting for the confounding effect of season, temperature, dew point temperature, the day of the week, public holidays and the incidence of influenza-like illness (ILI) per 100,000 inhabitants. The relative risks (RR) were calculated for an increase of one interquartile range (IQR) of the air pollutant (μg/m³). These were presented for the four hottest months (June, July, August, September) and coldest months (November, December, January, February) in Belgium. We applied both individual lag model and unconstrained distributed lag model methods. The cumulative effect of a four-day exposure (day of exposure and three consecutive days) was calculated from the unconstrained distributed lag model. The IQR for PM₁₀, PM₂.₅, NO₂, and O₃ were respectively 8.2, 6.9, 12.9 and 25.5 µg/m³ during warm months and 18.8, 17.6, 18.4 and 27.8 µg/m³ during cold months. The association with CV mortality was statistically significant for the four pollutants during warm months and only for NO₂ during cold months. During the warm months, the cumulative effect of an IQR increase of ozone for the age groups 25-64, 65-84 and 85+ was 1.066 (95%CI: 1.002-1.135), 1.041 (1.008-1.075) and 1.036 (1.013-1.058) respectively. The cumulative effect of an IQR increase of NO₂ for the age group 65-84 was 1.066 (1.020-1.114) during warm months and 1.096 (1.030-1.166) during cold months. The cumulative effect of an IQR increase of PM₁₀ during warm months reached 1.046 (1.011-1.082) and 1.038 (1.015-1.063) for the age groups 65-84 and 85+ respectively. Similar results were observed for PM₂.₅. The short-term effect of air pollution on cardiovascular mortality is greater during warm months for lower pollutant concentrations compared to cold months. Spending more time outside during warm months increases population exposure to air pollution and can, therefore, be a confounding factor for this association. Age can also affect the length of time spent outdoors and the type of physical activity exercised. This study supports the deleterious effect of air pollution on cardiovascular mortality (CV) which varies according to season and age groups in Belgium. Public health measures should, therefore, be adapted to seasonality.

Keywords: air pollution, cardiovascular, mortality, season

Procedia PDF Downloads 148
3229 Aquafaba Derived from Korean Soybean Cultivars: A Novel Vegan Egg Replacer

Authors: Yue He, Youn Young Shim, Ji Hye Kim, Jae Youl Cho, Martin J. T. Reaney

Abstract:

Recently, pulse cooking water (a.k.a. Aquafaba) has been used as an important and cost-effective alternative to eggs in gluten-free, vegan cooking and baking applications. The aquafaba (AQ) is primarily due to its excellent ability to stabilize foams and emulsions in foods. However, the functional ingredients of this excellent AQ are usually discarded with the compound release. This study developed a high-functional food material, AQ, using functional soybean AQ that has not been studied in Korea. A zero-waste and cost-effective hybrid process were used to produce oil emulsifiers from Korean soybeans. The treatment technique was implemented using a small number of efficient steps. Aquafaba from Backtae had the best emulsion properties (92%) and has the potential to produce more stable food oil emulsions. Therefore, this study is expected to be utilized in the development of the first gluten-free, vegan product for vegetarians and consumers with animal protein allergies, utilizing wastewater from cooked soybeans as a source of plant protein that can replace animal protein.

Keywords: aquafaba, soybean, chickpea, emulsifiers, egg replacer, egg-free products

Procedia PDF Downloads 166