Search results for: functions of two variables
1933 Forecasting Equity Premium Out-of-Sample with Sophisticated Regression Training Techniques
Authors: Jonathan Iworiso
Abstract:
Forecasting the equity premium out-of-sample is a major concern to researchers in finance and emerging markets. The quest for a superior model that can forecast the equity premium with significant economic gains has resulted in several controversies on the choice of variables and suitable techniques among scholars. This research focuses mainly on the application of Regression Training (RT) techniques to forecast monthly equity premium out-of-sample recursively with an expanding window method. A broad category of sophisticated regression models involving model complexity was employed. The RT models include Ridge, Forward-Backward (FOBA) Ridge, Least Absolute Shrinkage and Selection Operator (LASSO), Relaxed LASSO, Elastic Net, and Least Angle Regression were trained and used to forecast the equity premium out-of-sample. In this study, the empirical investigation of the RT models demonstrates significant evidence of equity premium predictability both statistically and economically relative to the benchmark historical average, delivering significant utility gains. They seek to provide meaningful economic information on mean-variance portfolio investment for investors who are timing the market to earn future gains at minimal risk. Thus, the forecasting models appeared to guarantee an investor in a market setting who optimally reallocates a monthly portfolio between equities and risk-free treasury bills using equity premium forecasts at minimal risk.Keywords: regression training, out-of-sample forecasts, expanding window, statistical predictability, economic significance, utility gains
Procedia PDF Downloads 1071932 A Two-Stage Bayesian Variable Selection Method with the Extension of Lasso for Geo-Referenced Data
Authors: Georgiana Onicescu, Yuqian Shen
Abstract:
Due to the complex nature of geo-referenced data, multicollinearity of the risk factors in public health spatial studies is a commonly encountered issue, which leads to low parameter estimation accuracy because it inflates the variance in the regression analysis. To address this issue, we proposed a two-stage variable selection method by extending the least absolute shrinkage and selection operator (Lasso) to the Bayesian spatial setting, investigating the impact of risk factors to health outcomes. Specifically, in stage I, we performed the variable selection using Bayesian Lasso and several other variable selection approaches. Then, in stage II, we performed the model selection with only the selected variables from stage I and compared again the methods. To evaluate the performance of the two-stage variable selection methods, we conducted a simulation study with different distributions for the risk factors, using geo-referenced count data as the outcome and Michigan as the research region. We considered the cases when all candidate risk factors are independently normally distributed, or follow a multivariate normal distribution with different correlation levels. Two other Bayesian variable selection methods, Binary indicator, and the combination of Binary indicator and Lasso were considered and compared as alternative methods. The simulation results indicated that the proposed two-stage Bayesian Lasso variable selection method has the best performance for both independent and dependent cases considered. When compared with the one-stage approach, and the other two alternative methods, the two-stage Bayesian Lasso approach provides the highest estimation accuracy in all scenarios considered.Keywords: Lasso, Bayesian analysis, spatial analysis, variable selection
Procedia PDF Downloads 1441931 Examining the Relationship between Family Functioning and Perceived Self-Efficacy
Authors: Fenni Sim
Abstract:
Objectives: The purpose of the study is to examine the relationship between family functioning and level of self-efficacy: how family functioning can potentially affect self-efficacy which will eventually lead to better clinical outcomes. The hypothesis was ‘Patients on haemodialysis with perceived higher family functioning are more likely to have higher perceived level of self-efficacy’. Methods: The study was conducted with a mixed methodology of quantitative and qualitative data collection of survey and semi-structured interview respectively. The General Self-Efficacy scale and SCORE-15 were self-administered by participants. The data will be analysed with correlation analysis method using Microsoft Excel. 79 patients were recruited for the study through random sampling. 6 participants whose results did not reflect the hypothesis were then recruited for the qualitative study. Interpretive phemenological analysis was then used to analyse the qualitative data. Findings: The hypothesis was accepted that higher family functioning leads to higher perceived self-efficacy. The correlation coefficient of -0.21 suggested a mild correlation between the two variables. However, only 4.6% of the variation in perceived self-efficacy is accounted by the variation in family functioning. The qualitative study extrapolated three themes that might explain the variations in the outliers: (1) level of physical functioning affects perceived self-efficacy, (2) instrumental support from family influenced perceived level of family functioning, and self-efficacy, (3) acceptance of illness reflects higher level of self-efficacy. Conclusion: While family functioning does have an impact on perceived self-efficacy, there are many intrapersonal and physical factors that may affect self-efficacy. The concepts of family functioning and self-efficacy are more appropriately seen as complementing each other to help a patient in managing his illness. Healthcare social workers can look at how family functioning is supporting the individual needs of patients with different trajectory of ESRD and the support we can provide to improve one’s self-efficacy.Keywords: chronic kidney disease, coping of illness, family functioning, self efficacy
Procedia PDF Downloads 1731930 A Study of High Viscosity Oil-Gas Slug Flow Using Gamma Densitometer
Authors: Y. Baba, A. Archibong-Eso, H. Yeung
Abstract:
Experimental study of high viscosity oil-gas flows in horizontal pipelines published in literature has indicated that hydrodynamic slug flow is the dominant flow pattern observed. Investigations have shown that hydrodynamic slugging brings about high instabilities in pressure that can damage production facilities thereby making it inherent to study high viscous slug flow regime so as to improve the understanding of its flow dynamics. Most slug flow models used in the petroleum industry for the design of pipelines together with their closure relationships were formulated based on observations of low viscosity liquid-gas flows. New experimental investigations and data are therefore required to validate these models. In cases where these models underperform, improving upon or building new predictive models and correlations will also depend on the new experimental dataset and further understanding of the flow dynamics in high viscous oil-gas flows. In this study conducted at the Flow laboratory, Oil and Gas Engineering Centre of Cranfield University, slug flow variables such as pressure gradient, mean liquid holdup, frequency and slug length for oil viscosity ranging from 1..0 – 5.5 Pa.s are experimentally investigated and analysed. The study was carried out in a 0.076m ID pipe, two fast sampling gamma densitometer and pressure transducers (differential and point) were used to obtain experimental measurements. Comparison of the measured slug flow parameters to the existing slug flow prediction models available in the literature showed disagreement with high viscosity experimental data thus highlighting the importance of building new predictive models and correlations.Keywords: gamma densitometer, mean liquid holdup, pressure gradient, slug frequency and slug length
Procedia PDF Downloads 3291929 A Geogpraphic Overview about Offshore Energy Cleantech in Portugal
Authors: Ana Pego
Abstract:
Environmental technologies were developed for decades. Clean technologies emerged a few years ago. In these perspectives, the use of cleantech technologies has become very important due the fact of new era of environmental feats. As such, the market itself has become more competitive, more collaborative towards a better use of clean technologies. This paper shows the importance of clean technologies in offshore energy sector in Portuguese market, its localization and its impact on economy. Clean technologies are directly related with renewable cluster and concomitant with economic and social resource optimization criteria, geographic aspects, climate change and soil features. Cleantech is related with regional development, socio-technical transitions in organisations. There are an economical and social combinations which allow specialisation of regions in activities, higher employment, reduce of energy costs, local knowledge spillover and, business collaboration and competitiveness. The methodology used will be quantitative (IO matrix for Portugal 2013) and qualitative (questionnaires to stakeholders). The mix of both methodologies will confirm whether the use of technologies will allow a positive impact on economic and social variables used on this model. It is expected a positive impact on Portuguese economy both in investment and employment taking in account the localization of offshore renewable activities. This means that the importance of offshore renewable investment in Portugal has a few points which should be pointed out: the increase of specialised employment, localization of specific activities in territory, and increase of value added in certain regions. The conclusion will allow researchers and organisation to compare the Portuguese model to other European regions in order to a better use of natural and human resources.Keywords: cleantech, economic impact, localisation, territory dynamics
Procedia PDF Downloads 2281928 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.Keywords: cyber security, vulnerability detection, neural networks, feature extraction
Procedia PDF Downloads 891927 Transformational Leadership Behaviors and Their Impact on Organizational Creativity
Authors: Mohamed Saeed Ahmed Salman
Abstract:
The aim of this Current Study is to reveals the impact of Transformational Leadership on Organizational Innovation in Mobile Jordanian Communication Companies, (Zain; Orange; Umniah and Xpress). The study depends on descriptive and analytical mothodize using the practical manner, study sample consists of Head of section and Experts from all Specializations in Mobile Jordanian Communication Companies amounted (120). A major study finding all Transformational Leadership Behaviors was median extent. The innovation adoption and innovation abilities availability was high extent. Besides there is a significant statistical impact of Transformational Leadership Behaviors, (Idealized Influence; Intellectual Stimulation; Individualized Consideration and Empowerment), on Organizational Innovation (innovation adoption & innovation abilities availability). It can be said that organizational creativity is the adoption of new ideas and behaviors that are applied in the organization, whether this is in creating new products or services, or new technology that is used at work. Transformational leadership is a process that occurs when one or more people engage with others in a way that enables leaders and followers to raise each other to higher levels of morals, motivations, and behaviors (desires, needs, ambitions, and followers' core values). An effective leader under transformational leadership is one who has a high ability to communicate, motivate, delegate, and listen to others, and is characterized by great flexibility in solving problems and dealing greatly with variables. The difference between creativity and innovation, in conclusion, innovation, invention, and creativity are three important elements for any institution or organization, and there is a fine line that separates them, which is that creativity works to generate new ideas, while invention makes them tangible, and innovation makes them valuable.Keywords: leadership, organizational, transformational, creativity
Procedia PDF Downloads 201926 Applying the Regression Technique for Prediction of the Acute Heart Attack
Authors: Paria Soleimani, Arezoo Neshati
Abstract:
Myocardial infarction is one of the leading causes of death in the world. Some of these deaths occur even before the patient reaches the hospital. Myocardial infarction occurs as a result of impaired blood supply. Because the most of these deaths are due to coronary artery disease, hence the awareness of the warning signs of a heart attack is essential. Some heart attacks are sudden and intense, but most of them start slowly, with mild pain or discomfort, then early detection and successful treatment of these symptoms is vital to save them. Therefore, importance and usefulness of a system designing to assist physicians in the early diagnosis of the acute heart attacks is obvious. The purpose of this study is to determine how well a predictive model would perform based on the only patient-reportable clinical history factors, without using diagnostic tests or physical exams. This type of the prediction model might have application outside of the hospital setting to give accurate advice to patients to influence them to seek care in appropriate situations. For this purpose, the data were collected on 711 heart patients in Iran hospitals. 28 attributes of clinical factors can be reported by patients; were studied. Three logistic regression models were made on the basis of the 28 features to predict the risk of heart attacks. The best logistic regression model in terms of performance had a C-index of 0.955 and with an accuracy of 94.9%. The variables, severe chest pain, back pain, cold sweats, shortness of breath, nausea, and vomiting were selected as the main features.Keywords: Coronary heart disease, Acute heart attacks, Prediction, Logistic regression
Procedia PDF Downloads 4491925 Correlation Studies in Nutritional Intake, Health Status and Clinical Examination of Young Adult Girls
Authors: Sonal Tuljaram Kame
Abstract:
Growth and development is based on proper diet. A balanced diet contains all the nutrients in required quantum. Although physical growth is completed by young adulthood, the body tissues remain in a dynamic state with catabolism slightly exceeding anabolism, resulting in a net decrease in the number of cells. After the years of adolescence which cause upheavals in the life of the person, the individual struggle to emerge as an adult who know who he is and what his goals are. During this period nutrients are needed for maintaining the health and energy is required for physical functions and physical activities. The nutritional requirement in young adulthood differs from other periods of life. Iron is needed for haemoglobin synthesis and necessitates by the considerable examination of blood volume. Young adult girls need to ensure adequate intake of iron as they loose 0.5 mg/day by way of menstruation. This is complete awareness about nutritional and health on the other side there is widespread ignorance about nutrition and health among young adult girls. The young adult girls who are aware about nutrition and health seem to be very conscious about nutritional intake and health. Figure consciousness and fear of obesity leads to self imposed intake of nutrients. It may result in various health problems. The study was planned to investigate nutrient intake, find relation between nutritional intake, clinical examination score and health status of young adult girls. The present study is based on the data collected from 120 young adult girls studying in four different competitive exams coaching academies in Akola city of Maharashtra. It was found that nutritional intake of these young adult girls was below the recommended level, nutritional knowledge level and nutritional intake are associated attributes, calories, calcium and protein intake is positively correlated with clinical examination and health status. It was concluded that well planned nutritional counseling for the young adult girls can help prevent nutritional deficiency diseases and disorders which may lead to anaemic condition in young adult girls. Girls need to be educated on intake of iron and vitamin B12.Keywords: nutritional intake, health status, young adult girls, correlation studies
Procedia PDF Downloads 3701924 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.Keywords: deep learning, artificial neural networks, energy price forecasting, turkey
Procedia PDF Downloads 2921923 Proteomic Analysis of the Inhibition of Prolyl Oligopeptidase Induced by Z-Pro-Prolinal in Filarial Parasites
Authors: Mohit Wadhawan, Sushma Rathaur
Abstract:
Lymphatic filariasis, also called elephantiasis is a tropical disease afflicting over 120 million people in 81 countries worldwide. Existing anti filarial drugs are effective against the larval stages of filarial parasites which call for an urgent need of drugs which are macrofilaricidal. Identification of molecular targets crucial for survival of filarial parasites is a prerequisite for drug designing. Prolyl oligopeptidase (POP) is one such crucial enzyme involved in the maturation and degradation of neuropeptides and peptide hormones. We have identified this peptidase in the bovine filarial parasite, Setaria cervi. Effect of inhibition of POP on the proteome profile of filarial parasite has been discussed in this study. Filarial parasites were exposed to Z-pro-prolinal (ZPP), a specific POP inhibitor for 8 h and the motility and viability of the parasites was observed. It significantly reduced the motility and viability of the parasites. To study the proteome profile, the cytosolic, endoplasmic reticulum (ER) and mitochondrial extracts of the adult female parasites were subjected to 2-dimensional electrophoresis. As analyzed by the PD-Quest software, the ZPP caused the alteration in the different subcellular proteins, and the significantly altered proteins were identified using MALDI-MS/MS spectrometry. The major proteins identified were found to play important role in diverse biological functions like signaling, redox regulation, energy metabolism, stress response, and cytoskeleton formation. Moreover, we found upregulation in the calcium binding proteins such as calreticulin, calponin, and calpain-6 suggesting that POP inhibition regulates calcium release. This relates to earlier reports that POP plays non-catalytic role in inositol 1,4,5-trisphosphate (IP3) signaling inducing release of calcium from ER. Taken together, the data demonstrated that inhibition of prolyl oligopeptidase alter the overall proteome signifying its role in survival of the filarial parasites. Thus this study provides a basis for the use of POP as a chemotherapeutic target for the treatment of lymphatic filariasis.Keywords: lymphatic filariasis, setaria cervi, prolyl oligopeptidase, proteomics
Procedia PDF Downloads 2841922 Copula Autoregressive Methodology for Simulation of Solar Irradiance and Air Temperature Time Series for Solar Energy Forecasting
Authors: Andres F. Ramirez, Carlos F. Valencia
Abstract:
The increasing interest in renewable energies strategies application and the path for diminishing the use of carbon related energy sources have encouraged the development of novel strategies for integration of solar energy into the electricity network. A correct inclusion of the fluctuating energy output of a photovoltaic (PV) energy system into an electric grid requires improvements in the forecasting and simulation methodologies for solar energy potential, and the understanding not only of the mean value of the series but the associated underlying stochastic process. We present a methodology for synthetic generation of solar irradiance (shortwave flux) and air temperature bivariate time series based on copula functions to represent the cross-dependence and temporal structure of the data. We explore the advantages of using this nonlinear time series method over traditional approaches that use a transformation of the data to normal distributions as an intermediate step. The use of copulas gives flexibility to represent the serial variability of the real data on the simulation and allows having more control on the desired properties of the data. We use discrete zero mass density distributions to assess the nature of solar irradiance, alongside vector generalized linear models for the bivariate time series time dependent distributions. We found that the copula autoregressive methodology used, including the zero mass characteristics of the solar irradiance time series, generates a significant improvement over state of the art strategies. These results will help to better understand the fluctuating nature of solar energy forecasting, the underlying stochastic process, and quantify the potential of a photovoltaic (PV) energy generating system integration into a country electricity network. Experimental analysis and real data application substantiate the usage and convenience of the proposed methodology to forecast solar irradiance time series and solar energy across northern hemisphere, southern hemisphere, and equatorial zones.Keywords: copula autoregressive, solar irradiance forecasting, solar energy forecasting, time series generation
Procedia PDF Downloads 3231921 Contribution to the Study of Reproduction of Water Birds (Case of Marsh Bouessdra, North East Algeria)
Authors: Wahiba Boudraa, Khalil Draidi, Badis Bakhouch, Farah Chettibi, Meriem Aberkane, Zihad Bouslama, Moussa Houhamdi
Abstract:
The Gulf of Annaba, located at the extreme north eastern Algerian; our site of study is a marsh administratively it is part of the wilaya of Annaba, municipality of El-Bouni; extends on a surface from 55 hectare, the maximum depth is of less 2m. A scheme of work was adopted for an evaluation and characterization of the reproduction of the water nicheurs birds in the marsh of Boussedra. Some important parameters described by the scientific literature; According to standardized methods, variables were the object of a regular follow-up during the period of reproduction. These parameters were taken into account: the installation date of the nests, the vegetable support; blossoming of eggs, causes of the failure of the blossomings (predation or abandonment), characteristics of the nests (composition, internal diameter, external diameter, depth and heightening), measurements of the distances nest-nest nearest, Depth of water, the measurement of eggs, size of laying, size of laying. The follow-up in the marsh was carried out between March 2013 until the month of July 2014 at a rate of two outputs per weeks, one located and noted the nests to control them each week. The study on the reproduction of the water birds enables us to note that this site plays a very important part in the wintering and the reproduction of certain species important. This study opens broad prospects for study of several phenomena related to the ecology of the water birds, and the conservation of the wetlands.Keywords: Algeria, Boussedra, nests, reproduction, water birds
Procedia PDF Downloads 2571920 Time Series Simulation by Conditional Generative Adversarial Net
Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto
Abstract:
Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.Keywords: conditional generative adversarial net, market and credit risk management, neural network, time series
Procedia PDF Downloads 1431919 Optimization Parameters Using Response Surface Method on Biomechanical Analysis for Malaysian Soccer Players
Authors: M. F. M. Ali, A. R. Ismail, B. M. Deros
Abstract:
Soccer is very popular and ranked as the top sports in the world as well as in Malaysia. Although soccer sport in Malaysia is currently professionalized, but it’s plunging achievements within recent years continue and are not to be proud of. After review, the Malaysian soccer players are still weak in terms of kicking techniques. The instep kick is a technique, which is often used in soccer for the purpose of short passes and making a scoring. This study presents the 3D biomechanics analysis on a soccer player during performing instep kick. This study was conducted to determine the optimization value for approach angle, distance of supporting leg from the ball and ball internal pressure respect to the knee angular velocity of the ball on the kicking leg. Six subjects from different categories using dominant right leg and free from any injury were selected to take part in this study. Subjects were asked to perform one step instep kick according to the setting for the variables with different parameter. Data analysis was performed using 3 Dimensional “Qualisys Track Manager” system and will focused on the bottom of the body from the waist to the ankle. For this purpose, the marker will be attached to the bottom of the body before the kicking is perform by the subjects. Statistical analysis was conducted by using Minitab software using Response Surface Method through Box-Behnken design. The results of this study found the optimization values for all three parameters, namely the approach angle, 53.6º, distance of supporting leg from the ball, 8.84sm and ball internal pressure, 0.9bar with knee angular velocity, 779.27 degrees/sec have been produced.Keywords: biomechanics, instep kick, soccer, optimization
Procedia PDF Downloads 2301918 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes
Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali
Abstract:
Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture
Procedia PDF Downloads 541917 The Influence of Air Temperature Controls in Estimation of Air Temperature over Homogeneous Terrain
Authors: Fariza Yunus, Jasmee Jaafar, Zamalia Mahmud, Nurul Nisa’ Khairul Azmi, Nursalleh K. Chang, Nursalleh K. Chang
Abstract:
Variation of air temperature from one place to another is cause by air temperature controls. In general, the most important control of air temperature is elevation. Another significant independent variable in estimating air temperature is the location of meteorological stations. Distances to coastline and land use type are also contributed to significant variations in the air temperature. On the other hand, in homogeneous terrain direct interpolation of discrete points of air temperature work well to estimate air temperature values in un-sampled area. In this process the estimation is solely based on discrete points of air temperature. However, this study presents that air temperature controls also play significant roles in estimating air temperature over homogenous terrain of Peninsular Malaysia. An Inverse Distance Weighting (IDW) interpolation technique was adopted to generate continuous data of air temperature. This study compared two different datasets, observed mean monthly data of T, and estimation error of T–T’, where T’ estimated value from a multiple regression model. The multiple regression model considered eight independent variables of elevation, latitude, longitude, coastline, and four land use types of water bodies, forest, agriculture and build up areas, to represent the role of air temperature controls. Cross validation analysis was conducted to review accuracy of the estimation values. Final results show, estimation values of T–T’ produced lower errors for mean monthly mean air temperature over homogeneous terrain in Peninsular Malaysia.Keywords: air temperature control, interpolation analysis, peninsular Malaysia, regression model, air temperature
Procedia PDF Downloads 3741916 Assessment of Platelet and Lymphocyte Interaction in Autoimmune Hyperthyroidism
Authors: Małgorzata Tomczyńska, Joanna Saluk-Bijak
Abstract:
Background: Graves’ disease is a frequent organ-specific autoimmune thyroid disease, which characterized by the presence of different kind autoantibodies, that, in most cases, act as agonists of the thyrotropin receptor, leading to hyperthyroidism. Role of platelets and lymphocytes can be modulated in the pathophysiology of thyroid autoimmune diseases. Interference in the physiology of platelets can lead to enhanced activity of these cells. Activated platelets can bind to circulating lymphocytes and to affect lymphocyte adhesion. Platelets and lymphocytes can regulate mutual functions. Therefore, the activation of T lymphocytes, as well as blood platelets, is associated with the development of inflammation and oxidative stress within the target tissue. The present study was performed to investigate a platelet-lymphocyte relation by assessing the degree of their mutual aggregation in whole blood of patients with Graves’ disease. Also, the purpose of this study was to examine the impact of platelet interaction on lymphocyte migration capacity. Methods: 30 patients with Graves’ disease were recruited in the study. The matched 30 healthy subjects were served as the control group. Immunophenotyping of lymphocytes was carried out by flow cytometry method. A CytoSelect™ Cell Migration Assay Kit was used to evaluate lymphocyte migration and adhesion to blood platelets. Visual assessment of lymphocyte-platelet aggregate morphology was done using confocal microscope after magnetic cell isolation by Miltenyi Biotec. Results: The migration and functional responses of lymphocytes to blood platelets were greater in the group of Graves’ disease patients compared with healthy controls. The group of Graves’ disease patients exhibited a reduced T lymphocyte and a higher B cell count compared with controls. Based on microscopic analysis, more platelet-lymphocyte aggregates were found in patients than in control. Conclusions: Studies have shown that in Graves' disease, lymphocytes show increased platelet affinity, more strongly migrating toward them, and forming mutual cellular conglomerates. This may be due to the increased activation of blood platelets in this disease.Keywords: blood platelets, cell migration, Graves’ disease, lymphocytes, lymphocyte-platelet aggregates
Procedia PDF Downloads 2271915 Urban Health and Strategic City Planning: A Case from Greece
Authors: Alexandra P. Alexandropoulou, Andreas Fousteris, Eleni Didaskalou, Dimitrios A. Georgakellos
Abstract:
As urbanization is becoming a major stress factor not only for the urban environment but also for the wellbeing of city dwellers, incorporating the issues of urban health in strategic city planning and policy-making has never been more relevant. The impact of urbanization can vary from low to severe and relates to all non-communicable diseases caused by the different functions of cities. Air pollution, noise pollution, water and soil pollution, availability of open green spaces, and urban heat island are the major factors that can compromise citizens' health. Urban health describes the effects of the social environment, the physical environment, and the availability and accessibility to health and social services. To assess the quality of urban wellbeing, all urban characteristics that might have an effect on citizens' health must be considered, evaluated, and introduced in integrated local planning. A series of indices and indicators can be used to better describe these effects and set the target values in policy making. Local strategic planning is one of the most valuable development tools a local city administration can possess; thus, it has become mandatory under Greek law for all municipalities. It involves a two-stage procedure; the first aims to collect, analyse and evaluate data on the current situation of the city (administrative data, population data, environmental data, social data, swot analysis), while the second aims to introduce a policy vision described and supported by distinct (nevertheless integrated) actions, plans and measures to be implemented with the aim of city development and citizen wellbeing. In this procedure, the element of health is often neglected or under-evaluated. A relative survey was conducted among all Greek local authorities in order to shed light on the current situation. Evidence shows that the rate of incorporation of health in strategic planning is lacking behind. The survey also highlights key hindrances and concerns raised by local officials and suggests a path for the way forward.Keywords: urban health, strategic planning, local authorities, integrated development
Procedia PDF Downloads 741914 The Mediating Role of Psychological Factors in the Relationships Between Youth Problematic Internet and Subjective Well-Being
Authors: Dorit Olenik-Shemesh, Tali Heiman
Abstract:
The rapid increase in the massive use of the internet in recent yearshas led to an increase in the prevalence of a phenomenon called 'Problematic Internet use' (PIU), an emerging, growing health problem, especially during adolescents, that poses a challenge for mental health research and practitioners. Problematic Internet use (PIU) is defined as an excessive overuse of the internet, including an inability to control time spent on the internet, cognitivepreoccupation with the Internet, and continued use in spite of the adverse consequences, which may lead to psychological, social, and academic difficulties in one's life and daily functioning. However, little is known about the nature of the nexusbetween PIU and subjective well-being among adolescents. The main purpose of the current study was to explore in depth the network of connections between PIU, sense of well-being, and fourpersonal-emotional factors (resilience, self-control, depressive mood, and loneliness) that may mediate these relationships. A total sample of 433 adolescents, 214 (49.4%) girls and 219 (50.6%) boys between the ages of 12–17 (mean = 14.9, SD = 2.16), completed self-reportquestionnaires relating to the study variables. In line with the hypothesis, analysis of a Structural Equation modeling (SEM) revealed the main following results: high levels of PIU predicted low levels of well-being among adolescents. In addition, low levels of resilience and high levels of depressivemood (together), as well as low levels of self control and high levels of depressivemood (together), as well as low levels of resilience and high levels of loneliness, mediated the relationships between PIU and well-being. In general, girls were found to be higher in PIU and inresilience than boys. The study results revealed specific implications for developing intervention programs for adolescents in the context of PIU; aiming at more balanced adjusted use of the Internet along withpreventingthe decrease in well being.Keywords: probelmatic inetrent Use, well-being, adolescents, SEM model
Procedia PDF Downloads 1681913 Leading Virtual Project Teams in the Post Pandemic Era: Trust and Conflict Management Strategies
Authors: Vidya Badrinarayanan, Appa Iyer Sivakumar
Abstract:
The coronavirus pandemic has sent an important message that future project teams need to be trained to work under virtual conditions, which has already become the new norm in organizations across the world. As organizations increasingly rely on virtual teams to achieve project objectives, it is essential to comprehend how leadership functions in virtual project teams. The purpose of this research is to analyze the leadership behaviors exhibited by project managers for building trust and managing conflicts effectively in virtual project teams. This convergent parallel mixed method research was conducted by surveying 185 virtual leaders and conducting a semi-structured interview with 13 senior virtual leaders involved in managing projects across the industry sectors. The research findings indicate that establishing trust and managing conflicts were ranked as significant challenges in leading virtual project teams in the post-pandemic era. In contrast to earlier findings, our research findings suggest that productivity was not ranked as a significant challenge in leading virtual project teams. This indeed is a positive finding for organizations to consider adopting virtual project teams in the long run. Additionally, the research findings recommend that virtual leaders need to strive to build a high-trust environment and develop effective conflict resolution skills to improve the effectiveness of virtual project teams. As the project management profession struggles with low project success rates, mixed-method research aims to contribute to the knowledge in the growing research area of virtual project leadership. This research contributes to the knowledge by offering first-person accounts from senior virtual leaders on the innovative strategies they had implemented for building trust and resolving conflicts effectively in the virtual project when there were limited opportunities for face-to-face interaction on account of the pandemic. In addition, the leadership framework created as a part of this research for trust development and conflict management in virtual project teams will guide project managers to improve virtual project team effectiveness.Keywords: conflict management, trust building, virtual leadership, virtual teams
Procedia PDF Downloads 1891912 Secularization of Europe and the Rise of Nationalism
Authors: Sterling C. DeVerter
Abstract:
In recent decades, there has been continually growing concern amongst scholars and political leaders towards the global resurgence of nationalism, particularly in Europe, the United States, and China. However, very few studies have attempted to empirically examine the relationship between religion and nationalism at the level of the individual, and none are known to have done so quantitatively. Building on Tajfel's and Turner's (1978) Social Identity Theory (SIT), and Anderson (1991) and Marx (2003), this study will employ SIT and regression analysis to compare the sources and patterns of nationalistic sentiment among European respondents in eight countries to the average levels of self-reported religiosity, religious participation, age, education, and income levels. Survey reports from the International Social Survey Programme were the primary quantitative data sources. It was hypothesized that the increase in nationalism across Europe follows this same evolution as first identified by Anderson, and is positively correlated to the reduction in reported religiosity. However, this study failed to reject the null, there was no substantial ( < .035) correlation between nationalistic sentiment and any of the measures of religiosity, nor were there any substantial correlations between nationalistic sentiment and either of the three control variables ( < .008). Across all countries examined, it was discovered that inclusionary nationalism has slightly declined (-5.08%), while exclusionary nationalism had increased substantially (+17.25%). The combined trend reflected an overall rise in nationalism across the time period and a forecast that suggests the current levels are also elevated. The primary implications include the demand to readdress the notion of religion and nationalism, and the correlation between the two, as well as the current nationalism trends in terms of support or non-support for future political and social movements.Keywords: European Union, secularization, nationalism, social identity theory
Procedia PDF Downloads 1271911 Probability-Based Damage Detection of Structures Using Model Updating with Enhanced Ideal Gas Molecular Movement Algorithm
Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee
Abstract:
Model updating method has received increasing attention in damage detection structures based on measured modal parameters. Therefore, a probability-based damage detection (PBDD) procedure based on a model updating procedure is presented in this paper, in which a one-stage model-based damage identification technique based on the dynamic features of a structure is investigated. The presented framework uses a finite element updating method with a Monte Carlo simulation that considers the uncertainty caused by measurement noise. Enhanced ideal gas molecular movement (EIGMM) is used as the main algorithm for model updating. Ideal gas molecular movement (IGMM) is a multiagent algorithm based on the ideal gas molecular movement. Ideal gas molecules disperse rapidly in different directions and cover all the space inside. This is embedded in the high speed of molecules, collisions between them and with the surrounding barriers. In IGMM algorithm to accomplish the optimal solutions, the initial population of gas molecules is randomly generated and the governing equations related to the velocity of gas molecules and collisions between those are utilized. In this paper, an enhanced version of IGMM, which removes unchanged variables after specified iterations, is developed. The proposed method is implemented on two numerical examples in the field of structural damage detection. The results show that the proposed method can perform well and competitive in PBDD of structures.Keywords: enhanced ideal gas molecular movement (EIGMM), ideal gas molecular movement (IGMM), model updating method, probability-based damage detection (PBDD), uncertainty quantification
Procedia PDF Downloads 2771910 Analysis of Rainfall and Malaria Trends in Limpopo Province, South Africa
Authors: Abiodun M. Adeola, Hannes Rautenbach, Gbenga J. Abiodun, Thabo E. Makgoale, Joel O. Botai, Omolola M. Adisa, Christina M. Botai
Abstract:
There was a surge in malaria morbidity as well as mortality in 2016/2017 malaria season in malaria-endemic regions of South Africa. Rainfall is a major climatic driver of malaria transmission and has potential use for predicting malaria. Annual and seasonal trends and cross-correlation analyses were performed on time series of monthly total rainfall (derived from interpolated weather station data) and monthly malaria cases in five districts of Limpopo Province for the period of 1998 to 2017. The time series analysis indicated that an average of 629.5mm of rainfall was received over the period of study. The rainfall has an annual variation of about 0.46%. Rainfall amount varies among the five districts, with the north-eastern part receiving more rainfall. Spearman’s correlation analysis indicated that total monthly rainfall with one to two months lagged effect is significant in malaria transmission in all the five districts. The strongest correlation is noticed in Mopani (r=0.54; p-value = < 0.001), Vhembe (r=0.53; p-value = < 0.001), Waterberg (r=0.40; p-value = < 0.001), Capricorn (r=0.37; p-value = < 0.001) and lowest in Sekhukhune (r=0.36; p-value = < 0.001). More particularly, malaria morbidity showed a strong relationship with an episode of rainfall above 5-year running means of rainfall of 400 mm. Both annual and seasonal analyses showed that the effect of rainfall on malaria varied across the districts and it is seasonally dependent. Adequate understanding of climatic variables dynamics annually and seasonally is imperative in seeking answers to malaria morbidity among other factors, particularly in the wake of the sudden spike of the disease in the province.Keywords: correlation, malaria, rainfall, seasonal, trends
Procedia PDF Downloads 2211909 Factors Affecting Internet Behavior and Life Satisfaction of Older Adult Learners with Use of Smartphone
Authors: Horng-Ji Lai
Abstract:
The intuitive design features and friendly interface of smartphone attract older adults. In Taiwan, many senior education institutes offer smartphone training courses for older adult learners who are interested in learning this innovative technology. It is expected that the training courses can help them to enjoy the benefits of using smartphone and increase their life satisfaction. Therefore, it is important to investigate the factors that influence older adults’ behavior of using smartphone. The purpose of the research was to develop and test a research model that investigates the factors (self-efficacy, social connection, the need to seek health information, and the need to seek financial information) affecting older adult learners’ Internet behaviour and their life satisfaction with use of smartphone. Also, this research sought to identify the relationship between the proposed variables. Survey method was used to collect research data. A Structural Equation Modeling was performed using Partial Least Squares (PLS) regression for data exploration and model estimation. The participants were 394 older adult learners from smartphone training courses in active aging learning centers located in central Taiwan. The research results revealed that self-efficacy significantly affected older adult learner’ social connection, the need to seek health information, and the need to seek financial information. The construct of social connection yielded a positive influence in respondents’ life satisfaction. The implications of these results for practice and future research are also discussed.Keywords: older adults, smartphone, internet behaviour, life satisfaction
Procedia PDF Downloads 1911908 Reasons for Adhesion of Membership: A Case Study of Brazilian Soccer Team
Authors: Alexandre Olkoski, Marcelo Curth
Abstract:
Football in Brazil is considered a passion, being the most popular sport in the country, both by the consumer public and by the means of communication that divulge it individually, when compared with other sports modalities. In the last two decades, the soccer teams have given greater importance to the management, since they understood that the same should be managed as a company, but with peculiarities related to the business. In this sense, Brazilian soccer clubs started to make bigger investments for the adhesion of fans in their social frames, allowing a greater need of understanding about the profile of this group of fans/clients. Thus, this work aims to understand the reasons that cause the fans to join the club and identify variables present in the process of intention to join the club. For that, a qualitative exploratory research was conducted, in which thirty-one membership of a soccer club from southern Brazil were interviewed. Based on the interviews, five categories were classified as emotional aspects (passion and love), cognitive aspects (easy access to the stadium and promotional values in tickets), external influences (family and friends), situational aspects (club moment) and aspects related to the event (engagement by modality). As results found in the analysis, it can be highlighted that the motivation of the majority of the respondents to become a member of the analyzed club, is related to the emotional aspects, such as passion and love. Thus, it is perceived that sport, in the case of soccer, generates in the involved ones (fans and leaders) different manifestations, suggesting that the management of this type of business has great complexity and should not be observed only by the spectrum of the club like a business.Keywords: consumer behavior, marketing, membership, soccer
Procedia PDF Downloads 3331907 Assessment of Training, Job Attitudes and Motivation: A Mediation Model in Banking Sector of Pakistan
Authors: Abdul Rauf, Xiaoxing Liu, Rizwan Qaisar Danish, Waqas Amin
Abstract:
The core intention of this study is to analyze the linkage of training, job attitudes and motivation through a mediation model in the banking sector of Pakistan. Moreover, this study is executed to answer a range of queries regarding the consideration of employees about training, job satisfaction, motivation and organizational commitment. Hence, the association of training with job satisfaction, job satisfaction with motivation, organizational commitment with job satisfaction, organization commitment as independently with motivation and training directly related to motivation is determined in this course of study. A questionnaire crafted for comprehending the purpose of this study by including four variables such as training, job satisfaction, motivation and organizational commitment which have to measure. A sample of 450 employees from seventeen private (17) banks and two (2) public banks was taken on the basis of convenience sampling from Pakistan. However, 357 questionnaires, completely filled were received back. AMOS used for assessing the conformity factor analysis (CFA) model and statistical techniques practiced to scan the collected data (i.e.) descriptive statistics, regression analysis and correlation analysis. The empirical findings revealed that training and organizational commitment has a significant and positive impact directly on job satisfaction and motivation as well as through the mediator (job satisfaction) also the impact sensing in the same way on the motivation of employees in the financial Banks of Pakistan. In this research study, the banking sector is under discussion, so the findings could not generalize on other sectors such as manufacturing, textiles, telecom, and medicine, etc. The low sample size is also the limitation of this study. On the foundation of these results the management fascinates to make the revised strategies regarding training program for the employees as it enhances their motivation level, and job satisfaction on a regular basis.Keywords: job satisfaction, motivation, organizational commitment, Pakistan, training
Procedia PDF Downloads 2541906 Snails and Fish as Pollution Biomarkers in Lake Manzala and Laboratory C: Laboratory Exposed Snails to Chemical Mixtures
Authors: Hanaa M. M. El-Khayat, Hoda Abdel-Hamid, Kadria M. A. Mahmoud, Hanan S. Gaber, Hoda, M. A. Abu Taleb, Hassan E. Flefel
Abstract:
Snails are considered as suitable diagnostic organisms for heavy metal–contaminated sites. Biomphalaria alexandrina snails are used in this work as pollution bioindicators after exposure to chemical mixtures consisted of heavy metals (HM); zinc (Zn), copper (Cu) and lead (Pb); and persistent organic pollutants; Decabromodiphenyl ether 98% (D) and Aroclor 1254 (A). The impacts of these tested chemicals, individual and mixtures, on liver and kidney functions, antioxidant enzymes, complete blood picture, and tissue histology were studied. Results showed that Cu was proved to be the highly toxic against snails than Zn and Pb where LC50 values were 1.362, 213.198 and 277.396 ppm, respectively. Also, B. alexandrina snails exposed to the mixture of HM (¼ LC5 Cu, Pb and Zn) showed the highest bioaccumulation of Cu and Zn in their whole tissue, the most significant increase in AST, ALT & ALP activities and the highest significant levels of total protein, albumin and globulin. Results showed significant alterations in CAT activity in snail tissue extracts while snail samples exposed to most experimental tests showed significant increase in GST activity. Snail samples that exposed to HM mixtures showed a significant decrease in total hemocytes count while snail samples that exposed to mixtures containing A & D showed a significant increase in total hemocytes and Hyalinocytes. Histopathological alterations in snail samples exposed to individual HM and their mixtures for 4 weeks showed degeneration, edema, hyper trophy and vaculation in head-foot muscle, degeneration and necrotic changes in the digestive gland and accumulation in most tested organs. Also, the hermaphrodite gland showed mature ova with irregular shape and reduction in sperm number. In conclusion, the resulted damage and alterations in B. alexandrina studied parameters can be used as bioindicators to the presence of pollutants in its habitats.Keywords: Biomphalaria, Zn, Cu, Pb, AST, ALT, ALP, total protein albumin, globulin, CAT, histopathology
Procedia PDF Downloads 3531905 Nexus of Pakistan Stock Exchange with World's Top Five Stock Markets after Launching China Pakistan Economic Corridor
Authors: Abdul Rauf, Xiaoxing Liu, Waqas Amin
Abstract:
Stock markets are fascinating more and more conductive to each other due to liberalization and globalization trends in recent years. China Pakistan Economic Corridor (CPEC) has dragged Pakistan stock exchange to the new heights and global investors are making investments to reap its benefits. So, in investors and government perspective, the study focuses co-integration of Pakistan stock exchange with world’s five big economies i-e US, China, England, Japan, and France. The time period of study is seven years i-e 2010 to 2016 and daily values of major indices of corresponding stock exchanges collected. All variables of that particular study are stationary at first difference confirmed by unit root test. The study Johansen system co integration test for analysis of data along with Granger causality test is performed for result purpose. Co integration test asserted that Pakistan stock exchange integrated with Shanghai stock exchange (SSE) and NIKKEI stock exchange in short run. Granger causality test also proclaimed these results. But NASDAQ, FTSE, DAX not co integrated and Granger cause at a short run but long run these markets are bonded with Pakistan stock exchange (KSE). VECM also confirmed this liaison in short and long run. Investors, therefore, need to be updated regarding co-integration of world’s stock exchanges to ensure well diversified and risk adjusted high returns. Equally, governments also need updated status so that they could reduce co-integration through multiple steps and hence drag investors for diversified investment.Keywords: CPEC, DAX, FTSE, liberalization, NASDAQ, NIKKEI, SSE, stock markets
Procedia PDF Downloads 3021904 The Effect of Accounting Conservatism on Cost of Capital: A Quantile Regression Approach for MENA Countries
Authors: Maha Zouaoui Khalifa, Hakim Ben Othman, Hussaney Khaled
Abstract:
Prior empirical studies have investigated the economic consequences of accounting conservatism by examining its impact on the cost of equity capital (COEC). However, findings are not conclusive. We assume that inconsistent results of such association may be attributed to the regression models used in data analysis. To address this issue, we re-examine the effect of different dimension of accounting conservatism: unconditional conservatism (U_CONS) and conditional conservatism (C_CONS) on the COEC for a sample of listed firms from Middle Eastern and North Africa (MENA) countries, applying quantile regression (QR) approach developed by Koenker and Basset (1978). While classical ordinary least square (OLS) method is widely used in empirical accounting research, however it may produce inefficient and bias estimates in the case of departures from normality or long tail error distribution. QR method is more powerful than OLS to handle this kind of problem. It allows the coefficient on the independent variables to shift across the distribution of the dependent variable whereas OLS method only estimates the conditional mean effects of a response variable. We find as predicted that U_CONS has a significant positive effect on the COEC however, C_CONS has a negative impact. Findings suggest also that the effect of the two dimensions of accounting conservatism differs considerably across COEC quantiles. Comparing results from QR method with those of OLS, this study throws more lights on the association between accounting conservatism and COEC.Keywords: unconditional conservatism, conditional conservatism, cost of equity capital, OLS, quantile regression, emerging markets, MENA countries
Procedia PDF Downloads 356