Search results for: cell parameter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5582

Search results for: cell parameter

992 Microbial Electrochemical Remediation System: Integrating Wastewater Treatment with Simultaneous Power Generation

Authors: Monika Sogani, Zainab Syed, Adrian C. Fisher

Abstract:

Pollution of estrogenic compounds has caught the attention of researchers as the slight increase of estrogens in the water bodies has a significant impact on the aquatic system. They belong to a class of endocrine disrupting compounds (EDCs) and are able to mimic hormones or interfere with the action of endogenous hormones. The microbial electrochemical remediation system (MERS) is employed here for exploiting an electrophototrophic bacterium for evaluating the capacity of biodegradation of ethinylestradiol hormone (EE2) under anaerobic conditions with power generation. MERS using electro-phototrophic bacterium offers a tailored solution of wastewater treatment in a developing country like India which has a huge solar potential. It is a clean energy generating technology as they require only sunlight, water, nutrients, and carbon dioxide to operate. Its main feature that makes it superior over other technologies is that the main fuel for this MERS is sunlight which is indefinitely present. When grown in light with organic compounds, these photosynthetic bacteria generate ATP by cyclic photophosphorylation and use carbon compounds to make cell biomass (photoheterotrophic growth). These cells showed EE2 degradation and were able to generate hydrogen as part of the process of nitrogen fixation. The two designs of MERS were studied, and a maximum of 88.45% decrease in EE2 was seen in a total period of 14 days in the better design. This research provides a better insight into microbial electricity generation and self-sustaining wastewater treatment facilities. Such new models of waste treatment aiming waste to energy generation needs to be followed and implemented for building a resource efficient and sustainable economy.

Keywords: endocrine disrupting compounds, ethinylestradiol, microbial electrochemical remediation systems, wastewater treatment

Procedia PDF Downloads 116
991 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band

Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman

Abstract:

In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.

Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite

Procedia PDF Downloads 234
990 Oxidative Antioxidative Status and DNA Damage Profile Induced by Chemotherapy in Algerian Children with Lymphoma

Authors: Assia Galleze, Abdurrahim Kocyigit, Nacira Cherif, Nidel Benhalilou, Nabila Attal, Chafia Touil Boukkoffa, Rachida Raache

Abstract:

Introduction and aims: Chemotherapeutic agents used to inhibit cell division and reduce tumor growth, increase reactive oxygen species levels, which contributes to their genotoxicity [1]. The comet assay is an inexpensive and rapid method to detect the damage at cellular levels and has been used in various cancer populations undergoing chemotherapy [2,3]. The present study aim to assess the oxidative stress and the genotoxicity induced by chemotherapy by the determination of plasma malondialdehyde (MDA) level, protein carbonyl (PC) content, superoxide dismutase (SOD) activity and lymphocyte DNA damage in Algerian children with lymphoma. Materials and Methods: For our study, we selected thirty children with lymphoma treated in university hospital of Beni Messous, Algeria, and fifty unrelated subjects as controls, after obtaining the informed consent in accordance with the Declaration of Helsinki (1964). Plasma levels of MDA, PC and SOD activity were spectrophotometrically measured, while DNA damage was assessed by alkaline comet assay in peripheral blood leukocytes. Results and Discussion: Plasma MDA, PC levels and lymphocyte DNA damage, were found to be significantly higher in lymphoma patients than in controls (p < 0.001). Whereas, SOD activity in lymphoma patients was significantly lower than in healthy controls (p < 0.001). There were significant positive correlations between DNA damage, MDA and PC in patients (r = 0.96, p < 0.001, r = 0.97, p < 0.001, respectively), and negative correlation with SOD (r = 0.87, p < 0.01). Conclusion and Perspective: Our results indicated that, leukocytes DNA damage and oxidative stress were significantly higher in lymphoma patients, suggesting that the direct effect of chemotherapy and the alteration of the redox balance may influence oxidative/antioxidative status.

Keywords: chemotherapy, comet assay, DNA damage, lymphoma

Procedia PDF Downloads 133
989 Rare-Earth Ions Doped Zirconium Oxide Layers for Optical and Photovoltaic Applications

Authors: Sylwia Gieraltowska, Lukasz Wachnicki, Bartlomiej S. Witkowski, Marek Godlewski

Abstract:

Oxide layers doped with rare-earth (RE) ions in optimized way can absorb short (ultraviolet light), which will be converted to visible light by so-called down-conversion. Down-conversion mechanisms are usually exploited to modify the incident solar spectrum. In down conversion, multiple low-energy photons are generated to exploit the energy of one incident high-energy photon. These RE-doped oxide materials have attracted a great deal of attention from researchers because of their potential for optical manipulation in optical devices (detectors, temperature sensors, and compact solid-state lasers, light-emitting diodes), bio-analysis, medical therapy, display technologies, and light harvesting (such as in photovoltaic cells). The zirconium dioxide (ZrO2) doped RE ions (Eu, Tb, Ce) multilayer structures were tested as active layers, which can convert short wave emission to light in the visible range (the down-conversion mechanism). For these applications original approach of deposition ZrO2 layers using the Atomic Layer Deposition (ALD) method and doping these layers with RE ions using the spin-coating technique was used. ALD films are deposited at relatively low temperature (well below 250°C). This can be an effective method to achieve the white-light emission and to improve on this way light conversion efficiency, by an extension of absorbed spectral range by a solar cell material. Photoluminescence (PL), X-ray diffraction (XRD), scanning electron microscope (SEM) and atomic force microscope (AFM) measurement are analyzed. The research was financially supported by the National Science Centre (decision No. DEC-2012/06/A/ST7/00398 and DEC- 2013/09/N/ST5/00901).

Keywords: ALD, oxide layers, photovoltaics, thin films

Procedia PDF Downloads 268
988 Thermal Evaluation of Printed Circuit Board Design Options and Voids in Solder Interface by a Simulation Tool

Authors: B. Arzhanov, A. Correia, P. Delgado, J. Meireles

Abstract:

Quad Flat No-Lead (QFN) packages have become very popular for turners, converters and audio amplifiers, among others applications, needing efficient power dissipation in small footprints. Since semiconductor junction temperature (TJ) is a critical parameter in the product quality. And to ensure that die temperature does not exceed the maximum allowable TJ, a thermal analysis conducted in an earlier development phase is essential to avoid repeated re-designs process with huge losses in cost and time. A simulation tool capable to estimate die temperature of components with QFN package was developed. Allow establish a non-empirical way to define an acceptance criterion for amount of voids in solder interface between its exposed pad and Printed Circuit Board (PCB) to be applied during industrialization process, and evaluate the impact of PCB designs parameters. Targeting PCB layout designer as an end user for the application, a user-friendly interface (GUI) was implemented allowing user to introduce design parameters in a convenient and secure way and hiding all the complexity of finite element simulation process. This cost effective tool turns transparent a simulating process and provides useful outputs after acceptable time, which can be adopted by PCB designers, preventing potential risks during the design stage and make product economically efficient by not oversizing it. This article gathers relevant information related to the design and implementation of the developed tool, presenting a parametric study conducted with it. The simulation tool was experimentally validated using a Thermal-Test-Chip (TTC) in a QFN open-cavity, in order to measure junction temperature (TJ) directly on the die under controlled and knowing conditions. Providing a short overview about standard thermal solutions and impacts in exposed pad packages (i.e. QFN), accurately describe the methods and techniques that the system designer should use to achieve optimum thermal performance, and demonstrate the effect of system-level constraints on the thermal performance of the design.

Keywords: QFN packages, exposed pads, junction temperature, thermal management and measurements

Procedia PDF Downloads 251
987 Breast Cancer Sensing and Imaging Utilized Printed Ultra Wide Band Spherical Sensor Array

Authors: Elyas Palantei, Dewiani, Farid Armin, Ardiansyah

Abstract:

High precision of printed microwave sensor utilized for sensing and monitoring the potential breast cancer existed in women breast tissue was optimally computed. The single element of UWB printed sensor that successfully modeled through several numerical optimizations was multiple fabricated and incorporated with woman bra to form the spherical sensors array. One sample of UWB microwave sensor obtained through the numerical computation and optimization was chosen to be fabricated. In overall, the spherical sensors array consists of twelve stair patch structures, and each element was individually measured to characterize its electrical properties, especially the return loss parameter. The comparison of S11 profiles of all UWB sensor elements is discussed. The constructed UWB sensor is well verified using HFSS programming, CST programming, and experimental measurement. Numerically, both HFSS and CST confirmed the potential operation bandwidth of UWB sensor is more or less 4.5 GHz. However, the measured bandwidth provided is about 1.2 GHz due to the technical difficulties existed during the manufacturing step. The configuration of UWB microwave sensing and monitoring system implemented consists of 12 element UWB printed sensors, vector network analyzer (VNA) to perform as the transceiver and signal processing part, the PC Desktop/Laptop acting as the image processing and displaying unit. In practice, all the reflected power collected from whole surface of artificial breast model are grouped into several numbers of pixel color classes positioned on the corresponding row and column (pixel number). The total number of power pixels applied in 2D-imaging process was specified to 100 pixels (or the power distribution pixels dimension 10x10). This was determined by considering the total area of breast phantom of average Asian women breast size and synchronizing with the single UWB sensor physical dimension. The interesting microwave imaging results were plotted and together with some technical problems arisen on developing the breast sensing and monitoring system are examined in the paper.

Keywords: UWB sensor, UWB microwave imaging, spherical array, breast cancer monitoring, 2D-medical imaging

Procedia PDF Downloads 189
986 Synthesis of Flexible Mn1-x-y(CexLay)O2-δ Ultrathin-Film Device for Highly-Stable Pseudocapacitance from end-of-life Ni-MH batteries

Authors: Samane Maroufi, Rasoul Khayyam Nekouei, Sajjad Sefimofarah, Veena Sahajwalla

Abstract:

The present work details a three-stage strategy based on selective purification of rare earth oxide (REOs) isolated from end-of-life nickel-metal hydride (Ni-MH) batteries leading to high-yield fabrication of defect-rich Mn1-x-y(CeₓLaᵧ)O2-δ film. In step one, major impurities (Fe and Al) were removed from a REE-rich solution. In step two, the resulting solution with trace content of Mn was further purified through electrodeposition which resulted in the synthesis of a non-stoichiometric Mn₋₁₋ₓ₋ᵧ(CeₓLaₓᵧ)O2-δ ultra-thin film, with controllable thicknesses (5-650 nm) and transmittance (~29-100%)in which Ce4+/3+ and La3+ ions were dissolved in MnO2-x lattice. Due to percolation impacts on the optoelectronic properties of ultrathin films, a representative Mn1-x-y(CexLay)O2-δ film with 86% transmittance exhibited an outstanding areal capacitance of 3.4 mF•cm-2, mainly attributed to the intercalation/de-intercalation of anionic O2- charge carriers through the atomic tunnels of the stratified Mn1-x-y(CexLay)O2-δ crystallites. Furthermore, the Mn1-x-y(CexLay)O2-δ exhibited excellent capacitance retention of ~90% after 16,000 cycles. Such stability was shown to be associated with intervalence charge transfers occurring among interstitial Ce/La cations and Mn oxidation states within the Mn₋₁₋ₓ₋ᵧ(CexLay)O2-δ structure. The energy and power densities of the transparent flexible Mn₋₁₋ₓ₋ᵧ(CexLay)O2-δ full-cell pseudocapacitor device with a solid-state electrolyte was measured to be 0.088 µWh.cm-2 and 843 µW.cm-2, respectively. These values showed insignificant changes under vigorous twisting and bending to 45-180˚, confirming these materials are intriguing alternatives for size-sensitive energy storage devices. In step three, the remaining solution purified further, that led to the formation of REOs (La, Ce, and Nd) nanospheres with ~40-50 nm diameter.

Keywords: spent Ni-MH batteries, green energy, flexible pseudocapacitor, rare earth elements

Procedia PDF Downloads 131
985 Assessing the Effect of Waste-based Geopolymer on Asphalt Binders

Authors: Amani A. Saleh, Maram M. Saudy, Mohamed N. AbouZeid

Abstract:

Asphalt cement concrete is a very commonly used material in the construction of roads. It has many advantages, such as being easy to use as well as providing high user satisfaction in terms of comfortability and safety on the road. However, there are some problems that come with asphalt cement concrete, such as its high carbon footprint, which makes it environmentally unfriendly. In addition, pavements require frequent maintenance, which could be very costly and uneconomic. The aim of this research is to study the effect of mixing waste-based geopolymers with asphalt binders. Geopolymer mixes were prepared by combining alumino-silicate sources such as fly ash, silica fumes, and metakaolin with alkali activators. The purpose of mixing geopolymers with the asphalt binder is to enhance the rheological and microstructural properties of asphalt. This was done through two phases, where the first phase was developing an optimum mix design of the geopolymer additive itself. The following phase was testing the geopolymer-modified asphalt binder after the addition of the optimum geopolymer mix design to it. The testing of the modified binder is performed according to the Superpave testing procedures, which include the dynamic shear rheometer to measure parameters such as rutting and fatigue cracking, and the rotational viscometer to measure workability. In addition, the microstructural properties of the modified binder is studied using the environmental scanning electron microscopy test (ESEM). In the testing phase, the aim is to observe whether the addition of different geopolymer percentages to the asphalt binder will enhance the properties of the binder and yield desirable results. Furthermore, the tests on the geopolymer-modified binder were carried out at fixed time intervals, therefore, the curing time was the main parameter being tested in this research. It was observed that the addition of geopolymers to asphalt binder has shown an increased performance of asphalt binder with time. It is worth mentioning that carbon emissions are expected to be reduced since geopolymers are environmentally friendly materials that minimize carbon emissions and lead to a more sustainable environment. Additionally, the use of industrial by-products such as fly ash and silica fumes is beneficial in the sense that they are recycled into producing geopolymers instead of being accumulated in landfills and therefore wasting space.

Keywords: geopolymer, rutting, superpave, fatigue cracking, sustainability, waste

Procedia PDF Downloads 125
984 Subcritical and Supercritical Water Gasification of Xylose

Authors: Shyh-Ming Chern, Te-Hsiu Tang

Abstract:

Hemicellulose is one of the major constituents of all plant cell walls, making up 15-25% of dry wood. It is a biopolymer from many different sugar monomers, including pentoses, like xylose, and hexoses, like mannose. In an effort to gasify real biomass in subcritical and supercritical water in a single process, it is necessary to understand the gasification of hemicellulose, in addition to cellulose and lignin, in subcritical and supercritical water. In the present study, xylose is chosen as the model compound for hemicellulose, since it has the largest amount in most hardwoods. Xylose is gasified in subcritical and supercritical water for the production of higher-valued gaseous products. Experiments were conducted with a 16-ml autoclave batch-type reactor. Hydrogen peroxide is adopted as the oxidant in an attempt to promote the gasification yield. The major operating parameters for the gasification include reaction temperature (400 - 600°C), reaction pressure (5 - 25 MPa), the concentration of xylose (0.05 and 0.30 M), and level of oxidant added (0 and 0.25 chemical oxygen demand). 102 experimental runs were completed out of 46 different set of experimental conditions. Product gases were analyzed with a GC-TCD and determined to be mainly composed of H₂ (10 – 74 mol. %), CO (1 – 56 mol. %), CH₄ (1 – 27 mol. %), CO₂ (10 – 50 mol. %), and C₂H₆ (0 – 8 mol. %). It has been found that the gas yield (amount of gas produced per gram of xylose gasified), higher heating value (HHV) of the dry product gas, and energy yield (energy stored in the product gas divided by the energy stored in xylose) all increase significantly with rising temperature and moderately with reducing pressure. The overall best operating condition occurred at 873 K and 10 MPa, with a gas yield of 54 mmol/g of xylose, a gas HHV of 440 kJ/mol, and an energy yield of 1.3. A seemingly unreasonably energy yield of greater than unity resulted from the external heating employed in the experiments to drive the gasification process. It is concluded that xylose can be completely gasified in subcritical and supercritical water under proper operating conditions. The addition of oxidant does not promote the gasification of xylose.

Keywords: gasification, subcritical water, supercritical water, xylose

Procedia PDF Downloads 232
983 Lymphomas as Estrogen-Regulated Cancers

Authors: M. S. Hasni, J. Guan, K. Yakimchuk, M. Berglund, B. Sander, G. Enblad, R. M. Amini, S. Okret

Abstract:

Lymphomas are generally not considered as endocrine-related cancers. However, most lymphoid malignancies show gender differences in incidence and show prognosis with males being more affected. Furthermore, some epidemiological data indicate a protective role of estrogens against Non-Hodgkin lymphomas. Recent studies have demonstrated estrogen receptor β (ERβ) to be the major ER expressed in normal and malignant cells of lymphoid origin. We have analyzed the effects of estradiol and selective ERα and ERβ agonists on lymphoma growth in culture and in vivo. Treating lymphoma cells with estradiol or ERα selective agonist had minor or no effect on cell growth while selective ERβ agonist treatment showed an antiproliferative effect. When grafting mice with murine T lymphoma cells, male mice developed larger tumors compared to female mice, a difference that was abolished following ovariectomy, demonstrating estrogen-dependent growth in vivo. When subcutaneously grafting lymphoma cells to mice, so far growth of all tested human B lymphoma tumors (Raji and Ramos Burkitt lymphoma, SU.DHL4 (GC) and U2932 (ABC) DLBCL, Granta-519, Maver1 and Z138 MCL cells), were reduced following treatment with ERβ selective agonist (ref. 2 and unpublished). Moreover, the number and size of liver foci of disseminating Raji cells was reduced. We have identified target genes and mechanism that could explain the above effects of ERβ agonists. This included effects on angio and lymphangiogenesis. Now we have further analyzed effects of ERβ agonists on Ibrutinib-sensitive and -insensitive MCL cells in xenograft experiments as well as ERβ expression in primary lymphoma material (DLBCL). Preliminary statistical analysis has been done correlating ERβ expression to other biomarkers and clinical data.

Keywords: lymphomas, estrogen receptors, cancer, liver foci

Procedia PDF Downloads 407
982 Increased Reaction and Movement Times When Text Messaging during Simulated Driving

Authors: Adriana M. Duquette, Derek P. Bornath

Abstract:

Reaction Time (RT) and Movement Time (MT) are important components of everyday life that have an effect on the way in which we move about our environment. These measures become even more crucial when an event can be caused (or avoided) in a fraction of a second, such as the RT and MT required while driving. The purpose of this study was to develop a more simple method of testing RT and MT during simulated driving with or without text messaging, in a university-aged population (n = 170). In the control condition, a randomly-delayed red light stimulus flashed on a computer interface after the participant began pressing the ‘gas’ pedal on a foot switch mat. Simple RT was defined as the time between the presentation of the light stimulus and the initiation of lifting the foot from the switch mat ‘gas’ pedal; while MT was defined as the time after the initiation of lifting the foot, to the initiation of depressing the switch mat ‘brake’ pedal. In the texting condition, upon pressing the ‘gas’ pedal, a ‘text message’ appeared on the computer interface in a dialog box that the participant typed on their cell phone while waiting for the light stimulus to turn red. In both conditions, the sequence was repeated 10 times, and an average RT (seconds) and average MT (seconds) were recorded. Condition significantly (p = .000) impacted overall RTs, as the texting condition (0.47 s) took longer than the no-texting (control) condition (0.34 s). Longer MTs were also recorded during the texting condition (0.28 s) than in the control condition (0.23 s), p = .001. Overall increases in Response Time (RT + MT) of 189 ms during the texting condition would equate to an additional 4.2 meters (to react to the stimulus and begin braking) if the participant had been driving an automobile at 80 km per hour. In conclusion, increasing task complexity due to the dual-task demand of text messaging during simulated driving caused significant increases in RT (41%), MT (23%) and Response Time (34%), thus further strengthening the mounting evidence against text messaging while driving.

Keywords: simulated driving, text messaging, reaction time, movement time

Procedia PDF Downloads 519
981 A Study on Adsorption Ability of MnO2 Nanoparticles to Remove Methyl Violet Dye from Aqueous Solution

Authors: Zh. Saffari, A. Naeimi, M. S. Ekrami-Kakhki, Kh. Khandan-Barani

Abstract:

The textile industries are becoming a major source of environmental contamination because an alarming amount of dye pollutants are generated during the dyeing processes. Organic dyes are one of the largest pollutants released into wastewater from textile and other industrial processes, which have shown severe impacts on human physiology. Nano-structure compounds have gained importance in this category due their anticipated high surface area and improved reactive sites. In recent years several novel adsorbents have been reported to possess great adsorption potential due to their enhanced adsorptive capacity. Nano-MnO2 has great potential applications in environment protection field and has gained importance in this category because it has a wide variety of structure with large surface area. The diverse structures, chemical properties of manganese oxides are taken advantage of in potential applications such as adsorbents, sensor catalysis and it is also used for wide catalytic applications, such as degradation of dyes. In this study, adsorption of Methyl Violet (MV) dye from aqueous solutions onto MnO2 nanoparticles (MNP) has been investigated. The surface characterization of these nano particles was examined by Particle size analysis, Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy and X-Ray Diffraction (XRD). The effects of process parameters such as initial concentration, pH, temperature and contact duration on the adsorption capacities have been evaluated, in which pH has been found to be most effective parameter among all. The data were analyzed using the Langmuir and Freundlich for explaining the equilibrium characteristics of adsorption. And kinetic models like pseudo first- order, second-order model and Elovich equation were utilized to describe the kinetic data. The experimental data were well fitted with Langmuir adsorption isotherm model and pseudo second order kinetic model. The thermodynamic parameters, such as Free energy of adsorption (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) were also determined and evaluated.

Keywords: MnO2 nanoparticles, adsorption, methyl violet, isotherm models, kinetic models, surface chemistry

Procedia PDF Downloads 255
980 Interactions of Socioeconomic Status, Age at Menarche, Body Composition and Bone Mineral Density in Healthy Turkish Female University Students

Authors: Betül Ersoy, Deniz Özalp Kizilay, Gül Gümüşer, Fatma Taneli

Abstract:

Introduction: Peak bone mass is reached in late adolescence in females. Age at menarche influences estrogen exposure, which plays a vital role in bone metabolism. The relationship between age at menarche and bone mineral density (BMD) is still controversial. In this study, we investigated the relationship between age at menarche, BMD, socioeconomic status (SES) and body composition in female university student. Participant and methods: A total of 138 healthy girls at late adolescence period (mean age 20.13±0.93 years, range 18-22) were included in this university school-based cross-sectional study in the urban area western region of Turkey. Participants have been randomly selected to reflect the university students studying in all faculties. We asked relevant questions about socioeconomic status and age at menarche to female university students. Students were grouped into three SES as lower, middle and higher according to the educational and occupational levels of their parents using Hollingshead index. Height and weight were measured. Body Mass Index (BMI) (kg/m2 ) was calculated. Dual energy X-ray absorptiometry (DXA) was performed using the Lunar DPX series, and BMD and body composition were evaluated. Results: The mean age of menarche of female university student included in the study was 13.09.±1.3 years. There was no significant difference between the three socioeconomic groups in terms of height, body weight, age at menarche, BMD [BMD (gr/cm2 ) (L2-L4) and BMD (gr/cm2 ) (total body)], and body composition (lean tissue, fat tissue, total fat, and body fat) (p>0.05). While no correlation was found between the age at menarche and any parameter (p>0.05), a positive significant correlation was found between lean tissue and BMD L2-L4 (r=0.286, p=0.01). When the relationships were evaluated separately according to socioeconomic status, there was a significant correlation between BMDL2-L4 (r: 0.431, p=0.005) and lean tissue in females with low SES, while this relationship disappeared in females with middle and high SES. Conclusion: Age at menarche did not change according to socioeconomic status, nor did BMD and body composition in female at late adolescents. No relationship was found between age at menarche and BMD and body composition determined by DEXA in female university student who were close to reaching peak bone mass. The results suggested that especially BMDL2-L4 might increase as lean tissue increases.

Keywords: bone, osteoposis, menarche, dexa

Procedia PDF Downloads 71
979 Comparative in silico and in vitro Study of N-(1-Methyl-2-Oxo-2-N-Methyl Anilino-Ethyl) Benzene Sulfonamide and Its Analogues as an Anticancer Agent

Authors: Pamita Awasthi, Kirna, Shilpa Dogra, Manu Vatsal, Ritu Barthwal

Abstract:

Doxorubicin, also known as adriamycin, is an anthracycline class of drug used in cancer chemotherapy. It is used in the treatment of non-Hodgkin’s lymphoma, multiple myeloma, acute leukemias, breast cancer, lung cancer, endometrium cancer and ovary cancers. It functions via intercalating DNA and ultimately killing cancer cells. The major side effects of doxorubicin are hair loss, myelosuppression, nausea & vomiting, oesophagitis, diarrhoea, heart damage and liver dysfunction. The minor modifications in the structure of compound exhibit large variation in the biological activity, has prompted us to carry out the synthesis of sulfonamide derivatives. Sulfonamide is an important feature with broad spectrum of biological activity such as antiviral, antifungal, diuretics, anti-inflammatory, antibacterial and anticancer activities. Structure of the synthesized compound N-(1-methyl-2-oxo-2-N-methyl anilino-ethyl)benzene sulfonamide confirmed by proton nuclear magnetic resonance (1H NMR),13C NMR, Mass and FTIR spectroscopic tools to assure the position of all protons and hence stereochemistry of the molecule. Further we have reported the binding potential of synthesized sulfonamide analogues in comparison to doxorubicin drug using Auto Dock 4.2 software. Computational binding energy (B.E.) and inhibitory constant (Ki) has been evaluated for the synthesized compound in comparison of doxorubicin against Poly (dA-dT).Poly (dA-dT) and Poly (dG-dC).Poly (dG-dC) sequences. The in vitro cytotoxic study against human breast cancer cell lines confirms the better anticancer activity of the synthesized compound over currently in use anticancer drug doxorubicin. The IC50 value of the synthesized compound is 7.12 µM where as for doxorubicin is 7.2 µ.

Keywords: Doxorubicin, auto dock, in silco, in vitro

Procedia PDF Downloads 414
978 Passive Aeration of Wastewater: Analytical Model

Authors: Ayman M. El-Zahaby, Ahmed S. El-Gendy

Abstract:

Aeration for wastewater is essential for the proper operation of aerobic treatment units where the wastewater normally has zero dissolved oxygen. This is due to the need of oxygen by the aerobic microorganisms to grow and survive. Typical aeration units for wastewater treatment require electric energy for their operation such as mechanical aerators or diffused aerators. The passive units are units that operate without the need of electric energy such as cascade aerators, spray aerators and tray aerators. In contrary to the cascade aerators and spray aerators, tray aerators require much smaller area foot print for their installation as the treatment stages are arranged vertically. To the extent of the authors knowledge, the design of tray aerators for the aeration purpose has not been presented in the literature. The current research concerns with an analytical study for the design of tray aerators for the purpose of increasing the dissolved oxygen in wastewater treatment systems, including an investigation on different design parameters and their impact on the aeration efficiency. The studied aerator shall act as an intermediate stage between an anaerobic primary treatment unit and an aerobic treatment unit for small scale treatment systems. Different free falling flow regimes were investigated, and the thresholds for transition between regimes were obtained from the literature. The study focused on the jetting flow regime between trays. Starting from the two film theory, an equation that relates the dissolved oxygen concentration effluent from the system was derived as a function of the flow rate, number of trays, tray area, spacing between trays, number and diameter of holes and the water temperature. A MATLab ® model was developed for the derived equation. The expected aeration efficiency under different tray configurations and operating conditions were illustrated through running the model with varying the design parameters. The impact of each parameter was illustrated. The overall system efficiency was found to increase by decreasing the hole diameter. On the other side, increasing the number of trays, tray area, flow rate per hole or tray spacing had positive effect on the system efficiency.

Keywords: aeration, analytical, passive, wastewater

Procedia PDF Downloads 205
977 A Machine Learning-Based Model to Screen Antituberculosis Compound Targeted against LprG Lipoprotein of Mycobacterium tuberculosis

Authors: Syed Asif Hassan, Syed Atif Hassan

Abstract:

Multidrug-resistant Tuberculosis (MDR-TB) is an infection caused by the resistant strains of Mycobacterium tuberculosis that do not respond either to isoniazid or rifampicin, which are the most important anti-TB drugs. The increase in the occurrence of a drug-resistance strain of MTB calls for an intensive search of novel target-based therapeutics. In this context LprG (Rv1411c) a lipoprotein from MTB plays a pivotal role in the immune evasion of Mtb leading to survival and propagation of the bacterium within the host cell. Therefore, a machine learning method will be developed for generating a computational model that could predict for a potential anti LprG activity of the novel antituberculosis compound. The present study will utilize dataset from PubChem database maintained by National Center for Biotechnology Information (NCBI). The dataset involves compounds screened against MTB were categorized as active and inactive based upon PubChem activity score. PowerMV, a molecular descriptor generator, and visualization tool will be used to generate the 2D molecular descriptors for the actives and inactive compounds present in the dataset. The 2D molecular descriptors generated from PowerMV will be used as features. We feed these features into three different classifiers, namely, random forest, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model based on the accuracy of predicting novel antituberculosis compound with an anti LprG activity. Additionally, the efficacy of predicted active compounds will be screened using SMARTS filter to choose molecule with drug-like features.

Keywords: antituberculosis drug, classifier, machine learning, molecular descriptors, prediction

Procedia PDF Downloads 386
976 Combined Effect of Gluten-Free Superfoods and by-Products from Ecuador to Evaluate the Functional and Sensory Properties of Breadmaking

Authors: Andrea Vasquez, Pedro Maldonado-Alvarado

Abstract:

In general, 'gluten-free' foods like breadmaking products provide functional or nutraceutical benefits for the consumer's health and increased their demand on the market. In Ecuador, there is an overproduction of superfoods, and the food by-products are undervalued. For the first time, to the author's best knowledge, gluten-free bread mixtures from quinoa and banana flour, cassava starch, lupine flour (LF), or whey protein (WP) with hydroxypropylmethylcellulose (HPMC) and transglutaminase (TG) were evaluated on their functional and sensory properties. Free amino groups and thiols, rheology, and electrophoresis SDS PAGE were performed to analyze the crosslinking of TG at different concentrations with HC or PL proteins. Dough characterization, pasting properties were evaluated, respectively, by a MIXOLAB and a rheometer with a pasting cell. The texture, porosity, and loaf volume were characterized using a texturometer, ImageJ software, and breadmaking ability, respectively. Finally, a breadmaking aptitude and sensorial bread acceptability were performed. A significant decrease in the content of free amino groups (0.16 to 0.11 and 0.46 to 0.36 mM/mg of protein) and free thiol groups (0.37 to 0.21 and 1.79 to 1.32 mM/mg protein) was observed when 1.0% and 0.5% TG were added to LF and WP, respectively. In apparent viscosity analysis, the action of TG on HC proteins changes their viscosity, while the viscosity of LF is not modified by TG. Results of electrophoresis in PL showed bands of higher molecular weight of different fragments of proteins with 1% TG. Formulation with 59.8, 39.9, 160.8, 6.0, 1.0, and 1.5% of, respectively, QF, BF, CS, LF or WP, TG, and HPMC had the best properties in dough parameters, pasting parameters (lower pasting temperature and higher peak viscosity), best crumb structure, lower crumb hardness and higher loaf volume (2.24 and 2.28 mL/g). All the loaves of bread were acceptable in baking aptitude and general acceptability.

Keywords: breadmaking, gluten-free, superfoods, by-products, Ecuador

Procedia PDF Downloads 125
975 Mouse Knockouts for Elucidating the Role of Cysteine-Rich Angiogenic Inducer 61 in Tendon Development and Maintenance

Authors: Josephine Hai, Jie Jiang, Karen M. Lyons

Abstract:

Of the musculoskeletal tissues, tendon is least understood in terms of biological development. The current study examines Cysteine-rich angiogenic inducer 61, or CCN1, a member of the CCN family of secreted matricellular proteins that regulate cell behavior via intercellular signaling. Though CCN1 is notable in limiting fibrosis by inducing senescence in fibroblasts, little is known about its role in normal fibrous tissue, where it may be essential to the development of ECM-rich structures like tendons. We found that CCN1 knockout mice (using limb-specific Prx1-Cre) exhibited clubfoot and waddling gaits, a unique phenotype not described in any other mutant to date. Histological analysis showed that the Achilles and patellar tendons, where we previously found high CCN1 expression in adult reporter mice, were thicker and denser in the Prx1-Cre knockouts than in their wildtype littermates. We then hypothesized that CCN1 is required directly in tendon progenitor cells for normal tendon development and generated tendon-specific CCN1 knockout mice using Scx-Cre. We observed similar Achilles/patellar tendon morphology among the Scx-Cre and Prx1-Cre mutants, indicating that the phenotype is a direct result of CCN1’s loss in tendon. To further study phenotype onset and progression, we will histologically characterize these tendons across different developmental time-points. We will also perform RNA-seq and qPCR to analyze tenocyte gene expression and expect fibrotic marker upregulation in the Scx-Cre mutants if CCN1 is required to maintain a normal tendon phenotype. Thus, our study aims to elucidate the molecular mechanisms underlying tendon formation and maintenance. Understanding tendons at the most basic level invites novel approaches to tendon repair.

Keywords: development, matricellular, musculoskeletal, tendon

Procedia PDF Downloads 175
974 Features of the Functional and Spatial Organization of Railway Hubs as a Part of the Urban Nodal Area

Authors: Khayrullina Yulia Sergeevna, Tokareva Goulsine Shavkatovna

Abstract:

The article analyzes the modern major railway hubs as a main part of the Urban Nodal Area (UNA). The term was introduced into the theory of urban planning at the end of the XX century. Tokareva G.S. jointly with Gutnov A.E. investigated the structure-forming elements of the city. UNA is the basic unit, the "cell" of the city structure. Specialization is depending on the position in the frame or the fabric of the city. This is related to feature of its organization. Spatial and functional features of UNA proposed to investigate in this paper. The base object for researching are railway hubs as connective nodes of inner and extern-city communications. Research used a stratified sampling type with the selection of typical objects. Research is being conducted on the 14 railway hubs of the native and foreign experience of the largest cities with a population over 1 million people located in one and close to the Russian climate zones. Features of the organization identified in the complex research of functional and spatial characteristics based on the hypothesis of the existence of dual characteristics of the organization of urban nodes. According to the analysis, there is using the approximation method that enable general conclusions of a representative selection of the entire population of railway hubs and it development’s area. Results of the research show specific ratio of functional and spatial organization of UNA based on railway hubs. Based on it there proposed typology of spaces and urban nodal areas. Identification of spatial diversity and functional organization’s features of the greatest railway hubs and it development’s area gives an indication of the different evolutionary stages of formation approaches. It help to identify new patterns for the complex and effective design as a prediction of the native hub’s development direction.

Keywords: urban nodal area, railway hubs, features of structural, functional organization

Procedia PDF Downloads 386
973 Food Foam Characterization: Rheology, Texture and Microstructure Studies

Authors: Rutuja Upadhyay, Anurag Mehra

Abstract:

Solid food foams/cellular foods are colloidal systems which impart structure, texture and mouthfeel to many food products such as bread, cakes, ice-cream, meringues, etc. Their heterogeneous morphology makes the quantification of structure/mechanical relationships complex. The porous structure of solid food foams is highly influenced by the processing conditions, ingredient composition, and their interactions. Sensory perceptions of food foams are dependent on bubble size, shape, orientation, quantity and distribution and determines the texture of foamed foods. The state and structure of the solid matrix control the deformation behavior of the food, such as elasticity/plasticity or fracture, which in turn has an effect on the force-deformation curves. The obvious step in obtaining the relationship between the mechanical properties and the porous structure is to quantify them simultaneously. Here, we attempt to research food foams such as bread dough, baked bread and steamed rice cakes to determine the link between ingredients and the corresponding effect of each of them on the rheology, microstructure, bubble size and texture of the final product. Dynamic rheometry (SAOS), confocal laser scanning microscopy, flatbed scanning, image analysis and texture profile analysis (TPA) has been used to characterize the foods studied. In all the above systems, there was a common observation that when the mean bubble diameter is smaller, the product becomes harder as evidenced by the increase in storage and loss modulus (G′, G″), whereas when the mean bubble diameter is large the product is softer with decrease in moduli values (G′, G″). Also, the bubble size distribution affects texture of foods. It was found that bread doughs with hydrocolloids (xanthan gum, alginate) aid a more uniform bubble size distribution. Bread baking experiments were done to study the rheological changes and mechanisms involved in the structural transition of dough to crumb. Steamed rice cakes with xanthan gum (XG) addition at 0.1% concentration resulted in lower hardness with a narrower pore size distribution and larger mean pore diameter. Thus, control of bubble size could be an important parameter defining final food texture.

Keywords: food foams, rheology, microstructure, texture

Procedia PDF Downloads 330
972 Re-Differentiation Effect of Sesquiterpene Farnesol on De-Differentiated Rabbit Chondrocytes

Authors: Chun Hsien Wu, Guan Xuan Wu, Hsia Ying Cheng, Shyh Ming Kuo

Abstract:

Articular cartilage is composed of chondrocytes and extracellular matrix, such as collagen fibers, glycosaminoglycans, etc., which play an important role in lubricating and cushion joint activities. The phenotypic expression and metabolic activity of chondrocytes are extremely important in maintaining the functions of articular cartilage. In in vitro passaged culture of chondrocytes, chondrocytes gradually lose their original cell phenotype and morphology, which is called dedifferentiation. After continuous passaged culture of chondrocytes or induction by inflammatory factor IL-1, chondrocytes changed their phenotype and morphology. Also, the extracellular matrix type II collagen and GAG secretion were significantly reduced, while type I and X collagen were synthesized. Farnesol is an anti-inflammatory and antioxidant sesquiterpene compound that has the specific property of promoting collagen production. The purpose of this study was to investigate whether farnesol could restore the original type II collagen synthesis and, furthermore, the mechanisms of farnesol on the synthesis of type II collagen from the de-differentiated chondrocytes. The obtained results showed that the de-differentiated chondrocytes significantly restored to secret type II collagen and GAG (2.5-folds increases), and the secretion of collagen I and X and PGE2 synthesis were also significantly reduced after being treated with farnesol, indicating that farnesol had a restoration/re-differentiation effect on de-differentiated chondrocytes. The de-differentiated chondrocytes exhibited decreased expression of PPAR-γ and upregulated TGF-β expression to increase the MMP-13 expression. Higher expression of MMP-13 caused chondrocytes to secret type X collagen. On the contrary, increasing the expression of PPAR-γ would benefit the production of type II collagen. As shown, the PPAR-γ expression increased, and MMP-13 expression decreased after being treated with farnesol, indicating a possible signal pathway of farnesol to restore the production of type II collagen. However, more detailed mechanisms still need to evaluate.

Keywords: chondrocytes, de-differentiation, farnesol, re-differentiation

Procedia PDF Downloads 120
971 Isolation and Characterisation of Novel Environmental Bacteriophages Which Target the Escherichia coli Lamb Outer Membrane Protein

Authors: Ziyue Zeng

Abstract:

Bacteriophages are viruses which infect bacteria specifically. Over the past decades, phage λ has been extensively studied, especially its interaction with the Escherichia coli LamB (EcLamB) protein receptor. Nonetheless, despite the enormous numbers and near-ubiquity of environmental phages, aside from phage λ, there is a paucity of information on other phages which target EcLamB as a receptor. In this study, to answer the question of whether there are other EcLamB-targeting phages in the natural environment, a simple and convenient method was developed and used for isolating environmental phages which target a particular surface structure of a particular bacterium; in this case, the EcLamB outer membrane protein. From the enrichments with the engineered bacterial hosts, a collection of EcLamB-targeting phages (ΦZZ phages) were easily isolated. Intriguingly, unlike phage λ, an obligate EcLamB-dependent phage in the Siphoviridae family, the newly isolated ΦZZ phages alternatively recognised EcLamB or E. coli OmpC (EcOmpC) as a receptor when infecting E. coli. Furthermore, ΦZZ phages were suggested to represent new species in the Tequatrovirus genus in the Myoviridae family, based on phage morphology and genomic sequences. Most phages are thought to have a narrow host range due to their exquisite specificity in receptor recognition. With the ability to optionally recognise two receptors, ΦZZ phages were considered relatively promiscuous. Via the heterologous expression of EcLamB on the bacterial cell surface, the host range of ΦZZ phages was further extended to three different enterobacterial genera. Besides, an interesting selection of evolved phage mutants with a broader host range was isolated, and the key mutations involved in their evolution to adapt to new hosts were investigated by genomic analysis. Finally, and importantly, two ΦZZ phages were found to be putative generalised transducers, which could be exploited as tools for DNA manipulations.

Keywords: environmental microbiology, phage, microbe-host interactions, microbial ecology

Procedia PDF Downloads 96
970 Model Evaluation of Thermal Effects Created by Cell Membrane Electroporation

Authors: Jiahui Song

Abstract:

The use of very high electric fields (~ 100kV/cm or higher) with pulse durations in the nanosecond range has been a recent development. The electric pulses have been used as tools to generate electroporation which has many biomedical applications. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal gradients that drives for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. Different temperatures are assigned to various regions to simulate the appropriate temperature gradients. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. For statistical significance, a total of eight MD simulations are carried out with different starting molecular velocities for each simulation. MD simulation shows no pore is formed in a 10-ns snapshot for a DPPC membrane set at a uniform temperature of 295 K after a 0.4 V/nm electric field is applied. A nano-sized pore is clearly seen in a 10-ns snapshot on the same geometry but with the top and bottom membrane surfaces kept at temperatures of 300 and 295 K, respectively. For the same applied electric field, the formation of nanopores is clearly demonstrated, but only in the presence of a temperature gradient. MD simulation results show enhanced electroporative effects arising from thermal gradients. The study suggests the temperature gradient is a secondary driver, with the electric field being the primary cause for electroporation.

Keywords: nanosecond, electroporation, thermal effects, molecular dynamics

Procedia PDF Downloads 77
969 Human Leukocyte Antigen Class 1 Phenotype Distribution and Analysis in Persons from Central Uganda with Active Tuberculosis and Latent Mycobacterium tuberculosis Infection

Authors: Helen K. Buteme, Rebecca Axelsson-Robertson, Moses L. Joloba, Henry W. Boom, Gunilla Kallenius, Markus Maeurer

Abstract:

Background: The Ugandan population is heavily affected by infectious diseases and Human leukocyte antigen (HLA) diversity plays a crucial role in the host-pathogen interaction and affects the rates of disease acquisition and outcome. The identification of HLA class 1 alleles and determining which alleles are associated with tuberculosis (TB) outcomes would help in screening individuals in TB endemic areas for susceptibility to TB and to predict resistance or progression to TB which would inevitably lead to better clinical management of TB. Aims: To be able to determine the HLA class 1 phenotype distribution in a Ugandan TB cohort and to establish the relationship between these phenotypes and active and latent TB. Methods: Blood samples were drawn from 32 HIV negative individuals with active TB and 45 HIV negative individuals with latent MTB infection. DNA was extracted from the blood samples and the DNA samples HLA typed by the polymerase chain reaction-sequence specific primer method. The allelic frequencies were determined by direct count. Results: HLA-A*02, A*01, A*74, A*30, B*15, B*58, C*07, C*03 and C*04 were the dominant phenotypes in this Ugandan cohort. There were differences in the distribution of HLA types between the individuals with active TB and the individuals with LTBI with only HLA-A*03 allele showing a statistically significant difference (p=0.0136). However, after FDR computation the corresponding q-value is above the expected proportion of false discoveries (q-value 0.2176). Key findings: We identified a number of HLA class I alleles in a population from Central Uganda which will enable us to carry out a functional characterization of CD8+ T-cell mediated immune responses to MTB. Our results also suggest that there may be a positive association between the HLA-A*03 allele and TB implying that individuals with the HLA-A*03 allele are at a higher risk of developing active TB.

Keywords: HLA, phenotype, tuberculosis, Uganda

Procedia PDF Downloads 398
968 Survival and Retention of the Probiotic Properties of Bacillus sp. Strains under Marine Stress Starvation Conditions and Their Potential Use as a Probiotic for Aquaculture Objectives

Authors: Abdelkarim Mahdhi, Fdhila Kais, Faouzi Lamari, Zeineb Hmila, Fathi Kamoun, Maria Ángeles Esteban, Amina Bakhrouf

Abstract:

Aquaculture is the world’s fastest growing food-production sector. However, one of the most serious problems regarding the culture of marine fishes is the mortality associated with pathogenic bacteria that occurs in the critical phases of larval development. Conventional approaches, such as the use of antimicrobial drugs to control diseases, have had limited success in the prevention or cure of aquatic diseases. Promising alternatives to antibiotics are probiotics, which are food supplements consisting of live microorganisms that benefit the host organism. In the search for more effective and environmentally friendly treatments with probionts against pathogenic species in shrimp larval culture, the probiotic properties of Bacillus strains isolated from Artemia culture such as antibacterial activity, adhesion, pathogenicity, toxicity and the effect of marine stress on viability and survival were investigated, as well as the changes occurring in their properties. Analyses showed that these bacteria corresponded to the genus Bacillus sp. Antagonism and adherence assays revealed that these strains have an inhibitory effect against pathogenic bacteria in vitro and in vivo conditions and are fairly adherent. Challenge tests performed with Artemia larvae provided evidence that the tested Bacillus strains were neither pathogenic nor toxic to the host. The tested strains maintained their viability and their probiotic properties during the period of study. The results suggest that the tested strains have suffered changes allowing them to survive in seawater in the absence of nutrients and outside their natural host, identifying them as potential probiotic candidates for Artemia culture.

Keywords: bacillus, probiotic, cell viability, stress response

Procedia PDF Downloads 382
967 Optimization for Guide RNA and CRISPR/Cas9 System Nanoparticle Mediated Delivery into Plant Cell for Genome Editing

Authors: Andrey V. Khromov, Antonida V. Makhotenko, Ekaterina A. Snigir, Svetlana S. Makarova, Natalia O. Kalinina, Valentin V. Makarov, Mikhail E. Taliansky

Abstract:

Due to its simplicity, CRISPR/Cas9 has become widely used and capable of inducing mutations in the genes of organisms of various kingdoms. The aim of this work was to develop applications for the efficient modification of DNA coding sequences of phytoene desaturase (PDS), coilin and vacuolar invertase (Solanum tuberosum) genes, and to develop a new nanoparticles carrier efficient technology to deliver the CRISPR/Cas9 system for editing the plant genome. For each of the genes - coilin, PDS and vacuolar invertase, five single RNA guide (sgRNAs) were synthesized. To determine the most suitable nanoplatform, two types of NP platforms were used: magnetic NPs (MNPS) and gold NPs (AuNPs). To test the penetration efficiency, they were functionalized with fluorescent agents - BSA * FITS and GFP, as well as labeled Cy3 small-sized RNA. To measure the efficiency, a fluorescence and confocal microscopy were used. It was shown that the best of these options were AuNP - both in the case of proteins and in the case of RNA. The next step was to check the possibility of delivering components of the CRISPR/Cas9 system to plant cells for editing target genes. AuNPs were functionalized with a ribonucleoprotein complex consisting of Cas9 and corresponding to target genes sgRNAs, and they were biolistically bombarded to axillary buds and apical meristems of potato plants. After the treatment by the best NP carrier, potato meristems were grown to adult plants. DNA isolated from this plants was sent to a preliminary fragment of the analysis to screen out the non-transformed samples, and then to the NGS. The present work was carried out with the financial support from the Russian Science Foundation (grant No. 16-16-04019).

Keywords: biobombardment, coilin, CRISPR/Cas9, nanoparticles, NPs, PDS, sgRNA, vacuolar invertase

Procedia PDF Downloads 309
966 Alteration Quartz-Kfeldspar-Apatite-Molybdenite at B Anomaly Prospection with Artificial Neural Network to Determining Molydenite Economic Deposits in Malala District, Western Sulawesi

Authors: Ahmad Lutfi, Nikolas Dhega

Abstract:

The Malala deposit in northwest Sulawesi is the only known porphyry molybdenum and the only source for rhenium, occurrence in Indonesia. The neural network method produces results that correspond very closely to those of the knowledge-based fuzzy logic method and weights of evidence method. This method required data of solid geology, regional faults, airborne magnetic, gamma-ray survey data and GIS data. This interpretation of the network output fits with the intuitive notion that a prospective area has characteristics that closely resemble areas known to contain mineral deposits. Contrasts with the weights of evidence and fuzzy logic methods, where, for a given grid location, each input-parameter value automatically results in an increase in the prospective estimated. Malala District indicated molybdenum anomalies in stream sediments from in excess of 15 km2 were obtained, including the Takudan Fault as most prominent structure with striking 40̊ to 60̊ over a distance of about 30 km and in most places weakly at anomaly B, developed over an area of 4 km2, with a ‘shell’ up to 50 m thick at the intrusive contact with minor mineralization occurring in the Tinombo Formation. Series of NW trending, steeply dipping fracture zones, named the East Zone has an estimated resource of 100 Mt at 0.14% MoS2 and minimum target of 150 Mt 0.25%. The Malala porphyries occur as stocks and dykes with predominantly granitic, with fluorine-poor class of molybdenum deposits and belongs to the plutonic sub-type. Unidirectional solidification textures consisting of subparallel, crenulated layers of quartz that area separated by layers of intrusive material textures. The deuteric nature of the molybdenum mineralization and the dominance of carbonate alteration.The nature of the Stage I with alteration barren quartz K‐feldspar; and Stage II with alteration quartz‐K‐feldspar‐apatite-molybdenite veins combined with the presence of disseminated molybdenite with primary biotite in the host intrusive.

Keywords: molybdenite, Malala, porphyries, anomaly B

Procedia PDF Downloads 151
965 Peptidoglycan Vaccine-On-Chip against a Lipopolysaccharide-Induced Experimental Sepsis Model

Authors: Katerina Bakela, Ioanna Zerva, Irene Athanassakis

Abstract:

Lipopolysaccharide (LPS) is commonly used in murine sepsis models, which are largely associated with immunosuppression (incretion of MDSCs cells and Tregs, imbalance of inflammatory/anti-inflammatory cytokines) and collapse of the immune system. After adapting the LPS treatment to the needs of locally bred BALB/c mice, the present study explored the protective role of Micrococcus luteus peptidoglycan (PG) pre-activated vaccine-on chip in endotoxemia. The established protocol consisted of five daily intraperitoneal injections of 0.2mg/g LPS. Such protocol allowed longer survival, necessary in the prospect of the therapeutic treatment application. The so-called vaccine-on-chip consists of a 3-dimensional laser micro-texture Si-scaffold loaded with BALB/c mouse macrophages and activated in vitro with 1μg/ml PG, which exert its action upon subcutaneous implantation. The LPS treatment significantly decreased CD4+, CD8+, CD3z+, and CD19+ cells, while increasing myeloid-derived suppressor cells (MDSCs), CD25+, and Foxp3+ cells. These results were accompanied by increased arginase-1 activity in spleen cell lysates and production of IL-6, TNF-a, and IL-18 while acquiring severe sepsis phenotype as defined by the murine sepsis scoring. The in vivo application of PG pre-activated vaccine-on chip significantly decreased the percent of CD11b+, Gr1+, CD25+, Foxp3+ cells, and arginase-1 activity in the spleen of LPS-treated animals, while decreasing IL-6 and TNF-a in the serum, allowing survival to all animals tested and rescuing the severity of sepsis phenotype. In conclusion, these results reveal a promising mode of action of PG pre-activated vaccine-on chip in LPS endotoxemia, strengthening; thus, the use of treatment is septic patients.

Keywords: myeloid-derived suppressor cells, peptidoglycan, sepsis, Si-scaffolds

Procedia PDF Downloads 131
964 Target-Triggered DNA Motors and their Applications to Biosensing

Authors: Hongquan Zhang

Abstract:

Inspired by endogenous protein motors, researchers have constructed various synthetic DNA motors based on the specificity and predictability of Watson-Crick base pairing. However, the application of DNA motors to signal amplification and biosensing is limited because of low mobility and difficulty in real-time monitoring of the walking process. The objective of our work was to construct a new type of DNA motor termed target-triggered DNA motors that can walk for hundreds of steps in response to a single target binding event. To improve the mobility and processivity of DNA motors, we used gold nanoparticles (AuNPs) as scaffolds to build high-density, three-dimensional tracks. Hundreds of track strands are conjugated to a single AuNP. To enable DNA motors to respond to specific protein and nucleic acid targets, we adapted the binding-induced DNA assembly into the design of the target-triggered DNA motors. In response to the binding of specific target molecules, DNA motors are activated to autonomously walk along AuNP, which is powered by a nicking endonuclease or DNAzyme-catalyzed cleavage of track strands. Each moving step restores the fluorescence of a dye molecule, enabling monitoring of the operation of DNA motors in real time. The motors can translate a single binding event into the generation of hundreds of oligonucleotides from a single nanoparticle. The motors have been applied to amplify the detection of proteins and nucleic acids in test tubes and live cells. The motors were able to detect low pM concentrations of specific protein and nucleic acid targets in homogeneous solutions without the need for separation. Target-triggered DNA motors are significant for broadening applications of DNA motors to molecular sensing, cell imagining, molecular interaction monitoring, and controlled delivery and release of therapeutics.

Keywords: biosensing, DNA motors, gold nanoparticles, signal amplification

Procedia PDF Downloads 81
963 Radiation Skin Decontamination Formulation

Authors: Navneet Sharma, Himanshu Ojha, Dharam Pal Pathak, Rakesh Kumar Sharma

Abstract:

Radio-nuclides decontamination is an important task because any extra second of deposition leads to deleterious health effects. We had developed and characterise nanoemulsion of p-tertbutylcalix[4]arens using phase inversion temperature (PIT) method and evaluate its decontamination efficacy (DE). The solubility of the drug was determined in various oils and surfactants. Nanoemulsion developed with an HLB value of 11 and different ratios of the surfactants 10% (7:3, w/w), oil (20%, w/w), and double distilled water (70%) were selected. Formulation was characterised by multi-photon spectroscopy and parameters like viscosity, droplet size distribution, zeta potential and stability were optimised. In vitro and Ex vivo decontamination efficacy (DE) was evaluated against Technetium-99m, Iodine-131, and Thallium-201 as radio-contaminants applied over skin of Sprague-Dawley rat and human tissue equivalent model. Contaminants were removed using formulation soaked in cotton swabs at different time intervals and whole body imaging and static counts were recorded using SPECT gamma camera before and after decontamination attempt. Data were analysed using one-way analysis of variance (ANOVA) and was found to be significant (p <0.05). DE of the nanoemulsion loaded with p-tertbutylcalix[4]arens was compared with placebo and recorded to be 88±5%, 90±3% and 89±3% for 99mTc, 131I and 201Tl respectively. Ex-vivo complexation study of p-tertbutylcalix[4]arene nanoemulsion with surrogate nuclides of radioactive thallium and Iodine, were performed on rat skin mounted on Franz diffusion cell using high-resolution sector field inductively coupled plasma mass spectroscopy (HR-SF-ICPMS). More than 90% complexation of the formulation with these nuclides was observed. Results demonstrate that the prepared nanoemulsion formulation was found efficacious for the decontamination of radionuclides from a large contaminated population.

Keywords: p-tertbutylcalix[4]arens, skin decontamination, radiological emergencies, nanoemulsion, iodine-131, thallium-201

Procedia PDF Downloads 396