Search results for: scientific model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18126

Search results for: scientific model

13626 Effects of Transtheoretical Model in Obese and Overweight Women Nutritional Behavior Change and Lose Weight

Authors: Abdmohammad Mousavi, Mohsen Shams, Mehdi Akbartabar Toori, Ali Mousavizadeh, Mohammad Ali Morowatisharifabad

Abstract:

The effectiveness of Transtheoretical Model (TTM) on nutritional behavior change and lose weight has been subject to questions by some studies. The objective of this study was to determine the effect of nutritional behavior change and lose weight interventions based on TTM in obese and overweight women. This experimental study that was a 8 months trial nutritional behavior change and weight loss program based on TTM with two conditions and pre–post intervention measurements weight mean. 299 obese and overweight 20-44 years old women were selected from two health centers include training (142) and control (157) groups in Yasuj, a city in south west of Iran. Data were analyzed using paired T-test and One–Way ANOVA tests. In baseline, adherence with nutritional healthy behavior in training group(9.4%) compare with control(38.8%) were different significantly(p=.003), weight mean of training(Mean=78.02 kg, SD=11.67) compared with control group(Mean=77.23 kg, SD=10.25) were not (P=.66). In post test, adherence with nutritional healthy behavior in training group(70.1%) compare with control (37.4%) were different significantly (p=.000), weight mean of training (Mean=74.65 kg, SD=10.93, p=.000) compare with pre test were different significantly and control (Mean=77.43 kg, SD=10.43, p=.411) were not. The training group has lost 3.37 kg weight, whereas the control group has increased .2 kg weight. These results supported the applicability of the TTM for women weight lose intervention.

Keywords: nutritional behavior, Transtheoretical Model, weight lose, women

Procedia PDF Downloads 472
13625 Accountant Strategists Challenge the Dominant Business Model: A Strategy-as-Practice Perspective

Authors: Lindie Grebe

Abstract:

This paper reports on a study that explored the strategizing practices of professional accountants in the mining industry, based on Jarratt and Stiles’ dominant strategizing practice models framework. Drawing on a strategy-as-practice perspective, the paper recognises qualified professional accountants in strategic management such as Chief Executive Officers, as strategy practitioners that perform their strategizing practices and praxis within a specific context. The main findings of this paper were produced through semi-structured individual interviews with accountants that perform strategy on a business level in the South African mining industry. Qualitative data were analysed through conversation analysis over two coding-cycles. Findings describe accountant strategists as practitioners who challenge the dominant business model when a disconnect seems to exist between international corporate level strategy and business level strategy in the South African mining industry. Accountant strategy practitioners described their dominant strategizing practice model as incremental change during strategic planning and as a lived experience during strategy implementation. Findings portrayed these strategists as taking initiative as strategy leaders in a dynamic and volatile environment to combine their accounting background with strategic management and challenge the dominant business model. Understanding how accountant strategists perform strategizing offers insight into the social practice of strategic management. This understanding contributes to the body of knowledge on strategizing in the South African mining industry. In addition, knowledge on the transformation of accountants as strategists could provide valuable practice relevant insights for accounting educators and the accounting profession alike.

Keywords: accountant strategists, dominant strategizing practice models framework, mining industry, strategy-as-practice

Procedia PDF Downloads 163
13624 Environment Saving and Efficiency of Diesel Heat-Insulated Combustion Chamber Using Semitransparent Ceramic Coatings

Authors: Victoria Yu. Garnova, Vladimir G. Merzlikin, Sergey V. Khudyakov, Valeriy A. Tovstonog, Svyatoslav V. Cheranev

Abstract:

Long-term scientific forecasts confirm that diesel engines still will be the basis of the transport and stationary power in the near future. This is explained by their high efficiency and profitability compared to other types of heat engines. In the automotive industry carried basic researches are aimed at creating a new generation of diesel engines with reduced exhaust emissions (with stable performance) determining the minimum impact on the environment. The application of thermal barrier coatings (TBCs) and especially their modifications based on semitransparent ceramic materials allows solving this problem. For such researches, the preliminary stage of testing of physical characteristics materials and coatings especially with semitransparent properties the authors proposed experimental operating innovative radiative-and-convective cycling simulator. This setup contains original radiation sources (imitator) with tunable spectrum for modeling integral flux up to several MW/m2.

Keywords: environment saving, radiative and convective cycling simulator, semitransparent ceramic coatings, imitator radiant energy

Procedia PDF Downloads 251
13623 Earthquake Retrofitting Methods of Steel and Concrete Structures and Investigating Strategies to Deal With Destructive Earthquakes

Authors: Ehsan Sadie

Abstract:

Today, after devastating earthquakes and many deaths due to the destruction of residential buildings, the scientific community has attracted the attention of the existing structures to strengthen and standardize construction. Due to the fact that the existing buildings are sometimes constructed without sufficient knowledge of the correct design, and even the buildings built according to the old standards today need to be reinforced due to changes in some provisions of the regulations. The location of some countries in the seismic zone has always caused a lot of human and economic damage throughout history, and attention to the strengthening of buildings, important facilities, and vital arteries is the result of this situation. Engineers' efforts to design earthquake-resistant buildings began when decades had passed since the development of design criteria and ensuring the safety of buildings against loads. New methods, mass reduction, reducing the weight of the building, use of moving structures to deal with earthquakes, as well as the use of new technologies in this field, including the use of dampers, composites in the reinforcement of structures are discussed, and appropriate solutions have been provided in each of the fields.

Keywords: brace, concrete structure, damper, earthquake, FRP reinforcement, lightweight material, retrofitting, seismic isolator, shear wall, steel structure

Procedia PDF Downloads 66
13622 Optimal Opportunistic Maintenance Policy for a Two-Unit System

Authors: Nooshin Salari, Viliam Makis, Jane Doe

Abstract:

This paper presents a maintenance policy for a system consisting of two units. Unit 1 is gradually deteriorating and is subject to soft failure. Unit 2 has a general lifetime distribution and is subject to hard failure. Condition of unit 1 of the system is monitored periodically and it is considered as failed when its deterioration level reaches or exceeds a critical level N. At the failure time of unit 2 system is considered as failed, and unit 2 will be correctively replaced by the next inspection epoch. Unit 1 or 2 are preventively replaced when deterioration level of unit 1 or age of unit 2 exceeds the related preventive maintenance (PM) levels. At the time of corrective or preventive replacement of unit 2, there is an opportunity to replace unit 1 if its deterioration level reaches the opportunistic maintenance (OM) level. If unit 2 fails in an inspection interval, system stops operating although unit 1 has not failed. A mathematical model is derived to find the preventive and opportunistic replacement levels for unit 1 and preventive replacement age for unit 2, that minimize the long run expected average cost per unit time. The problem is formulated and solved in the semi-Markov decision process (SMDP) framework. Numerical example is provided to illustrate the performance of the proposed model and the comparison of the proposed model with an optimal policy without opportunistic maintenance level for unit 1 is carried out.

Keywords: condition-based maintenance, opportunistic maintenance, preventive maintenance, two-unit system

Procedia PDF Downloads 188
13621 Practical Modelling of RC Structural Walls under Monotonic and Cyclic Loading

Authors: Reza E. Sedgh, Rajesh P. Dhakal

Abstract:

Shear walls have been used extensively as the main lateral force resisting systems in multi-storey buildings. The recent development in performance based design urges practicing engineers to conduct nonlinear static or dynamic analysis to evaluate seismic performance of multi-storey shear wall buildings by employing distinct analytical models suggested in the literature. For practical purpose, application of macroscopic models to simulate the global and local nonlinear behavior of structural walls outweighs the microscopic models. The skill level, computational time and limited access to RC specialized finite element packages prevents the general application of this method in performance based design or assessment of multi-storey shear wall buildings in design offices. Hence, this paper organized to verify capability of nonlinear shell element in commercially available package (Sap2000) in simulating results of some specimens under monotonic and cyclic loads with very oversimplified available cyclic material laws in the analytical tool. The selection of constitutive models, the determination of related parameters of the constituent material and appropriate nonlinear shear model are presented in detail. Adoption of proposed simple model demonstrated that the predicted results follow the overall trend of experimental force-displacement curve. Although, prediction of ultimate strength and the overall shape of hysteresis model agreed to some extent with experiment, the ultimate displacement(significant strength degradation point) prediction remains challenging in some cases.

Keywords: analytical model, nonlinear shell element, structural wall, shear behavior

Procedia PDF Downloads 393
13620 Probabilistic Simulation of Triaxial Undrained Cyclic Behavior of Soils

Authors: Arezoo Sadrinezhad, Kallol Sett, S. I. Hariharan

Abstract:

In this paper, a probabilistic framework based on Fokker-Planck-Kolmogorov (FPK) approach has been applied to simulate triaxial cyclic constitutive behavior of uncertain soils. The framework builds upon previous work of the writers, and it has been extended for cyclic probabilistic simulation of triaxial undrained behavior of soils. von Mises elastic-perfectly plastic material model is considered. It is shown that by using probabilistic framework, some of the most important aspects of soil behavior under cyclic loading can be captured even with a simple elastic-perfectly plastic constitutive model.

Keywords: elasto-plasticity, uncertainty, soils, fokker-planck equation, fourier spectral method, finite difference method

Procedia PDF Downloads 360
13619 Kirchhoff’s Depth Migration over Heterogeneous Velocity Models with Ray Tracing Modeling Approach

Authors: Alok Kumar Routa, Priya Ranjan Mohanty

Abstract:

Complex seismic signatures are generated due to the complexity of the subsurface which is difficult to interpret. In the present study, an attempt has been made to model the complex subsurface using the Ray tracing modeling technique. Add to this, for the imaging of these geological features, Kirchhoff’s prestack depth migration is applied over the synthetic common shot gather dataset. It is found that the Kirchhoff’s migration technique in addition with the Ray tracing modeling concept has the flexibility towards the imaging of various complex geology which gives satisfactory results with proper delineation of the reflectors at their respective true depth position. The entire work has been carried out under the MATLAB environment.

Keywords: Kirchhoff's migration, Prestack depth migration, Ray tracing modelling, velocity model

Procedia PDF Downloads 349
13618 Modeling and Simulation of Turbulence Induced in Nozzle Cavitation and Its Effects on Internal Flow in a High Torque Low Speed Diesel Engine

Authors: Ali Javaid, Rizwan Latif, Syed Adnan Qasim, Imran Shafi

Abstract:

To control combustion inside a direct injection diesel engine, fuel atomization is the best tool. Controlling combustion helps in reducing emissions and improves efficiency. Cavitation is one of the most important factors that significantly affect the nature of spray before it injects into combustion chamber. Typical fuel injector nozzles are small and operate at a very high pressure, which limits the study of internal nozzle behavior especially in case of diesel engine. Simulating cavitation in a fuel injector will help in understanding the phenomenon and will assist in further development. There is a parametric variation between high speed and high torque low speed diesel engines. The objective of this study is to simulate internal spray characteristics for a low speed high torque diesel engine. In-nozzle cavitation has strong effects on the parameters e.g. mass flow rate, fuel velocity, and momentum flux of fuel that is to be injected into the combustion chamber. The external spray dynamics and subsequently the air – fuel mixing depends on a lot of the parameters of fuel injecting the nozzle. The approach used to model turbulence induced in – nozzle cavitation for high-torque low-speed diesel engine, is homogeneous equilibrium model. The governing equations were modeled using Matlab. Complete Model in question was extensively evaluated by performing 3-D time-dependent simulations on Open FOAM, which is an open source flow solver and implemented in CFD (Computational Fluid Dynamics). Results thus obtained will be analyzed for better evaporation in the near-nozzle region. The proposed analyses will further help in better engine efficiency, low emission, and improved fuel economy.

Keywords: cavitation, HEM model, nozzle flow, open foam, turbulence

Procedia PDF Downloads 274
13617 The Impact of Size of the Regional Economic Blocs to the Country’s Flows of Trade: Evidence from COMESA, EAC and Tanzania

Authors: Mosses E. Lufuke, Lorna M. Kamau

Abstract:

This paper attempted to assess whether the size of the regional economic bloc has an impact to the flow of trade to a particular country. Two different sized blocs (COMESA and EAC) and one country (Tanzania) have been used as the point of references. Using the results from of the analyses, the paper also was anticipated to establish whether it was rational for Tanzania to withdraw its membership from COMESA (the larger bloc) to join EAC (the small one). Gravity model has been used to estimate the relationship between the variables, from which the bilateral trade flows between Tanzania and the eighteen member countries of the two blocs (COMESA and EAC) was employed for the time between 2000 and 2013. In the model, the dummy variable for regional bloc (bloc) at which the Tanzania trade partner countries belong are also added to the model to understand which trade bloc exhibit higher trade flow with Tanzania. From the findings, it was noted that over the period of study (2000-2013) Tanzania acknowledged more than 257% of trade volume in EAC than in COMESA. Conclusive, it was noted that the flow of trade is explained by many other variables apart from the size of regional bloc; and that the size by itself offer insufficient evidence in causality relationship. The paper therefore remain neutral on such staggered switching decision since more analyses are required to establish the country’s trade flow, especially when if it had been in multiple membership of COMESA and EAC.

Keywords: economic bloc, flow of trade, size of bloc, switching

Procedia PDF Downloads 237
13616 The Simulation and Experimental Investigation to Study the Strain Distribution Pattern during the Closed Die Forging Process

Authors: D. B. Gohil

Abstract:

Closed die forging is a very complex process, and measurement of actual forces for real material is difficult and time consuming. Hence, the modelling technique has taken the advantage of carrying out the experimentation with the proper model material which needs lesser forces and relatively low temperature. The results of experiments on the model material then may be correlated with the actual material by using the theory of similarity. There are several methods available to resolve the complexity involved in the closed die forging process. Finite Element Method (FEM) and Finite Difference Method (FDM) are relatively difficult as compared to the slab method. The slab method is very popular and very widely used by the people working on shop floor because it is relatively easy to apply and reasonably accurate for most of the common forging load requirement computations.

Keywords: experimentation, forging, process modeling, strain distribution

Procedia PDF Downloads 190
13615 Economics in Primary Schools – Positive Education and Well-being

Authors: Judit Nagy

Abstract:

Many scientific studies claim that financial education should start as early as possible. Children are much more capable of and willing to absorb new concepts than adults. If we introduce children to financial knowledge early, their behaviour and attitudes to this subject will change, increasing later success in this area of life. However, poor financial decisions may entail severe consequences, not only to individuals but even to the wider society. Good financial decisions and economic attitudes may contribute to economic growth and well-being. Whilst in several countries, education about financial awareness and fundamentals is available, the understanding and acquisition of complex economic knowledge and the development of children’s independent problem-solving skills are still lacking. The results suggest that teaching economic and financial knowledge through accounting and making lectures interactive by using special tools of positive education is critical to stimulating children’s interest. Eighty percent of the students in the study liked the combined and interactive lecture. Introducing this kind of knowledge to individuals is a relevant objective, even at the societal level.

Keywords: positive psychology, education innovation, primary school, gender, economics, accounting, finance, personal finance, mathematics, economic growth, well-being, sustainability

Procedia PDF Downloads 90
13614 Graph Similarity: Algebraic Model and Its Application to Nonuniform Signal Processing

Authors: Nileshkumar Vishnav, Aditya Tatu

Abstract:

A recent approach of representing graph signals and graph filters as polynomials is useful for graph signal processing. In this approach, the adjacency matrix plays pivotal role; instead of the more common approach involving graph-Laplacian. In this work, we follow the adjacency matrix based approach and corresponding algebraic signal model. We further expand the theory and introduce the concept of similarity of two graphs. The similarity of graphs is useful in that key properties (such as filter-response, algebra related to graph) get transferred from one graph to another. We demonstrate potential applications of the relation between two similar graphs, such as nonuniform filter design, DTMF detection and signal reconstruction.

Keywords: graph signal processing, algebraic signal processing, graph similarity, isospectral graphs, nonuniform signal processing

Procedia PDF Downloads 336
13613 The Influence of Nyerere in Integrating Ubuntu Knowledge and Social Work in Tanzania – A Literature Review

Authors: Meinrad Haule Lembuka

Abstract:

Ubuntu is an African philosophy and model with the meaning of 'humanity to others' or 'care for other’s needs because of the guiding principle of interdependence’ that embraces collective and holistic efforts in development through the human face. The study uses a literature review method reflecting Julius Nyerere’s contributions in realizing Ubuntu and social work practice. Nyerere strived to restore Africa development in the lens of humanism through the values of solidarity, communal participation, compassion, care, justice etc; He later founded developmental social work through Ujamaa model, educational for self reliance and African dignity. Nyerere was against post-colonial syndromes through African socialism that envisioned values and principles of social work to provide social justice, human dignity, social change and social development. Also, he managed to serve the primary mission of the social work profession to enhance human wellbeing and help meet basic human needs of all people, with particular attention to the needs and empowerment of people who are vulnerable, oppressed, and living in poverty with African Ubuntu practice of equal distribution of resources. Nyerere further endorsed social work legal framework that embraced universal human rights: service, equality, social justice, and human dignity, Importance of human relationship, integrity and competence. Nyerere proved that Indigenous model can work with formal system like Social work profession. In 2014 the National Heritage Council of South Africa (NHC) honored him an Award of African Ubuntu champion. Nyerere strongly upheld to be an ambassador of social work through his remarkably contributions in developmental social work (Ujamaa model), social change, human dignity, equality, social unity and social justice in Africa and globe at large.

Keywords: ubuntu, Indiginious knowledge, Indiginious social work, ubuntu social work

Procedia PDF Downloads 76
13612 Multi-Model Super Ensemble Based Advanced Approaches for Monsoon Rainfall Prediction

Authors: Swati Bhomia, C. M. Kishtawal, Neeru Jaiswal

Abstract:

Traditionally, monsoon forecasts have encountered many difficulties that stem from numerous issues such as lack of adequate upper air observations, mesoscale nature of convection, proper resolution, radiative interactions, planetary boundary layer physics, mesoscale air-sea fluxes, representation of orography, etc. Uncertainties in any of these areas lead to large systematic errors. Global circulation models (GCMs), which are developed independently at different institutes, each of which carries somewhat different representation of the above processes, can be combined to reduce the collective local biases in space, time, and for different variables from different models. This is the basic concept behind the multi-model superensemble and comprises of a training and a forecast phase. The training phase learns from the recent past performances of models and is used to determine statistical weights from a least square minimization via a simple multiple regression. These weights are then used in the forecast phase. The superensemble forecasts carry the highest skill compared to simple ensemble mean, bias corrected ensemble mean and the best model out of the participating member models. This approach is a powerful post-processing method for the estimation of weather forecast parameters reducing the direct model output errors. Although it can be applied successfully to the continuous parameters like temperature, humidity, wind speed, mean sea level pressure etc., in this paper, this approach is applied to rainfall, a parameter quite difficult to handle with standard post-processing methods, due to its high temporal and spatial variability. The present study aims at the development of advanced superensemble schemes comprising of 1-5 day daily precipitation forecasts from five state-of-the-art global circulation models (GCMs), i.e., European Centre for Medium Range Weather Forecasts (Europe), National Center for Environmental Prediction (USA), China Meteorological Administration (China), Canadian Meteorological Centre (Canada) and U.K. Meteorological Office (U.K.) obtained from THORPEX Interactive Grand Global Ensemble (TIGGE), which is one of the most complete data set available. The novel approaches include the dynamical model selection approach in which the selection of the superior models from the participating member models at each grid and for each forecast step in the training period is carried out. Multi-model superensemble based on the training using similar conditions is also discussed in the present study, which is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional multi-model ensemble (MME) approaches. Further, a variety of methods that incorporate a 'neighborhood' around each grid point which is available in literature to allow for spatial error or uncertainty, have also been experimented with the above mentioned approaches. The comparison of these schemes with respect to the observations verifies that the newly developed approaches provide more unified and skillful prediction of the summer monsoon (viz. June to September) rainfall compared to the conventional multi-model approach and the member models.

Keywords: multi-model superensemble, dynamical model selection, similarity criteria, neighborhood technique, rainfall prediction

Procedia PDF Downloads 130
13611 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis

Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin

Abstract:

Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.

Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis

Procedia PDF Downloads 182
13610 Multi-Layer Multi-Feature Background Subtraction Using Codebook Model Framework

Authors: Yun-Tao Zhang, Jong-Yeop Bae, Whoi-Yul Kim

Abstract:

Background modeling and subtraction in video analysis has been widely proved to be an effective method for moving objects detection in many computer vision applications. Over the past years, a large number of approaches have been developed to tackle different types of challenges in this field. However, the dynamic background and illumination variations are two of the most frequently occurring issues in the practical situation. This paper presents a new two-layer model based on codebook algorithm incorporated with local binary pattern (LBP) texture measure, targeted for handling dynamic background and illumination variation problems. More specifically, the first layer is designed by block-based codebook combining with LBP histogram and mean values of RGB color channels. Because of the invariance of the LBP features with respect to monotonic gray-scale changes, this layer can produce block-wise detection results with considerable tolerance of illumination variations. The pixel-based codebook is employed to reinforce the precision from the outputs of the first layer which is to eliminate false positives further. As a result, the proposed approach can greatly promote the accuracy under the circumstances of dynamic background and illumination changes. Experimental results on several popular background subtraction datasets demonstrate a very competitive performance compared to previous models.

Keywords: background subtraction, codebook model, local binary pattern, dynamic background, illumination change

Procedia PDF Downloads 205
13609 The Effect of Dark energy on Amplitude of Gravitational Waves

Authors: Jafar Khodagholizadeh

Abstract:

In this talk, we study the tensor mode equation of perturbation in the presence of nonzero $-\Lambda$ as dark energy, whose dynamic nature depends on the Hubble parameter $ H$ and/or its time derivative. Dark energy, according to the total vacuum contribution, has little effect during the radiation-dominated era, but it reduces the squared amplitude of gravitational waves (GWs) up to $60\%$ for the wavelengths that enter the horizon during the matter-dominated era. Moreover, the observations bound on dark energy models, such as running vacuum model (RVM), generalized running vacuum model (GRVM), and generalized running vacuum subcase (GRVS), are effective in reducing the GWs’ amplitude. Although this effect is less for the wavelengths that enter the horizon at later times, this reduction is stable and permanent.

Keywords: gravitational waves, dark energy, GW's amplitude, all stage universe

Procedia PDF Downloads 142
13608 Behaviour of Model Square Footing Resting on Three Dimensional Geogrid Reinforced Sand Bed

Authors: Femy M. Makkar, S. Chandrakaran, N. Sankar

Abstract:

The concept of reinforced earth has been used in the field of geotechnical engineering since 1960s, for many applications such as, construction of road and rail embankments, pavements, retaining walls, shallow foundations, soft ground improvement and so on. Conventionally, planar geosynthetic materials such as geotextiles and geogrids were used as the reinforcing elements. Recently, the use of three dimensional reinforcements becomes one of the emerging trends in this field. So, in the present investigation, three dimensional geogrid is proposed as a reinforcing material. Laboratory scaled plate load tests are conducted on a model square footing resting on 3D geogrid reinforced sand bed. The performance of 3D geogrids in triangular and square pattern was compared with conventional geogrids and the improvement in bearing capacity and reduction in settlement and heave are evaluated. When single layer of reinforcement was placed at an optimum depth of 0.25B from the bottom of the footing, the bearing capacity of conventional geogrid reinforced soil improved by 1.85 times compared to unreinforced soil, where as 3D geogrid reinforced soil with triangular pattern and square pattern shows 2.69 and 3.05 times improvement respectively compared to unreinforced soil. Also, 3D geogrids performs better than conventional geogrids in reducing the settlement and heave of sand bed around the model footing.

Keywords: 3D reinforcing elements, bearing capacity, heavy, settlement

Procedia PDF Downloads 291
13607 Hybrid Rocket Motor Performance Parameters: Theoretical and Experimental Evaluation

Authors: A. El-S. Makled, M. K. Al-Tamimi

Abstract:

A mathematical model to predict the performance parameters (thrusts, chamber pressures, fuel mass flow rates, mixture ratios, and regression rates during firing time) of hybrid rocket motor (HRM) is evaluated. The internal ballistic (IB) hybrid combustion model assumes that the solid fuel surface regression rate is controlled only by heat transfer (convective and radiative) from flame zone to solid fuel burning surface. A laboratory HRM is designed, manufactured, and tested for low thrust profile space missions (10-15 N) and for validating the mathematical model (computer program). The polymer material and gaseous oxidizer which are selected for this experimental work are polymethyle-methacrylate (PMMA) and polyethylene (PE) as solid fuel grain and gaseous oxygen (GO2) as oxidizer. The variation of various operational parameters with time is determined systematically and experimentally in firing of up to 20 seconds, and an average combustion efficiency of 95% of theory is achieved, which was the goal of these experiments. The comparison between recording fire data and predicting analytical parameters shows good agreement with the error that does not exceed 4.5% during all firing time. The current mathematical (computer) code can be used as a powerful tool for HRM analytical design parameters.

Keywords: hybrid combustion, internal ballistics, hybrid rocket motor, performance parameters

Procedia PDF Downloads 298
13606 Need of National Space Legislation for Space Faring Nations

Authors: Muhammad Naveed, Yang Caixia

Abstract:

The need for national space legislation is pivotal, particularly in light of the fact that in recent years space activities have grown immensely both in volume and diversity. Countries are progressively developing capabilities in space exploration and scientific discoveries, market their capabilities to manufacture satellites, provide launch services from their facilities and are looking to privatize and commercialize their space resources. Today, nations are also seeking to comprehend the technological and financial potential of the private sector and are considering to share their financial burdens with them and to limit their exposures to risks, but they are lagging behind in legal framework in this regard. In the perspective of these emerging developments, it is therefore, felt that national space legislation should be enacted with the goal of building and implementing a vibrant and transparent legal framework at the national level to hasten investments and to ensure growth in this capital intensive - highly yield strategic sector. This study looks at (I) the international legal framework that governs space activities; (II) motivation behind making national space laws; and (III) the need for national space legislation. The paper concludes with some recommendations with regards to the conceivable future direction for national space legislation, in particular space empowered sub-areas for countries.

Keywords: international conventions, national legislation, space faring nations, space law

Procedia PDF Downloads 267
13605 EMG Based Orthosis for Upper Limb Rehabilitation in Hemiparesis Patients

Authors: Nancy N. Sharmila, Aparna Mishra

Abstract:

Hemiparesis affects almost 80% of stroke patients each year. It is marked by paralysis or weakness on one half of the body. Our model provides both assistance and physical therapy for hemiparesis patients for swift recovery. In order to accomplish our goal a force is provided that pulls the forearm up (as in flexing the arm), and pushes the forearm down (as in extending the arm), which will also assist the user during ADL (Activities of Daily Living). The model consists of a mechanical component which is placed around the patient’s bicep and an EMG control circuit to assist patients in daily activities, which makes it affordable and easy to use. In order to enhance the neuromuscular system’s effectiveness in synchronize the movement, proprioceptive neuromuscular facilitation (PNF) concept is used. The EMG signals are acquired from the unaffected arm as an input to drive the orthosis. This way the patient is invigorated to use the orthosis for regular exercise.

Keywords: EMG, hemiparesis, orthosis, rehabilitation

Procedia PDF Downloads 433
13604 Language Activation Theory: Unlocking Bilingual Language Processing

Authors: Leorisyl D. Siarot

Abstract:

It is conventional to see and hear Filipinos, in general, speak two or more languages. This phenomenon brings us to a closer look on how our minds process the input and produce an output with a specific chosen language. This study aimed to generate a theoretical model which explained the interaction of the first and the second languages in the human mind. After a careful analysis of the gathered data, a theoretical prototype called Language Activation Model was generated. For every string, there are three specialized banks: lexico-semantics, morphono-syntax, and pragmatics. These banks are interrelated to other banks of other language strings. As the bilingual learns more languages, a new string is replicated and is filled up with the information of the new language learned. The principles of the first and second languages' interaction are drawn; these are expressed in laws, namely: law of dominance, law of availability, law of usuality and law of preference. Furthermore, difficulties encountered in the learning of second languages were also determined.

Keywords: bilingualism, psycholinguistics, second language learning, languages

Procedia PDF Downloads 498
13603 Destination Decision Model for Cruising Taxis Based on Embedding Model

Authors: Kazuki Kamada, Haruka Yamashita

Abstract:

In Japan, taxi is one of the popular transportations and taxi industry is one of the big businesses. However, in recent years, there has been a difficult problem of reducing the number of taxi drivers. In the taxi business, mainly three passenger catching methods are applied. One style is "cruising" that drivers catches passengers while driving on a road. Second is "waiting" that waits passengers near by the places with many requirements for taxies such as entrances of hospitals, train stations. The third one is "dispatching" that is allocated based on the contact from the taxi company. Above all, the cruising taxi drivers need the experience and intuition for finding passengers, and it is difficult to decide "the destination for cruising". The strong recommendation system for the cruising taxies supports the new drivers to find passengers, and it can be the solution for the decreasing the number of drivers in the taxi industry. In this research, we propose a method of recommending a destination for cruising taxi drivers. On the other hand, as a machine learning technique, the embedding models that embed the high dimensional data to a low dimensional space is widely used for the data analysis, in order to represent the relationship of the meaning between the data clearly. Taxi drivers have their favorite courses based on their experiences, and the courses are different for each driver. We assume that the course of cruising taxies has meaning such as the course for finding business man passengers (go around the business area of the city of go to main stations) and course for finding traveler passengers (go around the sightseeing places or big hotels), and extract the meaning of their destinations. We analyze the cruising history data of taxis based on the embedding model and propose the recommendation system for passengers. Finally, we demonstrate the recommendation of destinations for cruising taxi drivers based on the real-world data analysis using proposing method.

Keywords: taxi industry, decision making, recommendation system, embedding model

Procedia PDF Downloads 127
13602 Artificial Neural Network Based Approach in Prediction of Potential Water Pollution Across Different Land-Use Patterns

Authors: M.Rüştü Karaman, İsmail İşeri, Kadir Saltalı, A.Reşit Brohi, Ayhan Horuz, Mümin Dizman

Abstract:

Considerable relations has recently been given to the environmental hazardous caused by agricultural chemicals such as excess fertilizers. In this study, a neural network approach was investigated in the prediction of potential nitrate pollution across different land-use patterns by using a feedforward multilayered computer model of artificial neural network (ANN) with proper training. Periodical concentrations of some anions, especially nitrate (NO3-), and cations were also detected in drainage waters collected from the drain pipes placed in irrigated tomato field, unirrigated wheat field, fallow and pasture lands. The soil samples were collected from the irrigated tomato field and unirrigated wheat field on a grid system with 20 m x 20 m intervals. Site specific nitrate concentrations in the soil samples were measured for ANN based simulation of nitrate leaching potential from the land profiles. In the application of ANN model, a multi layered feedforward was evaluated, and data sets regarding with training, validation and testing containing the measured soil nitrate values were estimated based on spatial variability. As a result of the testing values, while the optimal structures of 2-15-1 was obtained (R2= 0.96, P < 0.01) for unirrigated field, the optimal structures of 2-10-1 was obtained (R2= 0.96, P < 0.01) for irrigated field. The results showed that the ANN model could be successfully used in prediction of the potential leaching levels of nitrate, based on different land use patterns. However, for the most suitable results, the model should be calibrated by training according to different NN structures depending on site specific soil parameters and varied agricultural managements.

Keywords: artificial intelligence, ANN, drainage water, nitrate pollution

Procedia PDF Downloads 295
13601 An Assessment of Floodplain Vegetation Response to Groundwater Changes Using the Soil & Water Assessment Tool Hydrological Model, Geographic Information System, and Machine Learning in the Southeast Australian River Basin

Authors: Newton Muhury, Armando A. Apan, Tek N. Marasani, Gebiaw T. Ayele

Abstract:

The changing climate has degraded freshwater availability in Australia that influencing vegetation growth to a great extent. This study assessed the vegetation responses to groundwater using Terra’s moderate resolution imaging spectroradiometer (MODIS), Normalised Difference Vegetation Index (NDVI), and soil water content (SWC). A hydrological model, SWAT, has been set up in a southeast Australian river catchment for groundwater analysis. The model was calibrated and validated against monthly streamflow from 2001 to 2006 and 2007 to 2010, respectively. The SWAT simulated soil water content for 43 sub-basins and monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) were applied in the machine learning tool, Waikato Environment for Knowledge Analysis (WEKA), using two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The assessment shows that different types of vegetation response and soil water content vary in the dry and wet seasons. The WEKA model generated high positive relationships (r = 0.76, 0.73, and 0.81) between NDVI values of all vegetation in the sub-basins against soil water content (SWC), the groundwater flow (GW), and the combination of these two variables, respectively, during the dry season. However, these responses were reduced by 36.8% (r = 0.48) and 13.6% (r = 0.63) against GW and SWC, respectively, in the wet season. Although the rainfall pattern is highly variable in the study area, the summer rainfall is very effective for the growth of the grass vegetation type. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.

Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater

Procedia PDF Downloads 86
13600 Sweden’s SARS-CoV-2 Mitigation Failure as a Science and Solutions Principle Case Study

Authors: Dany I. Doughan, Nizam S. Najd

Abstract:

Different governments in today’s global pandemic are approaching the challenging and complex issue of mitigating the spread of the SARS-CoV-2 virus differently while simultaneously considering their national economic and operational bottom lines. One of the most notable successes has been Taiwan's multifaceted virus containment approach, which resulted in a substantially lower incidence rate compared to Sweden’s chief mitigation tactic of herd immunity. From a classic Swiss Cheese Model perspective, integrating more fail-safe layers of defense against the virus in Taiwan’s approach compared to Sweden’s meant that in Taiwan, the government did not have to resort to extreme measures like the national lockdown Sweden is currently contemplating. From an optimized virus spread mitigation solution development standpoint using the Solutions Principle, the Taiwanese and Swedish solutions were desirable economically by businesses that remained open and non-economically or socially by individuals who enjoyed fewer disruptions from what they considered normal before the pandemic. Out of the two, the Taiwanese approach was more feasible long-term from a workforce management and quality control perspective for healthcare facilities and their professionals who were able to provide better, longer, more attentive care to the fewer new positive COVID-19 cases. Furthermore, the Taiwanese approach was more applicable as an overall model to emulate thanks in part to its short-term and long-term multilayered approach, which allows for the kind of flexibility needed by other governments to fully or partially adapt or adopt said, model. The Swedish approach, on the other hand, ignored the biochemical nature of the virus and relied heavily on short-term personal behavioral adjustments and conduct modifications, which are not as reliable as establishing required societal norms and awareness programs. The available international data on COVID-19 cases and the published governmental approaches to control the spread of the coronavirus support a better fit into the Solutions Principle of Taiwan’s Swiss Cheese Model success story compared to Sweden’s.

Keywords: coronavirus containment and mitigation, solutions principle, Swiss Cheese Model, viral mutation

Procedia PDF Downloads 121
13599 Improved Regression Relations Between Different Magnitude Types and the Moment Magnitude in the Western Balkan Earthquake Catalogue

Authors: Anila Xhahysa, Migena Ceyhan, Neki Kuka, Klajdi Qoshi, Damiano Koxhaj

Abstract:

The seismic event catalog has been updated in the framework of a bilateral project supported by the Central European Investment Fund and with the extensive support of Global Earthquake Model Foundation to update Albania's national seismic hazard model. The earthquake catalogue prepared within this project covers the Western Balkan area limited by 38.0° - 48°N, 12.5° - 24.5°E and includes 41,806 earthquakes that occurred in the region between 510 BC and 2022. Since the moment magnitude characterizes the earthquake size accurately and the selected ground motion prediction equations for the seismic hazard assessment employ this scale, it was chosen as the uniform magnitude scale for the catalogue. Therefore, proxy values of moment magnitude had to be obtained by using new magnitude conversion equations between the local and other magnitude types to this unified scale. The Global Centroid Moment Tensor Catalogue was considered the most authoritative for moderate to large earthquakes for moment magnitude reports; hence it was used as a reference for calibrating other sources. The best fit was observed when compared to some regional agencies, whereas, with reports of moment magnitudes from Italy, Greece and Turkey, differences were observed in all magnitude ranges. For teleseismic magnitudes, to account for the non-linearity of the relationships, we used the exponential model for the derivation of the regression equations. The obtained regressions for the surface wave magnitude and short-period body-wave magnitude show considerable differences with Global Earthquake Model regression curves, especially for low magnitude ranges. Moreover, a conversion relation was obtained between the local magnitude of Albania and the corresponding moment magnitude as reported by the global and regional agencies. As errors were present in both variables, the Deming regression was used.

Keywords: regression, seismic catalogue, local magnitude, tele-seismic magnitude, moment magnitude

Procedia PDF Downloads 64
13598 The Direct Deconvolution Model for the Large Eddy Simulation of Turbulence

Authors: Ning Chang, Zelong Yuan, Yunpeng Wang, Jianchun Wang

Abstract:

Large eddy simulation (LES) has been extensively used in the investigation of turbulence. LES calculates the grid-resolved large-scale motions and leaves small scales modeled by sub lfilterscale (SFS) models. Among the existing SFS models, the deconvolution model has been used successfully in the LES of the engineering flows and geophysical flows. Despite the wide application of deconvolution models, the effects of subfilter scale dynamics and filter anisotropy on the accuracy of SFS modeling have not been investigated in depth. The results of LES are highly sensitive to the selection of fi lters and the anisotropy of the grid, which has been overlooked in previous research. In the current study, two critical aspects of LES are investigated. Firstly, we analyze the influence of sub-fi lter scale (SFS) dynamics on the accuracy of direct deconvolution models (DDM) at varying fi lter-to-grid ratios (FGR) in isotropic turbulence. An array of invertible filters are employed, encompassing Gaussian, Helmholtz I and II, Butterworth, Chebyshev I and II, Cauchy, Pao, and rapidly decaying filters. The signi ficance of FGR becomes evident, as it acts as a pivotal factor in error control for precise SFS stress prediction. When FGR is set to 1, the DDM models cannot accurately reconstruct the SFS stress due to the insufficient resolution of SFS dynamics. Notably, prediction capabilities are enhanced at an FGR of 2, resulting in accurate SFS stress reconstruction, except for cases involving Helmholtz I and II fi lters. A remarkable precision close to 100% is achieved at an FGR of 4 for all DDM models. Additionally, the further exploration extends to the fi lter anisotropy to address its impact on the SFS dynamics and LES accuracy. By employing dynamic Smagorinsky model (DSM), dynamic mixed model (DMM), and direct deconvolution model (DDM) with the anisotropic fi lter, aspect ratios (AR) ranging from 1 to 16 in LES fi lters are evaluated. The findings highlight the DDM's pro ficiency in accurately predicting SFS stresses under highly anisotropic filtering conditions. High correlation coefficients exceeding 90% are observed in the a priori study for the DDM's reconstructed SFS stresses, surpassing those of the DSM and DMM models. However, these correlations tend to decrease as lter anisotropy increases. In the a posteriori studies, the DDM model consistently outperforms the DSM and DMM models across various turbulence statistics, encompassing velocity spectra, probability density functions related to vorticity, SFS energy flux, velocity increments, strain-rate tensors, and SFS stress. It is observed that as fi lter anisotropy intensify , the results of DSM and DMM become worse, while the DDM continues to deliver satisfactory results across all fi lter-anisotropy scenarios. The fi ndings emphasize the DDM framework's potential as a valuable tool for advancing the development of sophisticated SFS models for LES of turbulence.

Keywords: deconvolution model, large eddy simulation, subfilter scale modeling, turbulence

Procedia PDF Downloads 63
13597 Investigating Smoothness: An In-Depth Study of Extremely Degenerate Elliptic Equations

Authors: Zahid Ullah, Atlas Khan

Abstract:

The presented research is dedicated to an extensive examination of the regularity properties associated with a specific class of equations, namely extremely degenerate elliptic equations. This study holds significance in unraveling the complexities inherent in these equations and understanding the smoothness of their solutions. The focus is on analyzing the regularity of results, aiming to contribute to the broader field of mathematical theory. By delving into the intricacies of extremely degenerate elliptic equations, the research seeks to advance our understanding beyond conventional analyses, addressing challenges posed by degeneracy and pushing the boundaries of classical analytical methods. The motivation for this exploration lies in the practical applicability of mathematical models, particularly in real-world scenarios where physical phenomena exhibit characteristics that challenge traditional mathematical modeling. The research aspires to fill gaps in the current understanding of regularity properties within solutions to extremely degenerate elliptic equations, ultimately contributing to both theoretical foundations and practical applications in diverse scientific fields.

Keywords: investigating smoothness, extremely degenerate elliptic equations, regularity properties, mathematical analysis, complexity solutions

Procedia PDF Downloads 46