Search results for: scientific data mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27126

Search results for: scientific data mining

22626 Reflectance Imaging Spectroscopy Data (Hyperspectral) for Mineral Mapping in the Orientale Basin Region on the Moon Surface

Authors: V. Sivakumar, R. Neelakantan

Abstract:

Mineral mapping on the Moon surface provides the clue to understand the origin, evolution, stratigraphy and geological history of the Moon. Recently, reflectance imaging spectroscopy plays a significant role in identifying minerals on the planetary surface in the Visible to NIR region of the electromagnetic spectrum. The Moon Mineralogy Mapper (M3) onboard Chandrayaan-1 provides unprecedented spectral data of lunar surface to study about the Moon surface. Here we used the M3 sensor data (hyperspectral imaging spectroscopy) for analysing mineralogy of Orientale basin region on the Moon surface. Reflectance spectrums were sampled from different locations of the basin and continuum was removed using ENvironment for Visualizing Images (ENVI) software. Reflectance spectra of unknown mineral composition were compared with known Reflectance Experiment Laboratory (RELAB) spectra for discriminating mineralogy. Minerals like olivine, Low-Ca Pyroxene (LCP), High-Ca Pyroxene (HCP) and plagioclase were identified. In addition to these minerals, an unusual type of spectral signature was identified, which indicates the probable Fe-Mg-spinel lithology in the basin region.

Keywords: chandryaan-1, moon mineralogy mapper, mineral, mare orientale, moon

Procedia PDF Downloads 397
22625 Designing Agricultural Irrigation Systems Using Drone Technology and Geospatial Analysis

Authors: Yongqin Zhang, John Lett

Abstract:

Geospatial technologies have been increasingly used in agriculture for various applications and purposes in recent years. Unmanned aerial vehicles (drones) fit the needs of farmers in farming operations, from field spraying to grow cycles and crop health. In this research, we conducted a practical research project that used drone technology to design and map optimal locations and layouts of irrigation systems for agriculture farms. We flew a DJI Mavic 2 Pro drone to acquire aerial remote sensing images over two agriculture fields in Forest, Mississippi, in 2022. Flight plans were first designed to capture multiple high-resolution images via a 20-megapixel RGB camera mounted on the drone over the agriculture fields. The Drone Deploy web application was then utilized to develop flight plans and subsequent image processing and measurements. The images were orthorectified and processed to estimate the area of the area and measure the locations of the water line and sprinkle heads. Field measurements were conducted to measure the ground targets and validate the aerial measurements. Geospatial analysis and photogrammetric measurements were performed for the study area to determine optimal layout and quantitative estimates for irrigation systems. We created maps and tabular estimates to demonstrate the locations, spacing, amount, and layout of sprinkler heads and water lines to cover the agricultural fields. This research project provides scientific guidance to Mississippi farmers for a precision agricultural irrigation practice.

Keywords: drone images, agriculture, irrigation, geospatial analysis, photogrammetric measurements

Procedia PDF Downloads 82
22624 Brain Age Prediction Based on Brain Magnetic Resonance Imaging by 3D Convolutional Neural Network

Authors: Leila Keshavarz Afshar, Hedieh Sajedi

Abstract:

Estimation of biological brain age from MR images is a topic that has been much addressed in recent years due to the importance it attaches to early diagnosis of diseases such as Alzheimer's. In this paper, we use a 3D Convolutional Neural Network (CNN) to provide a method for estimating the biological age of the brain. The 3D-CNN model is trained by MRI data that has been normalized. In addition, to reduce computation while saving overall performance, some effectual slices are selected for age estimation. By this method, the biological age of individuals using selected normalized data was estimated with Mean Absolute Error (MAE) of 4.82 years.

Keywords: brain age estimation, biological age, 3D-CNN, deep learning, T1-weighted image, SPM, preprocessing, MRI, canny, gray matter

Procedia PDF Downloads 151
22623 Improving Waste Recycling and Resource Productivity by Integrating Smart Resource Tracking System

Authors: Atiq Zaman

Abstract:

The high contamination rate in the recycling waste stream is one of the major problems in Australia. In addition, a lack of reliable waste data makes it even more difficult for designing and implementing an effective waste management plan. This article conceptualizes the opportunity to improve resource productivity by integrating smart resource tracking system (SRTS) into the Australian household waste management system. The application of the smart resource tracking system will be implemented through the following ways: (i) mobile application-based resource tracking system used to measure the household’s material flow; (ii) RFID, smart image and weighing system used to track waste generation, recycling and contamination; (iii) informing and motivating manufacturer and retailers to improve their problematic products’ packaging; and (iv) ensure quality and reliable data through open-sourced cloud data for public use. The smart mobile application, imaging, radio-frequency identification (RFID) and weighing technologies are not new, but the very straightforward idea of using these technologies in the household resource consumption, waste bins and collection trucks will open up a new era of accurately measuring and effectively managing our waste. The idea will bring the most urgently needed reliable, data and clarity on household consumption, recycling behaviour and waste management practices in the context of available local infrastructure and policies. Therefore, the findings of this study would be very important for decision makers to improve resource productivity in the waste industry by using smart resource tracking system.

Keywords: smart devices, mobile application, smart sensors, resource tracking, waste management, resource productivity

Procedia PDF Downloads 152
22622 Challenges of Sustainable Development of Small and Medium-Sized Enterprises in Georgia

Authors: Kharaishvili Eteri

Abstract:

The article highlights the importance of small and medium-sized enterprises in achieving the goals of sustainable development of the economy and increasing the well-being of the population. The opinion is put forward that it is necessary to adapt the activities of small and medium-sized firms in Georgia to sustainable business models. Therefore, it is important to identify the challenges that will ensure compliance with the goals and requirements of sustainable development of small and mediumsized enterprises. Objectives. The goal of the study is to reveal the challenges of sustainable development in small and medium-sized enterprises in Georgia and to develop recommendations for strategic development opportunities. Methodologies The challenges of sustainable development of small and medium-sized enterprises are investigated with the following methodology: bibliographic research of scientific works and reports of organizations is carried out; Based on the grouping of sustainable development goals, the performance indicators of these goals are studied; Differences with respect to the corresponding indicators of European countries are determined by the comparison method; The matrix scheme establishes the conditions and tools for sustainable development; Challenges of sustainable development are identified by factor analysis. Contributions Trends in the sustainable development of small and medium-sized enterprises are studied from the point of view of economic, social and environmental factors; To ensure sustainability, the conditions and tools for sustainable development are established (certified supply chains and global markets, allocation of financial resources necessary for sustainable development, proper public procurement, highly qualified workforce, etc.); Several main challenges have been identified in the sustainable development of small and medium-sized enterprises, including: limited internal resources; Institutional factors, especially vague and imperfect regulations, bureaucracy; low level of investments; Low level of qualification of human capital and others.

Keywords: small and medium-sized enterprises, sustainable development, conditions of sustainable development, strategic directions of sustainable development.

Procedia PDF Downloads 109
22621 Enhanced Acquisition Time of a Quantum Holography Scheme within a Nonlinear Interferometer

Authors: Sergio Tovar-Pérez, Sebastian Töpfer, Markus Gräfe

Abstract:

The work proposes a technique that decreases the detection acquisition time of quantum holography schemes down to one-third; this allows the possibility to image moving objects. Since its invention, quantum holography with undetected photon schemes has gained interest in the scientific community. This is mainly due to its ability to tailor the detected wavelengths according to the needs of the scheme implementation. Yet this wavelength flexibility grants the scheme a wide range of possible applications; an important matter was yet to be addressed. Since the scheme uses digital phase-shifting techniques to retrieve the information of the object out of the interference pattern, it is necessary to acquire a set of at least four images of the interference pattern along with well-defined phase steps to recover the full object information. Hence, the imaging method requires larger acquisition times to produce well-resolved images. As a consequence, the measurement of moving objects remains out of the reach of the imaging scheme. This work presents the use and implementation of a spatial light modulator along with a digital holographic technique called quasi-parallel phase-shifting. This technique uses the spatial light modulator to build a structured phase image consisting of a chessboard pattern containing the different phase steps for digitally calculating the object information. Depending on the reduction in the number of needed frames, the acquisition time reduces by a significant factor. This technique opens the door to the implementation of the scheme for moving objects. In particular, the application of this scheme in imaging alive specimens comes one step closer.

Keywords: quasi-parallel phase shifting, quantum imaging, quantum holography, quantum metrology

Procedia PDF Downloads 117
22620 Onmanee Prajuabjinda, Pakakrong Thondeeying, Jipisute Chunthorng-Orn, Bhanuz Dechayont, Arunporn Itharat

Authors: Ekrem Erdem, Can Tansel Tugcu

Abstract:

Improved resource efficiency of production is a key requirement for sustainable growth, worldwide. In this regards, by considering the energy and tourism as the extra inputs to the classical Coub-Douglas production function, this study aims at investigating the efficiency changes in the North African countries. To this end, the study uses panel data for the period 1995-2010 and adopts the Malmquist index based on the data envelopment analysis. Results show that tourism increases technical and scale efficiencies, while it decreases technological and total factor productivity changes. On the other hand, when the production function is augmented by the energy input, technical efficiency change decreases, while the technological change, scale efficiency change and total factor productivity change increase. Thus, in order to satisfy the needs for sustainable growth, North African governments should take some measures for increasing the contribution that the tourism makes to economic growth and some others for efficient use of resources in the energy sector.

Keywords: data envelopment analysis, economic efficiency, North African countries, sustainable growth

Procedia PDF Downloads 350
22619 Actual Fracture Length Determination Using a Technique for Shale Fracturing Data Analysis in Real Time

Authors: M. Wigwe, M. Y Soloman, E. Pirayesh, R. Eghorieta, N. Stegent

Abstract:

The moving reference point (MRP) technique has been used in the analyses of the first three stages of two fracturing jobs. The results obtained verify the proposition that a hydraulic fracture in shale grows in spurts rather than in a continuous pattern as originally interpreted by Nolte-Smith technique. Rather than a continuous Mode I fracture that is followed by Mode II, III or IV fractures, these fracture modes could alternate throughout the pumping period. It is also shown that the Nolte-Smith time parameter plot can be very helpful in identifying the presence of natural fractures that have been intersected by the hydraulic fracture. In addition, with the aid of a fracture length-time plot generated from any fracture simulation that matches the data, the distance from the wellbore to the natural fractures, which also translates to the actual fracture length for the stage, can be determined. An algorithm for this technique is developed. This procedure was used for the first 9 minutes of the simulated frac job data. It was observed that after 7mins, the actual fracture length is about 150ft, instead of 250ft predicted by the simulator output. This difference gets larger as the analysis proceeds.

Keywords: shale, fracturing, reservoir, simulation, frac-length, moving-reference-point

Procedia PDF Downloads 758
22618 A Structured Mechanism for Identifying Political Influencers on Social Media Platforms: Top 10 Saudi Political Twitter Users

Authors: Ahmad Alsolami, Darren Mundy, Manuel Hernandez-Perez

Abstract:

Social media networks, such as Twitter, offer the perfect opportunity to either positively or negatively affect political attitudes on large audiences. The existence of influential users who have developed a reputation for their knowledge and experience of specific topics is a major factor contributing to this impact. Therefore, knowledge of the mechanisms to identify influential users on social media is vital for understanding their effect on their audience. The concept of the influential user is related to the concept of opinion leaders' to indicate that ideas first flow from mass media to opinion leaders and then to the rest of the population. Hence, the objective of this research was to provide reliable and accurate structural mechanisms to identify influential users, which could be applied to different platforms, places, and subjects. Twitter was selected as the platform of interest, and Saudi Arabia as the context for the investigation. These were selected because Saudi Arabia has a large number of Twitter users, some of whom are considerably active in setting agendas and disseminating ideas. The study considered the scientific methods that have been used to identify public opinion leaders before, utilizing metrics software on Twitter. The key findings propose multiple novel metrics to compare Twitter influencers, including the number of followers, social authority and the use of political hashtags, and four secondary filtering measures. Thus, using ratio and percentage calculations to classify the most influential users, Twitter accounts were filtered, analyzed and included. The structured approach is used as a mechanism to explore the top ten influencers on Twitter from the political domain in Saudi Arabia.

Keywords: Twitter, influencers, structured mechanism, Saudi Arabia

Procedia PDF Downloads 122
22617 Evaluation of Bucket Utility Truck In-Use Driving Performance and Electrified Power Take-Off Operation

Authors: Robert Prohaska, Arnaud Konan, Kenneth Kelly, Adam Ragatz, Adam Duran

Abstract:

In an effort to evaluate the in-use performance of electrified Power Take-off (PTO) usage on bucket utility trucks operating under real-world conditions, data from 20 medium- and heavy-duty vehicles operating in California, USA were collected, compiled, and analyzed by the National Renewable Energy Laboratory's (NREL) Fleet Test and Evaluation team. In this paper, duty-cycle statistical analyses of class 5, medium-duty quick response trucks and class 8, heavy-duty material handler trucks are performed to examine and characterize vehicle dynamics trends and relationships based on collected in-use field data. With more than 100,000 kilometers of driving data collected over 880+ operating days, researchers have developed a robust methodology for identifying PTO operation from in-field vehicle data. Researchers apply this unique methodology to evaluate the performance and utilization of the conventional and electric PTO systems. Researchers also created custom representative drive-cycles for each vehicle configuration and performed modeling and simulation activities to evaluate the potential fuel and emissions savings for hybridization of the tractive driveline on these vehicles. The results of these analyses statistically and objectively define the vehicle dynamic and kinematic requirements for each vehicle configuration as well as show the potential for further system optimization through driveline hybridization. Results are presented in both graphical and tabular formats illustrating a number of key relationships between parameters observed within the data set that relates specifically to medium- and heavy-duty utility vehicles operating under real-world conditions.

Keywords: drive cycle, heavy-duty (HD), hybrid, medium-duty (MD), PTO, utility

Procedia PDF Downloads 400
22616 Role of Inherited Structures during Inversion Tectonics: An Example from Tunisia, North Africa

Authors: Aymen Arfaoui, Abdelkader Soumaya, Ali Kadri, Noureddine Ben Ayed

Abstract:

The Tunisian dorsal backland is located on the Eastern Atlas side of the Maghrebides (North Africa). The analysis of collected field data in the Rouas and Ruissate mountains area allowed us to develop new interpretations for its structural framework. Our kinematic analysis of fault-slip data reveals the presence of an extensional tectonic regime with NE-SW Shmin, characterizing the Mesozoic times. In addition, geophysical data shows that the synsedimentary normal faulting is accompanied by thickness variations of sedimentary sequences and Triassic salt movements. Then, after the Eurasia-Africa plate’s convergence during the Eocene, compressive tectonic deformations affected and reactivated the inherited NW-SE and N-S trending normal faults as dextral strike-slip and reverse faults, respectively. This tectonic inversion, with compression to the transpressional tectonic regime and NW-SE SHmax, continued during the successive shortening phases of the upper Miocene and Quaternary. The geometry of the Rouas and Ruissate belt is expressed as a fault propagation fold, affecting Jurassic and Cretaceous deposits. The Triassic evaporates constitute the decollement levels, facilitating the detachment and deformation of the sedimentary cover. The backland of this thrust belt is defined by NNE-SSW trending imbrication features that are controlled by a basement N-S fault.

Keywords: Tunisian dorsal backland, fault slip data; synsedimentary faults, tectonic inversion, decollement level, fault propagation fold

Procedia PDF Downloads 144
22615 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.

Keywords: deep learning, artificial neural networks, energy price forecasting, turkey

Procedia PDF Downloads 297
22614 Assessing the Imapact of Climate Change on Biodiversity Hotspots: A Multidisciplinary Study

Authors: Reet Bishnoi

Abstract:

Climate change poses a pressing global challenge, with far-reaching consequences for the planet's ecosystems and biodiversity. This abstract introduces the research topic, "Assessing the Impact of Climate Change on Biodiversity Hotspots: A Multidisciplinary Study," which delves into the intricate relationship between climate change and biodiversity in the world's most ecologically diverse regions. Biodiversity hotspots, characterized by their exceptionally high species richness and endemism, are under increasing threat due to rising global temperatures, altered precipitation patterns, and other climate-related factors. This research employs a multidisciplinary approach, incorporating ecological, climatological, and conservationist methodologies to comprehensively analyze the effects of climate change on these vital regions. Through a combination of field research, climate modelling, and ecological assessments, this study aims to elucidate the vulnerabilities of biodiversity hotspots and understand how changes in temperature and precipitation are affecting the diverse species and ecosystems that inhabit these areas. The research seeks to identify potential tipping points, assess the resilience of native species, and propose conservation strategies that can mitigate the adverse impacts of climate change on these critical regions. By illuminating the complex interplay between climate change and biodiversity hotspots, this research not only contributes to our scientific understanding of these issues but also informs policymakers, conservationists, and the public about the urgent need for coordinated efforts to safeguard our planet's ecological treasures. The outcomes of this multidisciplinary study are expected to play a pivotal role in shaping future climate policies and conservation practices, emphasizing the importance of protecting biodiversity hotspots for the well-being of the planet and future generations.

Keywords: climate change, biodiversity hotspots, ecological diversity, conservation, multidisciplinary study

Procedia PDF Downloads 85
22613 Real Time Lidar and Radar High-Level Fusion for Obstacle Detection and Tracking with Evaluation on a Ground Truth

Authors: Hatem Hajri, Mohamed-Cherif Rahal

Abstract:

Both Lidars and Radars are sensors for obstacle detection. While Lidars are very accurate on obstacles positions and less accurate on their velocities, Radars are more precise on obstacles velocities and less precise on their positions. Sensor fusion between Lidar and Radar aims at improving obstacle detection using advantages of the two sensors. The present paper proposes a real-time Lidar/Radar data fusion algorithm for obstacle detection and tracking based on the global nearest neighbour standard filter (GNN). This algorithm is implemented and embedded in an automative vehicle as a component generated by a real-time multisensor software. The benefits of data fusion comparing with the use of a single sensor are illustrated through several tracking scenarios (on a highway and on a bend) and using real-time kinematic sensors mounted on the ego and tracked vehicles as a ground truth.

Keywords: ground truth, Hungarian algorithm, lidar Radar data fusion, global nearest neighbor filter

Procedia PDF Downloads 176
22612 Health Status Monitoring of COVID-19 Patient's through Blood Tests and Naïve-Bayes

Authors: Carlos Arias-Alcaide, Cristina Soguero-Ruiz, Paloma Santos-Álvarez, Adrián García-Romero, Inmaculada Mora-Jiménez

Abstract:

Analysing clinical data with computers in such a way that have an impact on the practitioners’ workflow is a challenge nowadays. This paper provides a first approach for monitoring the health status of COVID-19 patients through the use of some biomarkers (blood tests) and the simplest Naïve Bayes classifier. Data of two Spanish hospitals were considered, showing the potential of our approach to estimate reasonable posterior probabilities even some days before the event.

Keywords: Bayesian model, blood biomarkers, classification, health tracing, machine learning, posterior probability

Procedia PDF Downloads 237
22611 The Impact of Varying the Detector and Modulation Types on Inter Satellite Link (ISL) Realizing the Allowable High Data Rate

Authors: Asmaa Zaki M., Ahmed Abd El Aziz, Heba A. Fayed, Moustafa H. Aly

Abstract:

ISLs are the most popular choice for deep space communications because these links are attractive alternatives to present day microwave links. This paper explored the allowable high data rate in this link over different orbits, which is affected by variation in modulation scheme and detector type. Moreover, the objective of this paper is to optimize and analyze the performance of ISL in terms of Q-factor and Minimum Bit Error Rate (Min-BER) based on different detectors comprising some parameters.

Keywords: free space optics (FSO), field of view (FOV), inter satellite link (ISL), optical wireless communication (OWC)

Procedia PDF Downloads 401
22610 A Digital Twin Approach for Sustainable Territories Planning: A Case Study on District Heating

Authors: Ahmed Amrani, Oussama Allali, Amira Ben Hamida, Felix Defrance, Stephanie Morland, Eva Pineau, Thomas Lacroix

Abstract:

The energy planning process is a very complex task that involves several stakeholders and requires the consideration of several local and global factors and constraints. In order to optimize and simplify this process, we propose a tool-based iterative approach applied to district heating planning. We build our tool with the collaboration of a French territory using actual district data and implementing the European incentives. We set up an iterative process including data visualization and analysis, identification and extraction of information related to the area concerned by the operation, design of sustainable planning scenarios leveraging local renewable and recoverable energy sources, and finally, the evaluation of scenarios. The last step is performed by a dynamic digital twin replica of the city. Territory’s energy experts confirm that the tool provides them with valuable support towards sustainable energy planning.

Keywords: climate change, data management, decision support, digital twin, district heating, energy planning, renewables, smart city

Procedia PDF Downloads 177
22609 Image Processing Approach for Detection of Three-Dimensional Tree-Rings from X-Ray Computed Tomography

Authors: Jorge Martinez-Garcia, Ingrid Stelzner, Joerg Stelzner, Damian Gwerder, Philipp Schuetz

Abstract:

Tree-ring analysis is an important part of the quality assessment and the dating of (archaeological) wood samples. It provides quantitative data about the whole anatomical ring structure, which can be used, for example, to measure the impact of the fluctuating environment on the tree growth, for the dendrochronological analysis of archaeological wooden artefacts and to estimate the wood mechanical properties. Despite advances in computer vision and edge recognition algorithms, detection and counting of annual rings are still limited to 2D datasets and performed in most cases manually, which is a time consuming, tedious task and depends strongly on the operator’s experience. This work presents an image processing approach to detect the whole 3D tree-ring structure directly from X-ray computed tomography imaging data. The approach relies on a modified Canny edge detection algorithm, which captures fully connected tree-ring edges throughout the measured image stack and is validated on X-ray computed tomography data taken from six wood species.

Keywords: ring recognition, edge detection, X-ray computed tomography, dendrochronology

Procedia PDF Downloads 224
22608 An Assessment of the Trend and Pattern of Vital Registration System in Shiroro Local Government Area of Niger State, Nigeria

Authors: Aliyu Bello Mohammed

Abstract:

Vital registration or registration of vital events is one of the three major sources of demographic data in Nigeria. The other two are the population census and sample survey. The former is judged to be an indispensable source of demographic data because, it provide information on vital statistics and population trends between two census periods. Various literacy works however depict the vital registration in Nigeria as incapable of providing accurate data for the country. The study has both theoretical and practical significances. The trends and pattern of vital registration has not received adequate research interest in Sub-Saharan Africa in general and Nigeria in particular. This has created a gap in understanding the extent and consequence of the scourge in Africa sub-region. Practically, the study also captures the policy interventions of government and Non-Governmental Organizations (NGOs) that would help enlighten the public on the importance of vital registration in Nigeria. Furthermore, feasible policy strategies that will enhance trends and pattern vital registration in the society would emanate from the study. The study adopted a cross sectional survey design and applied multi stage sampling techniques to sample 230 respondents from the general public in the study area. The first stage involved the splitting of the local government into wards. The second stage involves selecting streets, while the third stage was the households. In all, 6 wards were sampled for the study. The study utilized both primary and secondary sources of data. The primary sources of data used were the questionnaire, focus group discussion (FGD) and in-depth interview (IDI) guides while the secondary sources of data were journals and books, newspapers and magazines. Twelve FGD sessions with 96 study participants and five IDI sessions with the heads of vital registration facilities were conducted. The quantitative data were analyzed using Statistical Package for Social Sciences (SPSS). Descriptive statistics like tables, frequencies and percentages were employed in presenting and interpreting the data. Information from the qualitative data was transcribed and ordered in themes to ensure that outstanding points of the responses are noted. The following conclusions were drawn from the study: the available vital registration facilities are not adequate and were not evenly distributed in the study area; lack of awareness and knowledge of the existence and the importance of vital registration by majority of the people in the local government; distance to vital registration centres from their residents; most births in the area were not registered, and even among the few births that were registered, majority of them were registered after the limited period for registration. And the study reveals that socio-economic index, educational level and distance of facilities to residents are determinants of access to vital registration facility. The study concludes by discussing the need for a reliable and accurate vital registration system if Nigeria’s vision of becoming one of the top 20 economies in the world in 2020 would be realized.

Keywords: trends, patterns, vital, registration and assessment

Procedia PDF Downloads 255
22607 Insights on Behavior of Tunisian Auditors

Authors: Dammak Saida, Mbarek Sonia

Abstract:

This paper aims to examine the impact of public interest commitment, the attitude towards independence enforcement, and organizational ethical culture on auditors' ethical behavior. It also tests the moderating effect of gender diversity on these relationships. The sample consisted of 100 Tunisian chartered accountants. An online survey was used to collect the data. Data analysis techniques used to test hypotheses The findings of this study provide practical implications for accounting professionals, regulators, and audit firms as they help understand auditors' beliefs and behaviors, which implies more effective mechanisms for improving their ethical values.

Keywords: public interest, independence, organizational culture, professional behavior, Tunisian auditors

Procedia PDF Downloads 80
22606 Modeling the Reliability of a Fuel Cell and the Influence of Mechanical Aspects on the Production of Electrical Energy

Authors: Raed Kouta

Abstract:

A fuel cell is a multi-physical system. Its electrical performance depends on chemical, electrochemical, fluid, and mechanical parameters. Many studies focus on physical and chemical aspects. Our study contributes to the evaluation of the influence of mechanical aspects on the performance of a fuel cell. This study is carried out as part of a reliability approach. Reliability modeling allows to consider the uncertainties of the incoming parameters and the probabilistic modeling of the outgoing parameters. The fuel cell studied is the one often used in land, sea, or air transport. This is the Low-Temperature Proton Exchange Membrane Fuel Cell (PEMFC). This battery can provide the required power level. One of the main scientific and technical challenges in mastering the design and production of a fuel cell is to know its behavior in its actual operating environment. The study proposes to highlight the influence on the production of electrical energy: Mechanical design and manufacturing parameters and their uncertainties (Young module, GDL porosity, permeability, etc.). The influence of the geometry of the bipolar plates is also considered. An experimental design is proposed with two types of materials as well as three geometric shapes for three joining pressures. Other experimental designs are also proposed for studying the influence of uncertainties of mechanical parameters on cell performance. - Mechanical (static, dynamic) and thermal (tightening - compression, vibrations (road rolling and tests on vibration-climatic bench, etc.) loads. This study is also carried out according to an experimental scheme on a fuel cell system for vibration loads recorded on a vehicle test track with three temperatures and three expected performance levels. The work will improve the coupling between mechanical, physical, and chemical phenomena.

Keywords: fuel cell, mechanic, reliability, uncertainties

Procedia PDF Downloads 191
22605 An Analysis of Business Intelligence Requirements in South African Corporates

Authors: Adheesh Budree, Olaf Jacob, Louis CH Fourie, James Njenga, Gabriel D Hoffman

Abstract:

Business Intelligence (BI) is implemented by organisations for many reasons and chief among these is improved data support, decision support and savings. The main purpose of this study is to determine BI requirements and availability within South African organisations. The study addresses the following areas as identified as part of a literature review; assessing BI practices in businesses over a range of industries, sectors and managerial functions, determining the functionality of BI (technologies, architecture and methods). It was found that the overall satisfaction with BI in larger organisations is low due to lack of ability to meet user requirements.

Keywords: business intelligence, business value, data management, South Africa

Procedia PDF Downloads 580
22604 An Empirical Study to Predict Myocardial Infarction Using K-Means and Hierarchical Clustering

Authors: Md. Minhazul Islam, Shah Ashisul Abed Nipun, Majharul Islam, Md. Abdur Rakib Rahat, Jonayet Miah, Salsavil Kayyum, Anwar Shadaab, Faiz Al Faisal

Abstract:

The target of this research is to predict Myocardial Infarction using unsupervised Machine Learning algorithms. Myocardial Infarction Prediction related to heart disease is a challenging factor faced by doctors & hospitals. In this prediction, accuracy of the heart disease plays a vital role. From this concern, the authors have analyzed on a myocardial dataset to predict myocardial infarction using some popular Machine Learning algorithms K-Means and Hierarchical Clustering. This research includes a collection of data and the classification of data using Machine Learning Algorithms. The authors collected 345 instances along with 26 attributes from different hospitals in Bangladesh. This data have been collected from patients suffering from myocardial infarction along with other symptoms. This model would be able to find and mine hidden facts from historical Myocardial Infarction cases. The aim of this study is to analyze the accuracy level to predict Myocardial Infarction by using Machine Learning techniques.

Keywords: Machine Learning, K-means, Hierarchical Clustering, Myocardial Infarction, Heart Disease

Procedia PDF Downloads 207
22603 Modelling Water Vapor Sorption and Diffusion in Hydrocolloid Particles

Authors: Andrew Terhemen Tyowua, Zhibing Zhang, Michael J. Adams

Abstract:

Water vapor sorption data at a range of temperatures (25–70 °C) have been obtained for starch (corn and wheat) and non-starch (carrageenan and xanthan gum) hydrocolloid particles in the form of a thin slab. The results reveal that the data may be more accurately described by an existing sigmoidal rather than a Fickian model. The sigmoidal model accounts for the initial surface sorption before the onset of bulk diffusion. At relatively small water activities (≤ 0.3), the absorption of the moisture caused the particles to be plasticized, but at greater activity values (> 0.3), anti-plasticization was induced. However, it was found that for the whole range of water activities and temperatures studied, the data could be characterized by a single non-dimensional number, which was termed the non-Fickian diffusion number where τ is the characteristic time of surface sorption, D is the bulk diffusion coefficient and L is the thickness of the layer of particles. The activation energy suggested that the anti-plasticization mechanism was the result of a reduction in the molecular free volume or an increase in crystallinity.

Keywords: anti-plasticization, arrhenius behavior, diffusion coefficient, hygroscopic polymers, moisture migration, non-fickian sigmoidal model

Procedia PDF Downloads 36
22602 Intrabody Communication Using Different Ground Configurations in Digital Door Lock

Authors: Daewook Kim, Gilwon Yoon

Abstract:

Intrabody communication (IBC) is a new way of transferring data using human body as a medium. Minute current can travel though human body without any harm. IBC can remove electrical wires for human area network. IBC can be also a secure communication network system unlike wireless networks which can be accessed by anyone with bad intentions. One of the IBC systems is based on frequency shift keying modulation where individual data are transmitted to the external devices for the purpose of secure access such as digital door lock. It was found that the quality of IBC data transmission was heavily dependent on ground configurations of electronic circuits. Reliable IBC transmissions were not possible when both of the transmitter and receiver used batteries as circuit power source. Transmission was reliable when power supplies were used as power source for both transmitting and receiving sites because the common ground was established through the grounds of instruments such as power supply and oscilloscope. This was due to transmission dipole size and the ground effects of floor and AC power line. If one site used battery as power source and the other site used the AC power as circuit power source, transmission was possible.

Keywords: frequency shift keying, ground, intrabody, communication, door lock

Procedia PDF Downloads 423
22601 Leveraging Unannotated Data to Improve Question Answering for French Contract Analysis

Authors: Touila Ahmed, Elie Louis, Hamza Gharbi

Abstract:

State of the art question answering models have recently shown impressive performance especially in a zero-shot setting. This approach is particularly useful when confronted with a highly diverse domain such as the legal field, in which it is increasingly difficult to have a dataset covering every notion and concept. In this work, we propose a flexible generative question answering approach to contract analysis as well as a weakly supervised procedure to leverage unannotated data and boost our models’ performance in general, and their zero-shot performance in particular.

Keywords: question answering, contract analysis, zero-shot, natural language processing, generative models, self-supervision

Procedia PDF Downloads 200
22600 Design of Geochemical Maps of Industrial City Using Gradient Boosting and Geographic Information System

Authors: Ruslan Safarov, Zhanat Shomanova, Yuri Nossenko, Zhandos Mussayev, Ayana Baltabek

Abstract:

Geochemical maps of distribution of polluting elements V, Cr, Mn, Co, Ni, Cu, Zn, Mo, Cd, Pb on the territory of the Pavlodar city (Kazakhstan), which is an industrial hub were designed. The samples of soil were taken from 100 locations. Elemental analysis has been performed using XRF. The obtained data was used for training of the computational model with gradient boosting algorithm. The optimal parameters of model as well as the loss function were selected. The computational model was used for prediction of polluting elements concentration for 1000 evenly distributed points. Based on predicted data geochemical maps were created. Additionally, the total pollution index Zc was calculated for every from 1000 point. The spatial distribution of the Zc index was visualized using GIS (QGIS). It was calculated that the maximum coverage area of the territory of the Pavlodar city belongs to the moderately hazardous category (89.7%). The visualization of the obtained data allowed us to conclude that the main source of contamination goes from the industrial zones where the strategic metallurgical and refining plants are placed.

Keywords: Pavlodar, geochemical map, gradient boosting, CatBoost, QGIS, spatial distribution, heavy metals

Procedia PDF Downloads 86
22599 Parenting Practices, Challenges and Prospectus of Working Mothers in Arsi University: Oromia Regional State, Ethiopia

Authors: Endalew Fufa Kufi

Abstract:

Every married person aspires to be a parent regardless of the situation in which s/he lives. Such aspiration meets with reality when the destined parent is able to give adequate supports and services to his/her children, whether the latter are got by birth or through adoption. The adequacy of services parents provide their children is both enriched and tempted by the work on which they involve. On the one hand, parents need to work and earn a living in order to support their family. On the other hand, they must spend most of their time outside home to do the work, which shortens the time and might they spare to care for their children. Where the sufficiency of services parents owe their children could be ascertained by in terms of life skills, physical care and related provisions, the role of working fathers and mothers in providing such supports could be diverse across cultures and work traditions. Hence, this research deals with the investigation of working mothers’ parental practices, challenges they face in providing parental services and the implication for the future progress of the parents and their children. Target of the study will be Arsi University in Oromia Regional State of Ethiopia. Descriptive survey design in holding the research, and data for the research will be collected in the form of experiential self-report from 150 working mothers selected from the entire working women population of Colleges of Agriculture and Environmental Studies and College of Health Sciences through stratified random-sampling. Instruments of data collection will be closed and open-ended questionnaire. Complementary data will also be collected from purposively selected samples through semi-structured interview. Data for the research will be collected through questionnaire first and then through interview. Data analysis will also follow the same procedure. The collected data will systematically be organized and statistically and thematically analyzed in order to come up with indicative findings. The overarching thesis is that, working mothers in the study area bear a lot of responsibilities both at home and at work place which leave them very little time for parenting services. Unless due attention is given to the way they can spare time for their children, they are more likely to be tense between work-life and family care services, which tempt them in different directions.

Keywords: challenges, mothers, practices, university, working

Procedia PDF Downloads 305
22598 Multimodal Direct Neural Network Positron Emission Tomography Reconstruction

Authors: William Whiteley, Jens Gregor

Abstract:

In recent developments of direct neural network based positron emission tomography (PET) reconstruction, two prominent architectures have emerged for converting measurement data into images: 1) networks that contain fully-connected layers; and 2) networks that primarily use a convolutional encoder-decoder architecture. In this paper, we present a multi-modal direct PET reconstruction method called MDPET, which is a hybrid approach that combines the advantages of both types of networks. MDPET processes raw data in the form of sinograms and histo-images in concert with attenuation maps to produce high quality multi-slice PET images (e.g., 8x440x440). MDPET is trained on a large whole-body patient data set and evaluated both quantitatively and qualitatively against target images reconstructed with the standard PET reconstruction benchmark of iterative ordered subsets expectation maximization. The results show that MDPET outperforms the best previously published direct neural network methods in measures of bias, signal-to-noise ratio, mean absolute error, and structural similarity.

Keywords: deep learning, image reconstruction, machine learning, neural network, positron emission tomography

Procedia PDF Downloads 115
22597 Student Perceptions of Defense Acquisition University Courses: An Explanatory Data Collection Approach

Authors: Melissa C. LaDuke

Abstract:

The overarching purpose of this study was to determine the relationship between the current format of online delivery for Defense Acquisition University (DAU) courses and Air Force Acquisition (AFA) personnel participation. AFA personnel (hereafter named “student”) were particularly of interest, as they have been mandated to take anywhere from 3 to 30 online courses to earn various DAU specialization certifications. Participants in this qualitative case study were AFA personnel who pursued DAU certifications in science and technology management, program/contract management, and other related fields. Air Force personnel were interviewed about their experiences with online courses. The data gathered were analyzed and grouped into 12 major themes. The themes tied into the theoretical framework and spoke to either teacher-centered or student-centered educational practices within Defense Acquisitions University. Based on the results of the data analysis, various factors contributed to student perceptions of DAU courses, including the online course construct and relevance to their job. The analysis also found students want to learn the information presented but would like to be able to apply the information learned in meaningful ways.

Keywords: educational theory, computer-based training, interview, student perceptions, online course design, teacher positionality

Procedia PDF Downloads 108