Search results for: window openings
119 Deep Learning Prediction of Residential Radon Health Risk in Canada and Sweden to Prevent Lung Cancer Among Non-Smokers
Authors: Selim M. Khan, Aaron A. Goodarzi, Joshua M. Taron, Tryggve Rönnqvist
Abstract:
Indoor air quality, a prime determinant of health, is strongly influenced by the presence of hazardous radon gas within the built environment. As a health issue, dangerously high indoor radon arose within the 20th century to become the 2nd leading cause of lung cancer. While the 21st century building metrics and human behaviors have captured, contained, and concentrated radon to yet higher and more hazardous levels, the issue is rapidly worsening in Canada. It is established that Canadians in the Prairies are the 2nd highest radon-exposed population in the world, with 1 in 6 residences experiencing 0.2-6.5 millisieverts (mSv) radiation per week, whereas the Canadian Nuclear Safety Commission sets maximum 5-year occupational limits for atomic workplace exposure at only 20 mSv. This situation is also deteriorating over time within newer housing stocks containing higher levels of radon. Deep machine learning (LSTM) algorithms were applied to analyze multiple quantitative and qualitative features, determine the most important contributory factors, and predicted radon levels in the known past (1990-2020) and projected future (2021-2050). The findings showed gradual downwards patterns in Sweden, whereas it would continue to go from high to higher levels in Canada over time. The contributory factors found to be the basement porosity, roof insulation depthness, R-factor, and air dynamics of the indoor environment related to human window opening behaviour. Building codes must consider including these factors to ensure adequate indoor ventilation and healthy living that can prevent lung cancer in non-smokers.Keywords: radon, building metrics, deep learning, LSTM prediction model, lung cancer, canada, sweden
Procedia PDF Downloads 112118 Research on Hangzhou Commercial Center System Based on Point of Interest Data
Authors: Chen Wang, Qiuxiao Chen
Abstract:
With the advent of the information age and the era of big data, urban planning research is no longer satisfied with the analysis and application of traditional data. Because of the limitations of traditional urban commercial center system research, big data provides new opportunities for urban research. Therefore, based on the quantitative evaluation method of big data, the commercial center system of the main city of Hangzhou is analyzed and evaluated, and the scale and hierarchical structure characteristics of the urban commercial center system are studied. In order to make up for the shortcomings of the existing POI extraction method, it proposes a POI extraction method based on adaptive adjustment of search window, which can accurately and efficiently extract the POI data of commercial business in the main city of Hangzhou. Through the visualization and nuclear density analysis of the extracted Point of Interest (POI) data, the current situation of the commercial center system in the main city of Hangzhou is evaluated. Then it compares with the commercial center system structure of 'Hangzhou City Master Plan (2001-2020)', analyzes the problems existing in the planned urban commercial center system, and provides corresponding suggestions and optimization strategy for the optimization of the planning of Hangzhou commercial center system. Then get the following conclusions: The status quo of the commercial center system in the main city of Hangzhou presents a first-level main center, a two-level main center, three third-level sub-centers, and multiple community-level business centers. Generally speaking, the construction of the main center in the commercial center system is basically up to standard, and there is still a big gap in the construction of the sub-center and the regional-level commercial center, further construction is needed. Therefore, it proposes an optimized hierarchical functional system, organizes commercial centers in an orderly manner; strengthens the central radiation to drive surrounding areas; implements the construction guidance of the center, effectively promotes the development of group formation and further improves the commercial center system structure of the main city of Hangzhou.Keywords: business center system, business format, main city of Hangzhou, POI extraction method
Procedia PDF Downloads 140117 Preliminary Evaluation of Maximum Intensity Projection SPECT Imaging for Whole Body Tc-99m Hydroxymethylene Diphosphonate Bone Scanning
Authors: Yasuyuki Takahashi, Hirotaka Shimada, Kyoko Saito
Abstract:
Bone scintigraphy is widely used as a screening tool for bone metastases. However, the 180 to 240 minutes (min) waiting time after the intravenous (i.v.) injection of the tracer is both long and tiresome. To solve this shortcoming, a bone scan with a shorter waiting time is needed. In this study, we applied the Maximum Intensity Projection (MIP) and triple energy window (TEW) scatter correction to a whole body bone SPECT (Merged SPECT) and investigated shortening the waiting time. Methods: In a preliminary phantom study, hot gels of 99mTc-HMDP were inserted into sets of rods with diameters ranging from 4 to 19 mm. Each rod set covered a sector of a cylindrical phantom. The activity concentration of all rods was 2.5 times that of the background in the cylindrical body of the phantom. In the human study, SPECT images were obtained from chest to abdomen at 30 to 180 min after 99mTc- hydroxymethylene diphosphonate (HMDP) injection of healthy volunteers. For both studies, MIP images were reconstructed. Planar whole body images of the patients were also obtained. These were acquired at 200 min. The image quality of the SPECT and the planar images was compared. Additionally, 36 patients with breast cancer were scanned in the same way. The delectability of uptake regions (metastases) was compared visually. Results: In the phantom study, a 4 mm size hot gel was difficult to depict on the conventional SPECT, but MIP images could recognize it clearly. For both the healthy volunteers and the clinical patients, the accumulation of 99mTc-HMDP in the SPECT was good as early as 90 min. All findings of both image sets were in agreement. Conclusion: In phantoms, images from MIP with TEW scatter correction could detect all rods down to those with a diameter of 4 mm. In patients, MIP reconstruction with TEW scatter correction could improve the detectability of hot lesions. In addition, the time between injection and imaging could be shortened from that conventionally used for whole body scans.Keywords: merged SPECT, MIP, TEW scatter correction, 99mTc-HMDP
Procedia PDF Downloads 412116 The Impact of CYP2C9 Gene Polymorphisms on Warfarin Dosing
Authors: Weaam Aldeeban, Majd Aljamali, Lama A. Youssef
Abstract:
Background & Objective: Warfarin is considered a problematic drug due to its narrow therapeutic window and wide inter-individual response variations, which are attributed to demographic, environmental, and genetic factors, particularly single nucleotide polymorphism (SNPs) in the genes encoding VKORC1 and CYP2C9 involved in warfarin's mechanism of action and metabolism, respectively. CYP2C9*2rs1799853 and CYP2C9*3rs1057910 alleles are linked to reduced enzyme activity, as carriers of either or both alleles are classified as moderate or slow metabolizers, and therefore exhibit higher sensitivity of warfarin compared with wild type (CYP2C9*1*1). Our study aimed to assess the frequency of *1, *2, and *3 alleles in the CYP2C9 gene in a cohort of Syrian patients receiving a maintenance dose of warfarin for different indications, the impact of genotypes on warfarin dosing, and the frequency of adverse effects (i.e., bleedings). Subjects & Methods: This retrospective cohort study encompassed 94 patients treated with warfarin. Patients’ genotypes were identified by sequencing the polymerase chain reaction (PCR) specific products of the gene encoding CYP2C9, and the effects on warfarin therapeutic outcomes were investigated. Results: Sequencing revealed that 43.6% of the study population has the *2 and/or *3 SNPs. The mean weekly maintenance dose of warfarin was 37.42 ± 15.5 mg for patients with the wild-type allele (CYP2C9*1*1), whereas patients with one or both variants (*2 and/or *3) demanded a significantly lower dose (28.59 ±11.58 mg) of warfarin, (P= 0.015). A higher percentage (40.7%) of patients with allele *2 and/or *3 experienced hemorrhagic accidents compared with only 17.9% of patients with the wild type *1*1, (P = 0.04). Conclusions: Our study proves an association between *2 and *3 genotypes and higher sensitivity to warfarin and a tendency to bleed, which necessitates lowering the dose. These findings emphasize the significance of CYP2C9 genotyping prior to commencing warfarin therapy in order to achieve optimal and faster dose control and to ensure effectiveness and safety.Keywords: warfarin, CYP2C9, polymorphisms, Syrian, hemorrhage
Procedia PDF Downloads 146115 KTiPO4F: The Negative Electrode Material for Potassium Batteries
Authors: Vahid Ramezankhani, Keith J. Stevenson, Stanislav. S. Fedotov
Abstract:
Lithium-ion batteries (LIBs) play a pivotal role in achieving the key objective “zero-carbon emission” as countries agreed to reach a 1.5ᵒC global warming target according to the Paris agreement. Nowadays, due to the tremendous mobile and stationary consumption of small/large-format LIBs, the demand and consequently the price for such energy storage devices have been raised. The aforementioned challenges originate from the shrinkage of the major applied critical materials in these batteries, such as cobalt (Co), nickel (Ni), Lithium (Li), graphite (G), and manganese (Mn). Therefore, it is imperative to consider alternative elements to address issues corresponding to the limitation of resources around the globe. Potassium (K) is considered an effective alternative to Li since K is a more abundant element, has a higher operating potential, a faster diffusion rate, and the lowest stokes radius in comparison to the closest neighbors in the periodic table (Li and Na). Among all reported materials for metal-ion batteries, some of them possess the general formula AMXO4L [A = Li, Na, K; M = Fe, Ti, V; X = P, S, Si; L= O, F, OH] is of potential to be applied both as anode and cathode and enable researchers to investigate them in the full symmetric battery format. KTiPO4F (KTP structural material) has been previously reported by our group as a promising cathode with decent electronic properties. Herein, we report a synthesis, crystal structure characterization, morphology, as well as K-ion storage properties of KTiPO4F. Our investigation reveals that KTiPO4F delivers discharge capacity > 150 mAh/g at 26.6 mA/g (C/5 current rate) in the potential window of 0.001-3 V. Surprisingly, the cycling performance of C-KTiPO4F//K cell is stable for 1000 cycles at 130 mA/g (C current rate), presenting capacity > 130 mAh/g. More interestingly, we achieved to assemble full symmetric batteries where carbon-coated KTiPO4F serves as both negative and positive electrodes, delivering >70 mAh/g in the potential range of 0.001-4.2V.Keywords: anode material, potassium battery, chemical characterization, electrochemical properties
Procedia PDF Downloads 220114 Microthermometry of Carbonated Rocks of the Hondita-Lomagorda Formations, the Tiger Cave Sector, Municipality of Yaguara, Colombia
Authors: Camila Lozano-Vivas, Camila Quevedo-Villamil, Ingrid Munoz-Quijano, Diego Loaiza
Abstract:
Colombia's limited oil reserves make the finding of new fields of extraction or the potentiate of the existing ones a more important task to do every day; the exploration projects that allow to have a better knowledge of the oil basins are essential. The upper Magdalena Valley basin - VSM, whose reserves are limited, has been one of the first basins for the exploration and production of hydrocarbons in Colombia. The Hondita and Lomagorda formations were deposited in the Late Cretaceous Middle Albian to the Coniacian and are characterized by being the hydrocarbon-generating rocks in the VSM basin oil system along with the Shale de Bambucá; therefore multiple studies have been made. In the oil industry, geochemical properties are used to understand the origin, migration, accumulation, and alteration of hydrocarbons and, in general, the evolution of the basin containing them. One of the most important parameters to understand this evolution is the formation temperature of the oil system. For this reason, a microthermometric study of fluid inclusions was carried out to recognize formation temperatures and to determine certain basic physicochemical variables, homogenization temperature, pressure, density and salinity of the fluid at the time of entrapment, providing evidence on the history of different events in different geological environments in the evolution of a sedimentary basin. Prior to this study, macroscopic and microscopic petrographic analyses of the samples collected in the field were performed. The results of the mentioned properties of the fluid inclusions in the different samples analyzed have salinities ranging from 20.22% to 26.37% eq. by weight NaCl, similar densities found in the ranges of 1.05 to 1.16 g/cc and an average homogenization temperature at 142.92°C, indicating that, at the time of their entanglement, the rock was in the window of generation of medium hydrocarbons –light with fragile characteristics of the rock that would make it useful to treat them as naturally fractured reservoirs.Keywords: homogenization temperature, fluid inclusions, microthermometry, salinity
Procedia PDF Downloads 148113 Application of Electrochromic Glazing for Reducing Peak Cooling Loads
Authors: Ranojoy Dutta
Abstract:
HVAC equipment capacity has a direct impact on occupant comfort and energy consumption of a building. Glazing gains, especially in buildings with high window area, can be a significant contributor to the total peak load on the HVAC system, leading to over-sized systems that mostly operate at poor part load efficiency. In addition, radiant temperature, which largely drives occupant comfort in glazed perimeter zones, is often not effectively controlled despite the HVAC being designed to meet the air temperature set-point. This is due to short wave solar radiation transmitted through windows, that is not sensed by the thermostat until much later when the thermal mass in the room releases the absorbed solar heat to the indoor air. The implication of this phenomenon is increased cooling energy despite poor occupant comfort. EC glazing can significantly eliminate direct solar transmission through windows, reducing both the space cooling loads for the building and improving comfort for occupants near glazing. This paper will review the exact mechanism of how EC glazing would reduce the peak load under design day conditions, leading to reduced cooling capacity vs regular high-performance glazing. Since glazing heat transfer only affects the sensible load, system sizing will be evaluated both with and without the availability of a DOAS to isolate the downsizing potential of the primary cooling equipment when outdoor air is conditioned separately. Given the dynamic nature of glazing gains due to the sun’s movement, effective peak load mitigation with EC requires an automated control system that can predict solar movement and radiation levels so that the right tint state with the appropriate SHGC is utilized at any given time for a given façade orientation. Such an automated EC product will be evaluated for a prototype commercial office model situated in four distinct climate zones.Keywords: electrochromic glazing, peak sizing, thermal comfort, glazing load
Procedia PDF Downloads 130112 Lanthanum Fluoride with Embedded Silicon Nanocrystals: A Novel Material for Future Electronic Devices
Authors: Golam Saklayen, Sheikh Rashel al Ahmed, Ferdous Rahman, Ismail Abu Bakar
Abstract:
Investigation on Lanthanum Fluoride LaF3 layer embedding Silicon Nanocrystals (Si-NCs) fabricated using a novel one-step chemical method has been reported in this presentation. Application of this material has been tested for low-voltage operating non-volatile memory and Schottkey-junction solar cell. Colloidal solution of Si-NCs in hydrofluoric acid (HF) was prepared from meso-porous silicon by ultrasonic vibration (sonication). This solution prevents the Si-NCs to be oxidized. On a silicon (Si) substrate, LaCl3 solution in HCl is allowed to react with the colloidal solution of prepared Si-NCs. Since this solution contains HF, LaCl3 reacts with HF and produces LaF3 crystals that deposits on the silicon substrate as a layer embedding Si-NCs. This a novel single step chemical way of depositing LaF3 insulating layer embedding Si-NCs. The X-Ray diffraction of the deposited layer shows a polycrystalline LaF3 deposition on silicon. A non-stoichiometric LaF3 layer embedding Si-NCs was found by EDX analysis. The presence of Si-NCs was confirmed by SEM. FTIR spectroscopy of the deposited LaF3 powder also confirmed the presence of Si-NCs. The size of Si-NCs was found to be inversely proportional to the ultrasonic power. After depositing proper contacts on the back of Si and LaF3, the devices have been tested as a non-volatile memory and solar cell. A memory window of 525 mV was obtained at a programming and erasing bias of 2V. The LaF3 films with Si NCs showed strong absorption and was also found to decrease optical transmittance than pure LaF3 film of same thickness. The I-V characteristics of the films showed a dependency on the incident light intensity where current changed under various light illumination. Experimental results show a lot of promise for Si-NCs-embedded LaF3 layer to be used as an insulating layer in MIS devices as well as an photoactive material in Schottkey junction solar cells.Keywords: silicon nanocrystals (Si NCs), LaF3, colloidal solution, Schottky junction solar cell
Procedia PDF Downloads 392111 Analyzing the Visual Capability of the Siberian Husky Breed of the Common Dog (Canis lupus familiaris) to Detect Terminally-Ill Patients Undergoing Palliative Care
Authors: Maximo Cozzetti
Abstract:
The aim is to evaluate the capability of the 'Siberian Husky' (FCI-Standard Nº 270) breed of the common dog (Canis lupus familiaris) to detect terminally-ill human patients undergoing palliative care. A total of 49 such patients that fulfill the 'National Scientific and Technical Research Council–Ethical Principles for the Behavior of the Scientific and Technical Investigator' policy, (mainly affected with Stage IV Hodgkin lymphoma or Stage IV Carcinoma, though various other terminal diseases were present) and 49 controls were enrolled. A total of 13 specimens of Siberian Huskies (Canis lupus familiaris FCI – Standard Nº 270) were selected. After a conditioning training regime in which the canines were rewarded when identifying terminally ill patients and excluding the control subjects, a double-blind experiment was conducted in which the canines were presented with a previously unknown patient through an olfactory-proof plexiglass window for 2-minute intervals. The test subjects correctly identified 89.80% of the humans as either ‘ill’ or ‘healthy’. It is important to note that both groups of humans were selected considering and preventing confounding and self-identifying factors such as age, ethnicity, clothing, posture, skin color, alopecia (chemotherapy-induced or otherwise), etc. The olfactory-proofing of the test area rules out the use of the sense of smell to detect distinctive drugs or bodily odors that may be associated with terminal diseases. Thus, the Siberian Husky breed of the common dog shows the visual capability to detect and identify terminally ill patients undergoing palliative care regardless of age, posture, and quantity of hair. Though the capability of the breed of dog to detect terminally-ill patients was observed thoroughly during the course of the experiments, the exact process by which the canines identify the test subjects remains unknown and further research is encouraged.Keywords: Canis lupus familiaris, Siberian Husky, visual identification of terminall illness, FCI-Standard Nº270
Procedia PDF Downloads 156110 Revolutionary Wastewater Treatment Technology: An Affordable, Low-Maintenance Solution for Wastewater Recovery and Energy-Saving
Authors: Hady Hamidyan
Abstract:
As the global population continues to grow, the demand for clean water and effective wastewater treatment becomes increasingly critical. By 2030, global water demand is projected to exceed supply by 40%, driven by population growth, increased water usage, and climate change. Currently, about 4.2 billion people lack access to safely managed sanitation services. The wastewater treatment sector faces numerous challenges, including the need for energy-efficient solutions, cost-effectiveness, ease of use, and low maintenance requirements. This abstract presents a groundbreaking wastewater treatment technology that addresses these challenges by offering an energy-saving approach, wastewater recovery capabilities, and a ready-made, affordable, and user-friendly package with minimal maintenance costs. The unique design of this ready-made package made it possible to eliminate the need for pumps, filters, airlift, and other common equipment. Consequently, it enables sustainable wastewater treatment management with exceptionally low energy and cost requirements, minimizing investment and maintenance expenses. The operation of these packages is based on continuous aeration, which involves injecting oxygen gas or air into the aeration chamber through a tubular diffuser with very small openings. This process supplies the necessary oxygen for aerobic bacteria. The recovered water, which amounts to almost 95% of the input, can be treated to meet specific quality standards, allowing safe reuse for irrigation, industrial processes, or even potable purposes. This not only reduces the strain on freshwater resources but also provides economic benefits by offsetting the costs associated with freshwater acquisition and wastewater discharge. The ready-made, affordable, and user-friendly nature of this technology makes it accessible to a wide range of users, including small communities, industries, and decentralized wastewater treatment systems. The system incorporates user-friendly interfaces, simplified operational procedures, and integrated automation, facilitating easy implementation and operation. Additionally, the use of durable materials, efficient equipment, and advanced monitoring systems significantly reduces maintenance requirements, resulting in low overall life-cycle costs and alleviating the burden on operators and maintenance personnel. In conclusion, the presented wastewater treatment technology offers a comprehensive solution to the challenges faced by the industry. Its energy-saving approach, combined with wastewater recovery capabilities, ensures sustainable resource management and enhances environmental stewardship. This affordable, ready-made, and low-maintenance package promotes broad adoption across various sectors and communities, contributing to a more sustainable future for water and wastewater management.Keywords: wastewater treatment, energy saving, wastewater recovery, affordable package, low maintenance costs, sustainable resource management, environmental stewardship
Procedia PDF Downloads 92109 Policy Analysis and Program Evaluation: Need to Designate a Navigable Spatial Identity for Slums Dwellers in India to Maximize Accessibility and Policy Impact
Authors: Resham Badri
Abstract:
Cities today are unable to justify equitable distribution of theirsocio- economic and infrastructural benefits to the marginalized urban poor, and the emergence of a pressing pandemic like COVID-19 has amplified its impact. Lack of identity, vulnerability, and inaccessibility contribute to exclusion. Owing to systemic gaps in institutional processes, urban development policiesfail to represent and cater to the urban poor. This paper aims to be a roadmap for the Indian Government to understand the significance of the designation of a navigable spatial identity to slum dwellers in the form of a digital address, which can form the fundamental basis of identification to enable accessibility to not only basic servicesbut also other utilities. Capitalizing on such a granular and technology backed approach shall allow to target and reach out to the urban poor strategically andaid effective urban governance. This paper adopts a three-pronged approach;(i) Policy analysis- understanding gaps in existing urban policies of India, such as the Pradhan Mantri Awas Yojana, Swachh Bharat Mission, and Adhaar Card policy, (ii) Program Evaluation- analyzing a case study, where slum dwellers in Kolhapur city in India have been provided with navigable addresses using Google Plus Codes and have gained access to basic services, vaccinations, and other emergency deliveries in COVID-19 times, (iii) Policy recommendation. This designation of a navigable spatial identity has tremendous potential to form the foundation on which policies can further base their data collection and service delivery processes to not only provide basic services but also other infrastructural and social welfare initiatives. Hence, a massive window of opportunity lies in addressing the unaddressed to elevate their living standards and respond to their basic needs.Keywords: policy analysis, urban poor, navigable spatial identity, accessibility
Procedia PDF Downloads 81108 Transcriptome Analysis for Insights into Disease Progression in Dengue Patients
Authors: Abhaydeep Pandey, Shweta Shukla, Saptamita Goswami, Bhaswati Bandyopadhyay, Vishnampettai Ramachandran, Sudhanshu Vrati, Arup Banerjee
Abstract:
Dengue virus infection is now considered as one of the most important mosquito-borne infection in human. The virus is known to promote vascular permeability, cerebral edema leading to Dengue hemorrhagic fever (DHF) or Dengue shock syndrome (DSS). Dengue infection has known to be endemic in India for over two centuries as a benign and self-limited disease. In the last couple of years, the disease symptoms have changed, manifesting severe secondary complication. So far, Delhi has experienced 12 outbreaks of dengue virus infection since 1997 with the last reported in 2014-15. Without specific antivirals, the case management of high-risk dengue patients entirely relies on supportive care, involving constant monitoring and timely fluid support to prevent hypovolemic shock. Nonetheless, the diverse clinical spectrum of dengue disease, as well as its initial similarity to other viral febrile illnesses, presents a challenge in the early identification of this high-risk group. WHO recommends the use of warning signs to identify high-risk patients, but warning signs generally appear during, or just one day before the development of severe illness, thus, providing only a narrow window for clinical intervention. The ability to predict which patient may develop DHF and DSS may improve the triage and treatment. With the recent discovery of high throughput RNA sequencing allows us to understand the disease progression at the genomic level. Here, we will collate the results of RNA-Sequencing data obtained recently from PBMC of different categories of dengue patients from India and will discuss the possible role of deregulated genes and long non-coding RNAs NEAT1 for development of disease progression.Keywords: long non-coding RNA (lncRNA), dengue, peripheral blood mononuclear cell (PBMC), nuclear enriched abundant transcript 1 (NEAT1), dengue hemorrhagic fever (DHF), dengue shock syndrome (DSS)
Procedia PDF Downloads 308107 Colocalization Analysis to Understand Yttrium Uptake in Saxifraga paniculata Using Complementary Imaging Technics
Authors: Till Fehlauer, Blanche Collin, Bernard Angeletti, Andrea Somogyi, Claire Lallemand, Perrine Chaurand, Cédric Dentant, Clement Levard, Jerome Rose
Abstract:
Over the last decades, yttrium (Y) has gained importance in high-tech applications. It is an essential part of alloys and compounds used for lasers, displays, or cell phones, for example. Due to its chemical similarities with the lanthanides, Y is often considered a rare earth element (REE). Despite their increased usage, the environmental behavior of REEs remains poorly understood. Especially regarding their interactions with plants, many uncertainties exist. On the one hand, Y is known to have a negative effect on root development and germination, but on the other hand, it appears to promote plant growth at low concentrations. In order to understand these phenomena, a precise knowledge is necessary about how Y is absorbed by the plant and how it is handled once inside the organism. Contradictory studies exist, stating that due to a similar ionic radius, Y and the other REEs might be absorbed through Ca²⁺-channels, while others suspect that Y has a shared pathway with Al³⁺. In this study, laser ablation coupled ICP-MS, and synchrotron-based micro-X-ray fluorescence (µXRF, beamline Nanoscopium, SOLEIL, France) have been used in order to localize Y within the plant tissue and identify associated elements. The plant used in this study is Saxifraga paniculata, a rugged alpine plant that has shown an affinity for Y in previous studies (in prep.). Furthermore, Saxifraga paniculata performs guttation, which means that it possesses phloem sap secreting openings on the leaf surface that serve to regulate root pressure. These so-called hydathodes could provide special insights in elemental transport in plants. The plants have been grown on Y doped soil (500mg/kg DW) for four months. The results showed that Y was mainly concentrated in the roots of Saxifraga paniculata (260 ± 85mg/kg), and only a small amount was translocated to the leaves (10 ± 7.8mg/kg). µXRF analysis indicated that within the root transects, the majority of Y remained in the epidermis and hardly penetrated the stele. Laser ablation coupled ICP-MS confirmed this finding and showed a positive correlation in the roots between Y, Fe, Al, and to a lesser extent Ca. In the stem transect, Y was mainly detected in a hotspot of approximately 40µm in diameter situated in the endodermis area. Within the stem and especially in the hotspot, Y was highly colocalized with Al and Fe. Similar-sized Y hotspots have been detected in/on the leaves. All of them were strongly colocalized with Al and Fe, except for those situated within the hydathodes, which showed no colocalization with any of the measured elements. Accordingly, a relation between Y and Ca during root uptake remains possible, whereas a correlation to Fe and Al appears to be dominant in the aerial parts, suggesting common storage compartments, the formation of complexes, or a shared pathway during translocation.Keywords: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Phytoaccumulation, Rare earth elements, Saxifraga paniculata, Synchrotron-based micro-X-ray fluorescence, Yttrium
Procedia PDF Downloads 148106 An Experimental Investigation on Explosive Phase Change of Liquefied Propane During a Bleve Event
Authors: Frederic Heymes, Michael Albrecht Birk, Roland Eyssette
Abstract:
Boiling Liquid Expanding Vapor Explosion (BLEVE) has been a well know industrial accident for over 6 decades now, and yet it is still poorly predicted and avoided. BLEVE is created when a vessel containing a pressure liquefied gas (PLG) is engulfed in a fire until the tank rupture. At this time, the pressure drops suddenly, leading the liquid to be in a superheated state. The vapor expansion and the violent boiling of the liquid produce several shock waves. This works aimed at understanding the contribution of vapor ad liquid phases in the overpressure generation in the near field. An experimental work was undertaken at a small scale to reproduce realistic BLEVE explosions. Key parameters were controlled through the experiments, such as failure pressure, fluid mass in the vessel, and weakened length of the vessel. Thirty-four propane BLEVEs were then performed to collect data on scenarios similar to common industrial cases. The aerial overpressure was recorded all around the vessel, and also the internal pressure changed during the explosion and ground loading under the vessel. Several high-speed cameras were used to see the vessel explosion and the blast creation by shadowgraph. Results highlight how the pressure field is anisotropic around the cylindrical vessel and highlights a strong dependency between vapor content and maximum overpressure from the lead shock. The time chronology of events reveals that the vapor phase is the main contributor to the aerial overpressure peak. A prediction model is built upon this assumption. Secondary flow patterns are observed after the lead. A theory on how the second shock observed in experiments forms is exposed thanks to an analogy with numerical simulation. The phase change dynamics are also discussed thanks to a window in the vessel. Ground loading measurements are finally presented and discussed to give insight into the order of magnitude of the force.Keywords: phase change, superheated state, explosion, vapor expansion, blast, shock wave, pressure liquefied gas
Procedia PDF Downloads 77105 Respiratory Health and Air Movement Within Equine Indoor Arenas
Authors: Staci McGill, Morgan Hayes, Robert Coleman, Kimberly Tumlin
Abstract:
The interaction and relationships between horses and humans have been shown to be positive for physical, mental, and emotional wellbeing, however equine spaces where these interactions occur do include some environmental risks. There are 1.7 million jobs associated with the equine industry in the United States in addition to recreational riders, owners, and volunteers who interact with horses for substantial amounts of time daily inside built structures. One specialized facility, an “indoor arena” is a semi-indoor structure used for exercising horses and exhibiting skills during competitive events. Typically, indoor arenas have a sand or sand mixture as the footing or surface over which the horse travels, and increasingly, silica sand is being recommended due to its durable nature. It was previously identified in a semi-qualitative survey that the majority of individuals using indoor arenas have environmental concerns with dust. 27% (90/333) of respondents reported respiratory issues or allergy-like symptoms while riding with 21.6% (71/329) of respondents reporting these issues while standing on the ground observing or teaching. Frequent headaches and/or lightheadedness was reported in 9.9% (33/333) of respondents while riding and in 4.3% 14/329 while on the ground. Horse respiratory health is also negatively impacted with 58% (194/333) of respondents indicating horses cough during or after time in the indoor arena. Instructors who spent time in indoor arenas self-reported more respiratory issues than those individuals who identified as smokers, highlighting the health relevance of understanding these unique structures. To further elucidate environmental concerns and self-reported health issues, 35 facility assessments were conducted in a cross-sectional sampling design in the states of Kentucky and Ohio (USA). Data, including air speeds, were collected in a grid fashion at 15 points within the indoor arenas and then mapped spatially using krigging in ARCGIS. From the spatial maps, standard variances were obtained and differences were analyzed using multivariant analysis of variances (MANOVA) and analysis of variances (ANOVA). There were no differences for the variance of the air speeds in the spaces for facility orientation, presence and type of roof ventilation, climate control systems, amount of openings, or use of fans. Variability of the air speeds in the indoor arenas was 0.25 or less. Further analysis yielded that average air speeds within the indoor arenas were lower than 100 ft/min (0.51 m/s) which is considered still air in other animal facilities. The lack of air movement means that dust clearance is reliant on particle size and weight rather than ventilation. While further work on respirable dust is necessary, this characterization of the semi-indoor environment where animals and humans interact indicates insufficient air flow to eliminate or reduce respiratory hazards. Finally, engineering solutions to address air movement deficiencies within indoor arenas or mitigate particulate matter are critical to ensuring exposures do not lead to adverse health outcomes for equine professionals, volunteers, participants, and horses within these spaces.Keywords: equine, indoor arena, ventilation, particulate matter, respiratory health
Procedia PDF Downloads 116104 The Theology of a Muslim Artist: Tawfiq al-Hakim
Authors: Abdul Rahman Chamseddine
Abstract:
Tawfiq al-Hakim remains one of the most prominent playwrights in his native in Egypt, and in the broader Arab world. His works, at the time of their release, drew international attention and acclaim. His first 1933 masterpiece Ahl al-Kahf (The People of the Cave) especially, garnered fame and recognition in both Europe and the Arab world. Borrowing its title from the Qur’anic Sura, al-Hakim’s play relays the untold story of the life of those 'three saints' after they wake up from their prolonged sleep. The playwright’s selection of topics upon which to base his works displays a deep appreciation of Arabic and Islamic heritage. Al-Hakim was clearly influenced by Islam, to such a degree that he wrote the biography of the Prophet Muhammad in 1936 very early in his career. Knowing that Al-Hakim was preceded by many poets and creative writers in writing the Prophet Muhammad’s biography. Notably like Al-Barudi, Ahmad Shawqi, Haykal, Al-‘Aqqad, and Taha Husayn who have had their own ways in expressing their views of the Prophet Muhammad. The attempt to understand the concern of all those renaissance men and others in the person of the Prophet would be indispensable in this study. This project will examine the reasons behind al-Hakim’s choice to draw upon these particular texts, embedded as they are in the context of Arabic and Islamic heritage, and how the use of traditional texts serves his contemporary goals. The project will also analyze the image of Islam in al-Hakim’s imagination. Elsewhere, he envisions letters or conversations between God and himself, which offers a window into understanding the powerful impact of the Divine on Tawfiq al-Hakim, one that informs his literature and merits further scholarly attention. His works occupying a major rank in Arabic literature, does not reveal Al-Hakim solely but the unquestioned assumptions operative in the life of his community, its mental make-up and its attitudes. Furthermore, studying the reception of works that touch on sensitive issues, like writing a letter to God, in Al-Hakim’s historical context would be of a great significance in the process of comprehending the mentality of the Muslim community at that time.Keywords: Arabic language, Arabic literature, Arabic theology, modern Arabic literature
Procedia PDF Downloads 366103 Distant Speech Recognition Using Laser Doppler Vibrometer
Authors: Yunbin Deng
Abstract:
Most existing applications of automatic speech recognition relies on cooperative subjects at a short distance to a microphone. Standoff speech recognition using microphone arrays can extend the subject to sensor distance somewhat, but it is still limited to only a few feet. As such, most deployed applications of standoff speech recognitions are limited to indoor use at short range. Moreover, these applications require air passway between the subject and the sensor to achieve reasonable signal to noise ratio. This study reports long range (50 feet) automatic speech recognition experiments using a Laser Doppler Vibrometer (LDV) sensor. This study shows that the LDV sensor modality can extend the speech acquisition standoff distance far beyond microphone arrays to hundreds of feet. In addition, LDV enables 'listening' through the windows for uncooperative subjects. This enables new capabilities in automatic audio and speech intelligence, surveillance, and reconnaissance (ISR) for law enforcement, homeland security and counter terrorism applications. The Polytec LDV model OFV-505 is used in this study. To investigate the impact of different vibrating materials, five parallel LDV speech corpora, each consisting of 630 speakers, are collected from the vibrations of a glass window, a metal plate, a plastic box, a wood slate, and a concrete wall. These are the common materials the application could encounter in a daily life. These data were compared with the microphone counterpart to manifest the impact of various materials on the spectrum of the LDV speech signal. State of the art deep neural network modeling approaches is used to conduct continuous speaker independent speech recognition on these LDV speech datasets. Preliminary phoneme recognition results using time-delay neural network, bi-directional long short term memory, and model fusion shows great promise of using LDV for long range speech recognition. To author’s best knowledge, this is the first time an LDV is reported for long distance speech recognition application.Keywords: covert speech acquisition, distant speech recognition, DSR, laser Doppler vibrometer, LDV, speech intelligence surveillance and reconnaissance, ISR
Procedia PDF Downloads 179102 Assessment of Spectral Indices for Soil Salinity Estimation in Irrigated Land
Authors: R. Lhissou , A. El Harti , K. Chokmani, E. Bachaoui, A. El Ghmari
Abstract:
Soil salinity is a serious environmental hazard in many countries around the world especially the arid and semi-arid countries like Morocco. Salinization causes negative effects on the ground; it affects agricultural production, infrastructure, water resources and biodiversity. Remote sensing can provide soil salinity information for large areas, and in a relatively short time. In addition, remote sensing is not limited by extremes in terrain or hazardous condition. Contrariwise, experimental methods for monitoring soil salinity by direct measurements in situ are very demanding of time and resources, and also very limited in spatial coverage. In the irrigated perimeter of Tadla plain in central Morocco, the increased use of saline groundwater and surface water, coupled with agricultural intensification leads to the deterioration of soil quality especially by salinization. In this study, we assessed several spectral indices of soil salinity cited in the literature using Landsat TM satellite images and field measurements of electrical conductivity (EC). Three Landsat TM satellite images were taken during 3 months in the dry season (September, October and November 2011). Based on field measurement data of EC collected in three field campaigns over the three dates simultaneously with acquisition dates of Landsat TM satellite images, a two assessment techniques are used to validate a soil salinity spectral indices. Firstly, the spectral indices are validated locally by pixel. The second validation technique is made using a window of size 3x3 pixels. The results of the study indicated that the second technique provides getting a more accurate validation and the assessment has shown its limits when it comes to assess across the pixel. In addition, the EC values measured from field have a good correlation with some spectral indices derived from Landsat TM data and the best results show an r² of 0.88, 0.79 and 0.65 for Salinity Index (SI) in the three dates respectively. The results have shown the usefulness of spectral indices as an auxiliary variable in the spatial estimation and mapping salinity in irrigated land.Keywords: remote sensing, spectral indices, soil salinity, irrigated land
Procedia PDF Downloads 391101 Enhancing Animal Protection: Topical RNAi with Polymer Carriers for Sustainable Animal Health in Australian Sheep Flystrike
Authors: Yunjia Yang, Yakun Yan, Peng Li, Gordon Xu, Timothy Mahony, Neena Mitter, Karishma Mody
Abstract:
Sheep flystrike is one of the most economically important diseases affecting the Australian sheep and wool industry (>356M/annually). Currently, control of Lucillia cuprina relies almost exclusively on chemicals controls and the parasite has developed resistance to nearly all control chemicals used in the past. It is therefore critical to develop an alternative solution for the sustainable control and management of flystrike. RNA interference (RNAi) technologies have been successfully explored in multiple animal industries for developing parasites controls. This research project aims to develop a RNAi based biological control for sheep blowfly. Double-stranded RNA (dsRNA) has already proven successful against viruses, fungi and insects. However, the environmental instability of dsRNA is a major bottleneck with a protection window only lasting 5-7 days. Bentonite polymer (BenPol) technology can overcome this problem, as it can be tuned for controlled release of the dsRNA in the gut challenging pH environment of the blowfly larvae, prolonging its exposure time to and uptake by target cells. We have investigated four different BenPol carriers for their dsRNA loading capabilities of which three of them were able to afford dsRNA stability under multiple temperatures (4°C, 22°C, 40°C, 55°C) in the sheep serum. Based on stability results, we further tested dsRNA from potential targeted genes loaded with BenPol carrier in larvae feeding assay, and get three knockdowns. Our results, establish that the dsRNA when loaded on BenPol particles is stable unlike naked dsRNA which is rapidly degraded in the sheep serum. A stable nanoparticles delivery system that can protect and increase the inherent stability of the dsRNA molecules at higher temperatures in a complex biological fluid like serum, offers a great deal of promise for the future use of this approach for enhancing animal protection.Keywords: RNA interference, Lucillia cuprina, polymer carriers, polymer stability
Procedia PDF Downloads 81100 Problem-Based Learning for Hospitality Students. The Case of Madrid Luxury Hotels and the Recovery after the Covid Pandemic
Authors: Caridad Maylin-Aguilar, Beatriz Duarte-Monedero
Abstract:
Problem-based learning (PBL) is a useful tool for adult and practice oriented audiences, as University students. As a consequence of the huge disruption caused by the COVID pandemic in the hospitality industry, hotels of all categories closed down in Spain from March 2020. Since that moment, the luxury segment was blooming with optimistic prospects for new openings. Hence, Hospitality students were expecting a positive situation in terms of employment and career development. By the beginning of the 2020-21 academic year, these expectations were seriously harmed. By October 2020, only 9 of the 32 hotels in the luxury segment were opened with an occupation rate of 9%. Shortly after, the evidence of a second wave affecting especially Spain and the homelands of incoming visitors bitterly smashed all forecasts. In accordance with the situation, a team of four professors and practitioners, from four different subject areas, developed a real case, inspired in one of these hotels, the 5-stars Emperatriz by Barceló. Students in their 2nd course were provided with real information as marketing plans, profit and losses and operational accounts, employees profiles and employment costs. The challenge for them was to act as consultants, identifying potential courses of action, related to best, base and worst case. In order to do that, they were organized in teams and supported by 4th course students. Each professor deployed the problem in their subject; thus, research on the customers behavior and feelings were necessary to review, as part of the marketing plan, if the current offering of the hotel was clear enough to guarantee and to communicate a safe environment, as well as the ranking of other basic, supporting and facilitating services. Also, continuous monitoring of competitors’ activity was necessary to understand what was the behavior of the open outlets. The actions designed after the diagnose were ranked in accordance with their impact and feasibility in terms of time and resources. Also they must be actionable by the current staff of the hotel and their managers and a vision of internal marketing was appreciated. After a process of refinement, seven teams presented their conclusions to Emperatriz general manager and the rest of professors. Four main ideas were chosen, and all the teams, irrespectively of authorship, were asked to develop them to the state of a minimum viable product, with estimations of impacts and costs. As the process continues, students are nowadays accompanying the hotel and their staff in the prudent reopening of facilities, almost one year after the closure. From a professor’s point of view, key learnings were 1.- When facing a real problem, a holistic view is needed. Therefore, the vision of subjects as silos collapses, 2- When educating new professionals, providing them with the resilience and resistance necessaries to deal with a problem is always mandatory, but now seems more relevant and 3.- collaborative work and contact with real practitioners in such an uncertain and changing environment is a challenge, but it is worth when considering the learning result and its potential.Keywords: problem-based learning, hospitality recovery, collaborative learning, resilience
Procedia PDF Downloads 18399 Shedding Light on the Black Box: Explaining Deep Neural Network Prediction of Clinical Outcome
Authors: Yijun Shao, Yan Cheng, Rashmee U. Shah, Charlene R. Weir, Bruce E. Bray, Qing Zeng-Treitler
Abstract:
Deep neural network (DNN) models are being explored in the clinical domain, following the recent success in other domains such as image recognition. For clinical adoption, outcome prediction models require explanation, but due to the multiple non-linear inner transformations, DNN models are viewed by many as a black box. In this study, we developed a deep neural network model for predicting 1-year mortality of patients who underwent major cardio vascular procedures (MCVPs), using temporal image representation of past medical history as input. The dataset was obtained from the electronic medical data warehouse administered by Veteran Affairs Information and Computing Infrastructure (VINCI). We identified 21,355 veterans who had their first MCVP in 2014. Features for prediction included demographics, diagnoses, procedures, medication orders, hospitalizations, and frailty measures extracted from clinical notes. Temporal variables were created based on the patient history data in the 2-year window prior to the index MCVP. A temporal image was created based on these variables for each individual patient. To generate the explanation for the DNN model, we defined a new concept called impact score, based on the presence/value of clinical conditions’ impact on the predicted outcome. Like (log) odds ratio reported by the logistic regression (LR) model, impact scores are continuous variables intended to shed light on the black box model. For comparison, a logistic regression model was fitted on the same dataset. In our cohort, about 6.8% of patients died within one year. The prediction of the DNN model achieved an area under the curve (AUC) of 78.5% while the LR model achieved an AUC of 74.6%. A strong but not perfect correlation was found between the aggregated impact scores and the log odds ratios (Spearman’s rho = 0.74), which helped validate our explanation.Keywords: deep neural network, temporal data, prediction, frailty, logistic regression model
Procedia PDF Downloads 15398 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data
Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz
Abstract:
In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.Keywords: real-time spatial big data, quality of service, vertical partitioning, horizontal partitioning, matching algorithm, hamming distance, stream query
Procedia PDF Downloads 15797 Feasibility of an Extreme Wind Risk Assessment Software for Industrial Applications
Authors: Francesco Pandolfi, Georgios Baltzopoulos, Iunio Iervolino
Abstract:
The impact of extreme winds on industrial assets and the built environment is gaining increasing attention from stakeholders, including the corporate insurance industry. This has led to a progressively more in-depth study of building vulnerability and fragility to wind. Wind vulnerability models are used in probabilistic risk assessment to relate a loss metric to an intensity measure of the natural event, usually a gust or a mean wind speed. In fact, vulnerability models can be integrated with the wind hazard, which consists of associating a probability to each intensity level in a time interval (e.g., by means of return periods) to provide an assessment of future losses due to extreme wind. This has also given impulse to the world- and regional-scale wind hazard studies.Another approach often adopted for the probabilistic description of building vulnerability to the wind is the use of fragility functions, which provide the conditional probability that selected building components will exceed certain damage states, given wind intensity. In fact, in wind engineering literature, it is more common to find structural system- or component-level fragility functions rather than wind vulnerability models for an entire building. Loss assessment based on component fragilities requires some logical combination rules that define the building’s damage state given the damage state of each component and the availability of a consequence model that provides the losses associated with each damage state. When risk calculations are based on numerical simulation of a structure’s behavior during extreme wind scenarios, the interaction of component fragilities is intertwined with the computational procedure. However, simulation-based approaches are usually computationally demanding and case-specific. In this context, the present work introduces the ExtReMe wind risk assESsment prototype Software, ERMESS, which is being developed at the University of Naples Federico II. ERMESS is a wind risk assessment tool for insurance applications to industrial facilities, collecting a wide assortment of available wind vulnerability models and fragility functions to facilitate their incorporation into risk calculations based on in-built or user-defined wind hazard data. This software implements an alternative method for building-specific risk assessment based on existing component-level fragility functions and on a number of simplifying assumptions for their interactions. The applicability of this alternative procedure is explored by means of an illustrative proof-of-concept example, which considers four main building components, namely: the roof covering, roof structure, envelope wall and envelope openings. The application shows that, despite the simplifying assumptions, the procedure can yield risk evaluations that are comparable to those obtained via more rigorous building-level simulation-based methods, at least in the considered example. The advantage of this approach is shown to lie in the fact that a database of building component fragility curves can be put to use for the development of new wind vulnerability models to cover building typologies not yet adequately covered by existing works and whose rigorous development is usually beyond the budget of portfolio-related industrial applications.Keywords: component wind fragility, probabilistic risk assessment, vulnerability model, wind-induced losses
Procedia PDF Downloads 18196 Indigenous Knowledge and Nature of Science Interface: Content Considerations for Science, Technology, Engineering, and Mathematics Education
Authors: Mpofu Vongai, Vhurumuku Elaosi
Abstract:
Many African countries, such as Zimbabwe and South Africa, have curricula reform agendas that include incorporation of Indigenous Knowledge and Nature of Science (NOS) into school Science, Technology, Engineering and Mathematics (STEM) education. It is argued that at high school level, STEM learning, which incorporates understandings of indigenization science and NOS, has the potential to provide a strong foundation for a culturally embedded scientific knowledge essential for their advancement in Science and Technology. Globally, investment in STEM education is recognized as essential for economic development. For this reason, developing countries such as Zimbabwe and South Africa have been investing into training specialized teachers in natural sciences and technology. However, in many cases this training has been detached from the cultural realities and contexts of indigenous learners. For this reason, the STEM curricula reform has provided implementation challenges to teachers. An issue of major concern is the teachers’ pedagogical content knowledge (PCK), which is essential for effective implementation of these STEM curricula. Well-developed Teacher PCK include an understanding of both the nature of indigenous knowledge (NOIK) and of NOS. This paper reports the results of a study that investigated the development of 3 South African and 3 Zimbabwean in-service teachers’ abilities to integrate NOS and NOIK as part of their PCK. A participatory action research design was utilized. The main focus was on capturing, determining and developing teachers STEM knowledge for integrating NOIK and NOS in science classrooms. Their use of indigenous games was used to determine how their subject knowledge for STEM and pedagogical abilities could be developed. Qualitative data were gathered through the use dialogues between the researchers and the in-service teachers, as well as interviewing the participating teachers. Analysis of the data provides a methodological window through which in-service teachers’ PCK can be STEMITIZED and their abilities to integrate NOS and NOIK developed. Implications are raised for developing teachers’ STEM education in universities and teacher training colleges.Keywords: indigenous knowledge, nature of science, pedagogical content knowledge, STEM education
Procedia PDF Downloads 27995 Adaptation of Projection Profile Algorithm for Skewed Handwritten Text Line Detection
Authors: Kayode A. Olaniyi, Tola. M. Osifeko, Adeola A. Ogunleye
Abstract:
Text line segmentation is an important step in document image processing. It represents a labeling process that assigns the same label using distance metric probability to spatially aligned units. Text line detection techniques have successfully been implemented mainly in printed documents. However, processing of the handwritten texts especially unconstrained documents has remained a key problem. This is because the unconstrained hand-written text lines are often not uniformly skewed. The spaces between text lines may not be obvious, complicated by the nature of handwriting and, overlapping ascenders and/or descenders of some characters. Hence, text lines detection and segmentation represents a leading challenge in handwritten document image processing. Text line detection methods that rely on the traditional global projection profile of the text document cannot efficiently confront with the problem of variable skew angles between different text lines. Hence, the formulation of a horizontal line as a separator is often not efficient. This paper presents a technique to segment a handwritten document into distinct lines of text. The proposed algorithm starts, by partitioning the initial text image into columns, across its width into chunks of about 5% each. At each vertical strip of 5%, the histogram of horizontal runs is projected. We have worked with the assumption that text appearing in a single strip is almost parallel to each other. The algorithm developed provides a sliding window through the first vertical strip on the left side of the page. It runs through to identify the new minimum corresponding to a valley in the projection profile. Each valley would represent the starting point of the orientation line and the ending point is the minimum point on the projection profile of the next vertical strip. The derived text-lines traverse around any obstructing handwritten vertical strips of connected component by associating it to either the line above or below. A decision of associating such connected component is made by the probability obtained from a distance metric decision. The technique outperforms the global projection profile for text line segmentation and it is robust to handle skewed documents and those with lines running into each other.Keywords: connected-component, projection-profile, segmentation, text-line
Procedia PDF Downloads 12494 Effect of Using PCMs and Transparency Rations on Energy Efficiency and Thermal Performance of Buildings in Hot Climatic Regions. A Simulation-Based Evaluation
Authors: Eda K. Murathan, Gulten Manioglu
Abstract:
In the building design process, reducing heating and cooling energy consumption according to the climatic region conditions of the building are important issues to be considered in order to provide thermal comfort conditions in the indoor environment. Applying a phase-change material (PCM) on the surface of a building envelope is the new approach for controlling heat transfer through the building envelope during the year. The transparency ratios of the window are also the determinants of the amount of solar radiation gain in the space, thus thermal comfort and energy expenditure. In this study, a simulation-based evaluation was carried out by using Energyplus to determine the effect of coupling PCM and transparency ratio when integrated into the building envelope. A three-storey building, a 30m x 30m sized floor area and 10m x 10m sized courtyard are taken as an example of the courtyard building model, which is frequently seen in the traditional architecture of hot climatic regions. 8 zones (10m x10m sized) with 2 exterior façades oriented in different directions on each floor were obtained. The percentage of transparent components on the PCM applied surface was increased at every step (%30, %40, %50). For every zone differently oriented, annual heating, cooling energy consumptions, and thermal comfort based on the Fanger method were calculated. All calculations are made for the zones of the intermediate floor of the building. The study was carried out for Diyarbakır provinces representing the hot-dry climate region and Antalya representing the hot-humid climate region. The increase in the transparency ratio has led to a decrease in heating energy consumption but an increase in cooling energy consumption for both provinces. When PCM is applied to all developed options, It was observed that heating and cooling energy consumption decreased in both Antalya (6.06%-19.78% and %1-%3.74) and Diyarbakır (2.79%-3.43% and 2.32%-4.64%) respectively. When the considered building is evaluated under passive conditions for the 21st of July, which represents the hottest day of the year, it is seen that the user feels comfortable between 11 pm-10 am with the effect of night ventilation for both provinces.Keywords: building envelope, heating and cooling energy consumptions, phase change material, transparency ratio
Procedia PDF Downloads 17693 Ischemic Stroke Detection in Computed Tomography Examinations
Authors: Allan F. F. Alves, Fernando A. Bacchim Neto, Guilherme Giacomini, Marcela de Oliveira, Ana L. M. Pavan, Maria E. D. Rosa, Diana R. Pina
Abstract:
Stroke is a worldwide concern, only in Brazil it accounts for 10% of all registered deaths. There are 2 stroke types, ischemic (87%) and hemorrhagic (13%). Early diagnosis is essential to avoid irreversible cerebral damage. Non-enhanced computed tomography (NECT) is one of the main diagnostic techniques used due to its wide availability and rapid diagnosis. Detection depends on the size and severity of lesions and the time spent between the first symptoms and examination. The Alberta Stroke Program Early CT Score (ASPECTS) is a subjective method that increases the detection rate. The aim of this work was to implement an image segmentation system to enhance ischemic stroke and to quantify the area of ischemic and hemorrhagic stroke lesions in CT scans. We evaluated 10 patients with NECT examinations diagnosed with ischemic stroke. Analyzes were performed in two axial slices, one at the level of the thalamus and basal ganglion and one adjacent to the top edge of the ganglionic structures with window width between 80 and 100 Hounsfield Units. We used different image processing techniques such as morphological filters, discrete wavelet transform and Fuzzy C-means clustering. Subjective analyzes were performed by a neuroradiologist according to the ASPECTS scale to quantify ischemic areas in the middle cerebral artery region. These subjective analysis results were compared with objective analyzes performed by the computational algorithm. Preliminary results indicate that the morphological filters actually improve the ischemic areas for subjective evaluations. The comparison in area of the ischemic region contoured by the neuroradiologist and the defined area by computational algorithm showed no deviations greater than 12% in any of the 10 examination tests. Although there is a tendency that the areas contoured by the neuroradiologist are smaller than those obtained by the algorithm. These results show the importance of a computer aided diagnosis software to assist neuroradiology decisions, especially in critical situations as the choice of treatment for ischemic stroke.Keywords: ischemic stroke, image processing, CT scans, Fuzzy C-means
Procedia PDF Downloads 36692 A Study on Impact of Scheduled Preventive Maintenance on Overall Self-Life as Well as Reduction of Operational down Time of Critical Oil Field Mobile Equipment
Authors: Dipankar Deka
Abstract:
Exploration and production of Oil & Gas is a very challenging business on which a nation’s energy security depends on. The exploration and Production of hydrocarbon is a very precise and time-bound process. The striking rate of hydrocarbon in a drilled well is so uncertain that the success rate is only 31% in 2021 as per Rigzone. Huge cost is involved in drilling as well as the production of hydrocarbon from a well. Due to this very reason, no one can effort to lose a well because of faulty machines, which increases the non-productive time (NPT). Numerous activities that include manpower and machines synchronized together works in a precise way to complete the full cycle of exploration, rig movement, drilling and production of crude oil. There are several machines, both fixed and mobile, are used in the complete cycle. Most of these machines have a tight schedule of work operating in various drilling sites that are simultaneously being drilled, providing a very narrow window for maintenance. The shutdown of any of these machines for even a small period of time delays the whole project and increases the cost of production of hydrocarbon by manifolds. Moreover, these machines are custom designed exclusively for oil field operations to be only used in Mining Exploration Licensed area (MEL) earmarked by the government and are imported and very costly in nature. The cost of some of these mobile units like Well Logging Units, Coil Tubing units, Nitrogen pumping units etc. that are used for Well stimulation and activation process exceeds more than 1 million USD per unit. So the increase of self-life of these units also generates huge revenues during the extended duration of their services. In this paper we are considering the very critical mobile oil field equipment like Well Logging Unit, Coil Tubing unit, well-killing unit, Nitrogen pumping unit, MOL Oil Field Truck, Hot Oil Circulation Unit etc., and their extensive preventive maintenance in our auto workshop. This paper is the outcome of 10 years of structured automobile maintenance and minute documentation of each associated event that allowed us to perform the comparative study between the new practices of preventive maintenance over the age-old practice of system-based corrective maintenance and its impact on the self-life of the equipment.Keywords: automobile maintenance, preventive maintenance, symptom based maintenance, workshop technologies
Procedia PDF Downloads 7491 Comparison of Illuminance Levels in Old Omani and Portuguese Forts in Oman
Authors: Maatouk Khoukhi
Abstract:
Nowadays the reduction of the energy consumed by buildings to achieve mainly the thermal comfort for the occupants represent the main concern for architects and building designers. The common and traditional solution to achieve this target is the design of a highly insulated envelope and reduce the opening and the transparent elements such windows. However, this will lead to the artificial lighting system to consume more energy to compensate the lack of natural lighting coming through the glazed parts of the building envelope. Therefore, a good balance between sufficient daylight and control thermal heat through the building envelope should be considered for energy saving purpose. To achieve a better indoor environment the windows size and spacing including the interior finishing and the location of the partition must be assessed accurately. Daylighting is the controlled admission of natural light into space through windows and transparent elements of the building envelope which helps create a visually stimulating and productive environment for building occupants. The main concern is not to provide enough daylight to an occupied space, but how to achieve this without any undesirable side effect. Indeed, the glare is a major problem in glazed façade buildings, and this could be reduced by using tinted windows. The main target of this research is to investigate the daylight adequacy of functional needs in old Omani Forts and how they have been designed and built to avoid glare and overheating with the appropriate window-to-floor ratio. Because more windows do not automatically result in more daylighting but that is natural light has been controlled and distributed properly throughout the space. Spaces from different Omani and Portuguese Forts under the same climate conditions are considered in order to compare the daylight illuminance levels and examine the similarities and differences in visual attributes between them. The result of this study indicates that lighting preference is not universal and people from different geographical locations are adapted to certain illuminance levels. Therefore, the standards could not be generalized for the entire world. This would be useful to practitioners who are designing to effectively address the diversity of user’s lighting levels preferences in our globally connected society.Keywords: day lighting, energy, forts, thermal comfort
Procedia PDF Downloads 16790 Drone Swarm Routing and Scheduling for Off-shore Wind Turbine Blades Inspection
Authors: Mohanad Al-Behadili, Xiang Song, Djamila Ouelhadj, Alex Fraess-Ehrfeld
Abstract:
In off-shore wind farms, turbine blade inspection accessibility under various sea states is very challenging and greatly affects the downtime of wind turbines. Maintenance of any offshore system is not an easy task due to the restricted logistics and accessibility. The multirotor unmanned helicopter is of increasing interest in inspection applications due to its manoeuvrability and payload capacity. These advantages increase when many of them are deployed simultaneously in a swarm. Hence this paper proposes a drone swarm framework for inspecting offshore wind turbine blades and nacelles so as to reduce downtime. One of the big challenges of this task is that when operating a drone swarm, an individual drone may not have enough power to fly and communicate during missions and it has no capability of refueling due to its small size. Once the drone power is drained, there are no signals transmitted and the links become intermittent. Vessels equipped with 5G masts and small power units are utilised as platforms for drones to recharge/swap batteries. The research work aims at designing a smart energy management system, which provides automated vessel and drone routing and recharging plans. To achieve this goal, a novel mathematical optimisation model is developed with the main objective of minimising the number of drones and vessels, which carry the charging stations, and the downtime of the wind turbines. There are a number of constraints to be considered, such as each wind turbine must be inspected once and only once by one drone; each drone can inspect at most one wind turbine after recharging, then fly back to the charging station; collision should be avoided during the drone flying; all wind turbines in the wind farm should be inspected within the given time window. We have developed a real-time Ant Colony Optimisation (ACO) algorithm to generate real-time and near-optimal solutions to the drone swarm routing problem. The schedule will generate efficient and real-time solutions to indicate the inspection tasks, time windows, and the optimal routes of the drones to access the turbines. Experiments are conducted to evaluate the quality of the solutions generated by ACO.Keywords: drone swarm, routing, scheduling, optimisation model, ant colony optimisation
Procedia PDF Downloads 266