Search results for: vector division
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1578

Search results for: vector division

1158 Use of WhatsApp Messenger for Optimal Healthcare Operational Communication during the COVID-19 Pandemic

Authors: Josiah O. Carter, Charlotte Hayden, Elizabeth Arthurs

Abstract:

Background: During the COVID-19 pandemic, hospital management policies have changed frequently and rapidly. This has created novel challenges in keeping the workforce abreast of these changes to enable them to deliver safe and effective care. Traditional communication methods, e.g. email, do not keep pace with the rapidly changing environment in the hospital, resulting in inaccurate, irrelevant, or outdated information being communicated, resulting in inefficiencies in patient care. Methods: The creation of a WhatsApp messaging group within the medical division at the Bristol Royal Infirmary has enabled senior clinicians and the hospital management team to update the medical workforce in real-time. It has two primary functions: (1) To enable dissemination of a concise, important operational summary. This comprises information on bed status and infection control procedural changes. It is fed directly from a daily critical incident briefing (2) To facilitate a monthly scheduled question and answer (Q&A) session for junior doctors to clarify issues with clinical directors, rota, and management staff. Additional ad-hoc updates are sent out for time-critical information; otherwise, it mainly functions as a broadcast-only group to prevent important information from being lost amongst other communication. All junior doctors within the medical division were invited to join the group. At present, the group comprises 131 participants, of which 10 are administrative staff (rota coordinators, management staff & clinical directors); the remaining 121 are junior clinicians working within the medical division. An electronic survey via Microsoft forms was sent out to junior doctors via the WhatsApp group and via email to assess its utilisation and effectiveness with the aim of quality improvements. Results: Of the 121 group participants, 19 completed the questionnaire (response rate 15.7%). Of these, 16/19 (84.2%) used it regularly, and 12/19 (63.2%) rated it as the most useful source for reliable updates relating to the hospital response to the COVID-19 pandemic, whereas only 2/19 (10.5%) found the trust intranet and the trust COVID-19 operational email update most useful. Respondents rated the WhatsApp group more useful as an information source (mean score 7.7/10) than as a means of providing feedback to management staff (mean score 6.3/10). Qualitative feedback suggested information around ward closures and changes to COVID cohorting, along with updates on staffing issues, were most useful. Respondents also noted the Q&A sessions were an efficient way of relaying feedback about management decisions but that it would be preferable if these sessions could be delivered more frequently. Discussion: During the current global COVID-19 pandemic, there is an increased need for rapid dissemination of critical information within NHS trusts; this includes communication between junior doctors, managers, and senior clinicians. The versatility of WhatsApp permits a variety of functions allowing for regular updates, the dissemination of time-critical information, and enables conversing and feedback. The project has demonstrated that reserved and well-managed use of a WhatsApp group is a welcome, efficient and practical means of communication between the senior management team and the junior medical workforce.

Keywords: communication, COVID-19, hospital management, WhatsApp

Procedia PDF Downloads 111
1157 The Characteristics of Static Plantar Loading in the First-Division College Sprint Athletes

Authors: Tong-Hsien Chow

Abstract:

Background: Plantar pressure measurement is an effective method for assessing plantar loading and can be applied to evaluating movement performance of the foot. The purpose of this study is to explore the sprint athletes’ plantar loading characteristics and pain profiles in static standing. Methods: Experiments were undertaken on 80 first-division college sprint athletes and 85 healthy non-sprinters. ‘JC Mat’, the optical plantar pressure measurement was applied to examining the differences between both groups in the arch index (AI), three regional and six distinct sub-regional plantar pressure distributions (PPD), and footprint characteristics. Pain assessment and self-reported health status in sprint athletes were examined for evaluating their common pain areas. Results: Findings from the control group, the males’ AI fell into the normal range. Yet, the females’ AI was classified as the high-arch type. AI values of the sprint group were found to be significantly lower than the control group. PPD were higher at the medial metatarsal bone of both feet and the lateral heel of the right foot in the sprint group, the males in particular, whereas lower at the medial and lateral longitudinal arches of both feet. Footprint characteristics tended to support the results of the AI and PPD, and this reflected the corresponding pressure profiles. For the sprint athletes, the lateral knee joint and biceps femoris were the most common musculoskeletal pains. Conclusions: The sprint athletes’ AI were generally classified as high arches, and that their PPD were categorized between the features of runners and high-arched runners. These findings also correspond to the profiles of patellofemoral pain syndrome (PFPS)-related plantar pressure. The pain profiles appeared to correspond to the symptoms of high-arched runners and PFPS. The findings reflected upon the possible link between high arches and PFPS. The correlation between high-arched runners and PFPS development is worth further studies.

Keywords: sprint athletes, arch index, plantar pressure distributions, high arches, patellofemoral pain syndrome

Procedia PDF Downloads 338
1156 A Novel PfkB Gene Cloning and Characterization for Expression in Potato Plants

Authors: Arfan Ali, Idrees Ahmad Nasir

Abstract:

Potato (Solanum tuberosum) is an important cash crop and popular vegetable in Pakistan and throughout the world. Cold storage of potatoes accelerates the conversion of starch into reduced sugars (glucose and fructose). This process causes dry mass and bitter taste in the potatoes that are not acceptable to end consumers. In the current study, the phosphofructokinase B gene was cloned into the pET-30 vector for protein expression and the pCambia-1301 vector for plant expression. Amplification of a 930bp product from an E. coli strain determined the successful isolation of the phosphofructokinase B gene. Restriction digestion using NcoI and BglII along with the amplification of the 930bp product using gene specific primers confirmed the successful cloning of the PfkB gene in both vectors. The protein was expressed as a His-PfkB fusion protein. Western blot analysis confirmed the presence of the 35 Kda PfkB protein when hybridized with anti-His antibodies. The construct Fani-01 was evaluated transiently using a histochemical gus assay. The appearance of blue color in the agroinfiltrated area of potato leaves confirmed the successful expression of construct Fani-01. Further, the area displaying gus expression was evaluated for PfkB expression using ELISA. Moreover, PfkB gene expression evaluated through transient expression determined successful gene expression and highlighted its potential utilization for stable expression in potato to reduce sweetening due to long-term storage.

Keywords: potato, Solanum tuberosum, transformation, PfkB, anti-sweetening

Procedia PDF Downloads 471
1155 Improved Classification Procedure for Imbalanced and Overlapped Situations

Authors: Hankyu Lee, Seoung Bum Kim

Abstract:

The issue with imbalance and overlapping in the class distribution becomes important in various applications of data mining. The imbalanced dataset is a special case in classification problems in which the number of observations of one class (i.e., major class) heavily exceeds the number of observations of the other class (i.e., minor class). Overlapped dataset is the case where many observations are shared together between the two classes. Imbalanced and overlapped data can be frequently found in many real examples including fraud and abuse patients in healthcare, quality prediction in manufacturing, text classification, oil spill detection, remote sensing, and so on. The class imbalance and overlap problem is the challenging issue because this situation degrades the performance of most of the standard classification algorithms. In this study, we propose a classification procedure that can effectively handle imbalanced and overlapped datasets by splitting data space into three parts: nonoverlapping, light overlapping, and severe overlapping and applying the classification algorithm in each part. These three parts were determined based on the Hausdorff distance and the margin of the modified support vector machine. An experiments study was conducted to examine the properties of the proposed method and compared it with other classification algorithms. The results showed that the proposed method outperformed the competitors under various imbalanced and overlapped situations. Moreover, the applicability of the proposed method was demonstrated through the experiment with real data.

Keywords: classification, imbalanced data with class overlap, split data space, support vector machine

Procedia PDF Downloads 307
1154 Pyrethroid and Organophosphate Susceptibility Status of Aedesaegypti (Linnaeus), Aedes albopictus (Skuse) and Culex quinquefasciatus (Say) in Penang, Malaysia

Authors: Hadura Abu Hasan, Zairi Jaal, P. J. McCall

Abstract:

Dengue is a serious problem in Malaysia, particularly in high-density urban communities with lower socio-economic levels. This study evaluated the susceptibility of local populations of Aedesaegypti (Linnaeus), Aedesalbopictus (Skuse) and Culexquinquefasciatus (Say) from the traditional community of BaganDalam, Penang, Malaysia to lambdacyhalothrin and pirimiphos-methyl using standard World Health Organization (WHO) adult bioassay test. Unfed female mosquitoes aged 3-5 days were exposed to WHO recommended dosages of insecticides over fixed time periods with results presented as knock-down time (KT50) for each strain.The insecticide susceptible VCRU laboratory strain was usedas control. All three specieswere highly resistant to lambda-cyhalothrin with less than 10% mortality at 24 hours after treatment. In contrast, Ae.aegypti and Ae. albopictus were susceptible to pirimiphos-methyl, showing 100% mortality recorded 24 hoursafter treatment. Cx. quinquefasciatuswasclassed as ‘suspected resistant’ to pirimiphos-methyl as mortality recorded 24 hours after treatment was 94-96%. The results indicate that organophosphates such as pirimiphos-methyl might be used as alternative to pyrethroid for dengue vector control in this dengue-prone area.

Keywords: vector control, aedes aegypti, aedes albopictus, dengue, culex quinquefasciatus, residuals insecticides, pyrethroid, organophosphate, resistant, mosquito

Procedia PDF Downloads 257
1153 The Application of Video Segmentation Methods for the Purpose of Action Detection in Videos

Authors: Nassima Noufail, Sara Bouhali

Abstract:

In this work, we develop a semi-supervised solution for the purpose of action detection in videos and propose an efficient algorithm for video segmentation. The approach is divided into video segmentation, feature extraction, and classification. In the first part, a video is segmented into clips, and we used the K-means algorithm for this segmentation; our goal is to find groups based on similarity in the video. The application of k-means clustering into all the frames is time-consuming; therefore, we started by the identification of transition frames where the scene in the video changes significantly, and then we applied K-means clustering into these transition frames. We used two image filters, the gaussian filter and the Laplacian of Gaussian. Each filter extracts a set of features from the frames. The Gaussian filter blurs the image and omits the higher frequencies, and the Laplacian of gaussian detects regions of rapid intensity changes; we then used this vector of filter responses as an input to our k-means algorithm. The output is a set of cluster centers. Each video frame pixel is then mapped to the nearest cluster center and painted with a corresponding color to form a visual map. The resulting visual map had similar pixels grouped. We then computed a cluster score indicating how clusters are near each other and plotted a signal representing frame number vs. clustering score. Our hypothesis was that the evolution of the signal would not change if semantically related events were happening in the scene. We marked the breakpoints at which the root mean square level of the signal changes significantly, and each breakpoint is an indication of the beginning of a new video segment. In the second part, for each segment from part 1, we randomly selected a 16-frame clip, then we extracted spatiotemporal features using convolutional 3D network C3D for every 16 frames using a pre-trained model. The C3D final output is a 512-feature vector dimension; hence we used principal component analysis (PCA) for dimensionality reduction. The final part is the classification. The C3D feature vectors are used as input to a multi-class linear support vector machine (SVM) for the training model, and we used a multi-classifier to detect the action. We evaluated our experiment on the UCF101 dataset, which consists of 101 human action categories, and we achieved an accuracy that outperforms the state of art by 1.2%.

Keywords: video segmentation, action detection, classification, Kmeans, C3D

Procedia PDF Downloads 77
1152 Parallel Pipelined Conjugate Gradient Algorithm on Heterogeneous Platforms

Authors: Sergey Kopysov, Nikita Nedozhogin, Leonid Tonkov

Abstract:

The article presents a parallel iterative solver for large sparse linear systems which can be used on a heterogeneous platform. Traditionally, the problem of solving linear systems does not scale well on multi-CPU/multi-GPUs clusters. For example, most of the attempts to implement the classical conjugate gradient method were at best counted in the same amount of time as the problem was enlarged. The paper proposes the pipelined variant of the conjugate gradient method (PCG), a formulation that is potentially better suited for hybrid CPU/GPU computing since it requires only one synchronization point per one iteration instead of two for standard CG. The standard and pipelined CG methods need the vector entries generated by the current GPU and other GPUs for matrix-vector products. So the communication between GPUs becomes a major performance bottleneck on multi GPU cluster. The article presents an approach to minimize the communications between parallel parts of algorithms. Additionally, computation and communication can be overlapped to reduce the impact of data exchange. Using the pipelined version of the CG method with one synchronization point, the possibility of asynchronous calculations and communications, load balancing between the CPU and GPU for solving the large linear systems allows for scalability. The algorithm is implemented with the combined use of technologies: MPI, OpenMP, and CUDA. We show that almost optimum speed up on 8-CPU/2GPU may be reached (relatively to a one GPU execution). The parallelized solver achieves a speedup of up to 5.49 times on 16 NVIDIA Tesla GPUs, as compared to one GPU.

Keywords: conjugate gradient, GPU, parallel programming, pipelined algorithm

Procedia PDF Downloads 162
1151 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity

Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Saifur Rahman Sabuj

Abstract:

This paper examines relationships between solar activity and earthquakes; it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to affect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth.

Keywords: k-nearest neighbour, support vector regression, random forest regression, long short-term memory network, earthquakes, solar activity, sunspot number, solar wind, solar flares

Procedia PDF Downloads 71
1150 An Application of Vector Error Correction Model to Assess Financial Innovation Impact on Economic Growth of Bangladesh

Authors: Md. Qamruzzaman, Wei Jianguo

Abstract:

Over the decade, it is observed that financial development, through financial innovation, not only accelerated development of efficient and effective financial system but also act as a catalyst in the economic development process. In this study, we try to explore insight about how financial innovation causes economic growth in Bangladesh by using Vector Error Correction Model (VECM) for the period of 1990-2014. Test of Cointegration confirms the existence of a long-run association between financial innovation and economic growth. For investigating directional causality, we apply Granger causality test and estimation explore that long-run growth will be affected by capital flow from non-bank financial institutions and inflation in the economy but changes of growth rate do not have any impact on Capital flow in the economy and level of inflation in long-run. Whereas, growth and Market capitalization, as well as market capitalization and capital flow, confirm feedback hypothesis. Variance decomposition suggests that any innovation in the financial sector can cause GDP variation fluctuation in both long run and short run. Financial innovation promotes efficiency and cost in financial transactions in the financial system, can boost economic development process. The study proposed two policy recommendations for further development. First, innovation friendly financial policy should formulate to encourage adaption and diffusion of financial innovation in the financial system. Second, operation of financial market and capital market should be regulated with implementation of rules and regulation to create conducive environment.

Keywords: financial innovation, economic growth, GDP, financial institution, VECM

Procedia PDF Downloads 269
1149 Perfomance of PAPR Reduction in OFDM System for Wireless Communications

Authors: Alcardo Alex Barakabitze, Saddam Aziz, Muhammad Zubair

Abstract:

The Orthogonal Frequency Division Multiplexing (OFDM) is a special form of multicarrier transmission that splits the total transmission bandwidth into a number of orthogonal and non-overlapping subcarriers and transmit the collection of bits called symbols in parallel using these subcarriers. In this paper, we explore the Peak to Average Power Reduction (PAPR) problem in OFDM systems. We provide the performance analysis of CCDF and BER through MATLAB simulations.

Keywords: bit error ratio (BER), OFDM, peak to average power reduction (PAPR), sub-carriers

Procedia PDF Downloads 540
1148 Heat Stress Adaptive Urban Design Intervention for Planned Residential Areas of Khulna City: Case Study of Sonadanga

Authors: Tanjil Sowgat, Shamim Kobir

Abstract:

World is now experiencing the consequences of climate change such as increased heat stress due to high temperature rise. In the context of changing climate, this study intends to find out the planning interventions necessary to adapt to the current heat stress in the planned residential areas of Khulna city. To carry out the study Sonadanga residential area (phase I) of Khulna city has been taken as the study site. This residential neighbourhood covering an area of 30 acres has 206 residential plots. The study area comprises twelve access roads, one park, one playfield, one water body and two street furniture’s. This study conducts visual analysis covering green, open space, water body, footpath, drainage and street trees and furniture and questionnaire survey deals with socio-economic, housing tenancy, experience of heat stress and urban design interventions. It finds that the current state that accelerates the heat stress condition such as lack of street trees and inadequate shading, maximum uses are not within ten minutes walking distance, no footpath for the pedestrians and lack of well-maintained street furniture. It proposes that to adapt to the heat stress pedestrian facilities, buffer sidewalk with landscaping, street trees and open spaces, soft scape, natural and man-made water bodies, green roofing could be effective urban design interventions. There are evidences of limited number of heat stress adaptive planned residential area. Since current sub-division planning practice focuses on rigid land use allocation, it partly addresses the climatic concerns through creating open space and street trees. To better respond to adapt to the heat stress, urban design considerations in the context of sub-division practice would bring more benefits.

Keywords: climate change, urban design, adaptation, heat stress, water-logging

Procedia PDF Downloads 295
1147 Forecasting Regional Data Using Spatial Vars

Authors: Taisiia Gorshkova

Abstract:

Since the 1980s, spatial correlation models have been used more often to model regional indicators. An increasingly popular method for studying regional indicators is modeling taking into account spatial relationships between objects that are part of the same economic zone. In 2000s the new class of model – spatial vector autoregressions was developed. The main difference between standard and spatial vector autoregressions is that in the spatial VAR (SpVAR), the values of indicators at time t may depend on the values of explanatory variables at the same time t in neighboring regions and on the values of explanatory variables at time t-k in neighboring regions. Thus, VAR is a special case of SpVAR in the absence of spatial lags, and the spatial panel data model is a special case of spatial VAR in the absence of time lags. Two specifications of SpVAR were applied to Russian regional data for 2000-2017. The values of GRP and regional CPI are used as endogenous variables. The lags of GRP, CPI and the unemployment rate were used as explanatory variables. For comparison purposes, the standard VAR without spatial correlation was used as “naïve” model. In the first specification of SpVAR the unemployment rate and the values of depending variables, GRP and CPI, in neighboring regions at the same moment of time t were included in equations for GRP and CPI respectively. To account for the values of indicators in neighboring regions, the adjacency weight matrix is used, in which regions with a common sea or land border are assigned a value of 1, and the rest - 0. In the second specification the values of depending variables in neighboring regions at the moment of time t were replaced by these values in the previous time moment t-1. According to the results obtained, when inflation and GRP of neighbors are added into the model both inflation and GRP are significantly affected by their previous values, and inflation is also positively affected by an increase in unemployment in the previous period and negatively affected by an increase in GRP in the previous period, which corresponds to economic theory. GRP is not affected by either the inflation lag or the unemployment lag. When the model takes into account lagged values of GRP and inflation in neighboring regions, the results of inflation modeling are practically unchanged: all indicators except the unemployment lag are significant at a 5% significance level. For GRP, in turn, GRP lags in neighboring regions also become significant at a 5% significance level. For both spatial and “naïve” VARs the RMSE were calculated. The minimum RMSE are obtained via SpVAR with lagged explanatory variables. Thus, according to the results of the study, it can be concluded that SpVARs can accurately model both the actual values of macro indicators (particularly CPI and GRP) and the general situation in the regions

Keywords: forecasting, regional data, spatial econometrics, vector autoregression

Procedia PDF Downloads 141
1146 Determinants of Economic Growth in Pakistan: A Structural Vector Auto Regression Approach

Authors: Muhammad Ajmair

Abstract:

This empirical study followed structural vector auto regression (SVAR) approach proposed by the so-called AB-model of Amisano and Giannini (1997) to check the impact of relevant macroeconomic determinants on economic growth in Pakistan. Before that auto regressive distributive lag (ARDL) bound testing technique and time varying parametric approach along with general to specific approach was employed to find out relevant significant determinants of economic growth. To our best knowledge, no author made such a study that employed auto regressive distributive lag (ARDL) bound testing and time varying parametric approach with general to specific approach in empirical literature, but current study will bridge this gap. Annual data was taken from World Development Indicators (2014) during period 1976-2014. The widely-used Schwarz information criterion and Akaike information criterion were considered for the lag length in each estimated equation. Main findings of the study are that remittances received, gross national expenditures and inflation are found to be the best relevant positive and significant determinants of economic growth. Based on these empirical findings, we conclude that government should focus on overall economic growth augmenting factors while formulating any policy relevant to the concerned sector.

Keywords: economic growth, gross national expenditures, inflation, remittances

Procedia PDF Downloads 197
1145 Research on Energy Field Intervening in Lost Space Renewal Strategy

Authors: Tianyue Wan

Abstract:

Lost space is the space that has not been used for a long time and is in decline, proposed by Roger Trancik. And in his book Finding Lost Space: Theories of Urban Design, the concept of lost space is defined as those anti-traditional spaces that are unpleasant, need to be redesigned, and have no benefit to the environment and users. They have no defined boundaries and do not connect the various landscape elements in a coherent way. With the rapid development of urbanization in China, the blind areas of urban renewal have become a chaotic lost space that is incompatible with the rapid development of urbanization. Therefore, lost space needs to be reconstructed urgently under the background of infill development and reduction planning in China. The formation of lost space is also an invisible division of social hierarchy. This paper tries to break down the social class division and the estrangement between people through the regeneration of lost space. Ultimately, it will enhance vitality, rebuild a sense of belonging, and create a continuous open public space for local people. Based on the concept of lost space and energy field, this paper clarifies the significance of the energy field in the lost space renovation. Then it introduces the energy field into lost space by using the magnetic field in physics as a prototype. The construction of the energy field is support by space theory, spatial morphology analysis theory, public communication theory, urban diversity theory and city image theory. Taking Wuhan’s Lingjiao Park of China as an example, this paper chooses the lost space on the west side of the park as the research object. According to the current situation of this site, the energy intervention strategies are proposed from four aspects: natural ecology, space rights, intangible cultural heritage and infrastructure configuration. And six specific lost space renewal methods are used in this work, including “riveting”, “breakthrough”, “radiation”, “inheritance”, “connection” and “intersection”. After the renovation, space will be re-introduced into the active crow. The integration of activities and space creates a sense of place, improve the walking experience, restores the vitality of the space, and provides a reference for the reconstruction of lost space in the city.

Keywords: dynamic vitality intervention, lost space, space vitality, sense of place

Procedia PDF Downloads 110
1144 Design of Bidirectional Wavelength Division Multiplexing Passive Optical Network in Optisystem Environment

Authors: Ashiq Hussain, Mahwash Hussain, Zeenat Parveen

Abstract:

Now a days the demand for broadband service has increased. Due to which the researchers are trying to find a solution to provide a large amount of service. There is a shortage of bandwidth because of the use of downloading video, voice and data. One of the solutions to overcome this shortage of bandwidth is to provide the communication system with passive optical components. We have increased the data rate in this system. From experimental results we have concluded that the quality factor has increased by adding passive optical networks.

Keywords: WDM-PON, optical fiber, BER, Q-factor, eye diagram

Procedia PDF Downloads 508
1143 Conformance to Spatial Planning between the Kampala Physical Development Plan of 2012 and the Existing Land Use in 2021

Authors: Brendah Nagula, Omolo Fredrick Okalebo, Ronald Ssengendo, Ivan Bamweyana

Abstract:

The Kampala Physical Development Plan (KPDP) was developed in 2012 and projected both long term and short term developments within the City .The purpose of the plan was to not only shape the city into a spatially planned area but also to control the urban sprawl trends that had expanded with pronounced instances of informal settlements. This plan was approved by the National Physical Planning Board and a signature was appended by the Minister in 2013. Much as the KPDP plan has been implemented using different approaches such as detailed planning, development control, subdivision planning, carrying out construction inspections, greening and beautification, there is still limited knowledge on the level of conformance towards this plan. Therefore, it is yet to be determined whether it has been effective in shaping the City into an ideal spatially planned area. Attaining a clear picture of the level of conformance towards the KPDP 2012 through evaluation between the planned and the existing land use in Kampala City was performed. Methods such as Supervised Classification and Post Classification Change Detection were adopted to perform this evaluation. Scrutiny of findings revealed Central Division registered the lowest level of conformance to the planning standards specified in the KPDP 2012 followed by Nakawa, Rubaga, Kawempe, and Makindye. Furthermore, mixed-use development was identified as the land use with the highest level of non-conformity of 25.11% and institutional land use registered the highest level of conformance of 84.45 %. The results show that the aspect of location was not carefully considered while allocating uses in the KPDP whereby areas located near the Central Business District have higher land rents and hence require uses that ensure profit maximization. Also, the prominence of development towards mixed-use denotes an increased demand for land towards compact development that was not catered for in the plan. Therefore in order to transform Kampala city into a spatially planned area, there is need to carefully develop detailed plans especially for all the Central Division planning precincts indicating considerations for land use densification.

Keywords: spatial plan, post classification change detection, Kampala city, landuse

Procedia PDF Downloads 90
1142 The Effect of Extensive Mosquito Migration on Dengue Control as Revealed by Phylogeny of Dengue Vector Aedes aegypti

Authors: M. D. Nirmani, K. L. N. Perera, G. H. Galhena

Abstract:

Dengue has become one of the most important arbo-viral disease in all tropical and subtropical regions of the world. Aedes aegypti, is the principal vector of the virus, vary in both epidemiological and behavioral characteristics, which could be finely measured through DNA sequence comparison at their population level. Such knowledge in the population differences can assist in implementation of effective vector control strategies allowing to make estimates of the gene flow and adaptive genomic changes, which are important predictors of the spread of Wolbachia infection or insecticide resistance. As such, this study was undertaken to investigate the phylogenetic relationships of Ae. aegypti from Galle and Colombo, Sri Lanka, based on the ribosomal protein region which spans between two exons, in order to understand the geographical distribution of genetically distinct mosquito clades and its impact on mosquito control measures. A 320bp DNA region spanning from 681-930 bp, corresponding to the ribosomal protein, was sequenced in 62 Ae. aegypti larvae collected from Galle (N=30) and Colombo (N=32), Sri Lanka. The sequences were aligned using ClustalW and the haplotypes were determined with DnaSP 5.10. Phylogenetic relationships among haplotypes were constructed using the maximum likelihood method under Tamura 3 parameter model in MEGA 7.0.14 including three previously reported sequences of Australian (N=2) and Brazilian (N=1) Ae. aegypti. The bootstrap support was calculated using 1000 replicates and the tree was rooted using Aedes notoscriptus (GenBank accession No. KJ194101). Among all sequences, nineteen different haplotypes were found among which five haplotypes were shared between 80% of mosquitoes in the two populations. Seven haplotypes were unique to each of the population. Phylogenetic tree revealed two basal clades and a single derived clade. All observed haplotypes of the two Ae. aegypti populations were distributed in all the three clades, indicating a lack of genetic differentiation between populations. The Brazilian Ae. aegypti haplotype and one of the Australian haplotypes were grouped together with the Sri Lankan basal haplotype in the same basal clade, whereas the other Australian haplotype was found in the derived clade. Phylogram showed that Galle and Colombo Ae. aegypti populations are highly related to each other despite the large geographic distance (129 Km) indicating a substantial genetic similarity between them. This may have probably arisen from passive migration assisted by human travelling and trade through both land and water as the two areas are bordered by the sea. In addition, studied Sri Lankan mosquito populations were closely related to Australian and Brazilian samples. Probably this might have caused by shipping industry between the three countries as all of them are fully or partially enclosed by sea. For example, illegal fishing boats migrating to Australia by sea is perhaps a good mean of transportation of all life stages of mosquitoes from Sri Lanka. These findings indicate that extensive mosquito migrations occur between populations not only within the country, but also among other countries in the world which might be a main barrier to the successful vector control measures.

Keywords: Aedes aegypti, dengue control, extensive mosquito migration, haplotypes, phylogeny, ribosomal protein

Procedia PDF Downloads 189
1141 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark

Authors: B. Elshafei, X. Mao

Abstract:

The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.

Keywords: data fusion, Gaussian process regression, signal denoise, temporal extrapolation

Procedia PDF Downloads 134
1140 Design of Broadband Power Divider for 3G and 4G Applications

Authors: A. M. El-Akhdar, A. M. El-Tager, H. M. El-Hennawy

Abstract:

This paper presents a broadband power divider with equal power division ratio. Two sections of transmission line transformers based on coupled microstrip lines are applied to obtain broadband performance. In addition, design methodology is proposed for the novel structure. A prototype is designed, simulated to operate in the band from 2.1 to 3.8 GHz to fulfill the requirements of 3G and 4G applications. The proposed structure features reduced size and less resistors than other conventional techniques. Simulation verifies the proposed idea and design methodology.

Keywords: power dividers, coupled lines, microstrip, 4G applications

Procedia PDF Downloads 475
1139 Effectiveness Assessment of a Brazilian Larvicide on Aedes Control

Authors: Josiane N. Muller, Allan K. R. Galardo, Tatiane A. Barbosa, Evan P. Ferro, Wellington M. Dos Santos, Ana Paula S. A. Correa, Edinaldo C. Rego, Jose B. P. Lima

Abstract:

The susceptibility status of an insect population to any larvicide depends on several factors such includes genetic constitution, environmental conditions and others. The mosquito Aedes aegypti is the primary vector of three important viral diseases, Zika, Dengue, and Chikungunya. The frequent outbreaks of those diseases in different parts of Brazil demonstrate the importance of testing the susceptibility of vectors in different environments. Since the control of this mosquito leads to the control of disease, alternatives for vector control that value the different Brazilian environmental conditions are needed for effective actions. The aim of this study was to evaluate a new commercial formulation of Bacillus thuringiensis israelenses (DengueTech: Brazilian innovative technology) in the Brazilian Legal Amazon considering the climate conditions. Semi-field tests were conducted in the Institute of Scientific and Technological Research of the State of Amapa in two different environments, one in a shaded area and the other exposed to sunlight. The mosquito larvae were exposed to larvicide concentration and a control; each group was tested in three containers of 40 liters each. To assess persistence 50 third instar larvae of Aedes aegypti laboratory lineages (Rockefeller) and 50 larvae of Aedes aegypti collected in the municipality of Macapa, Brazil’s Amapa state, were added weekly and after 24 hours the mortality was assessed. In total 16 tests were performed, where 12 were done with replacement of water (1/5 of the volume, three times per week). The effectiveness of the product was determined through mortality of ≥ 80%, as recommend by the World Health Organization. The results demonstrated that high-water temperatures (26-35 °C) on the containers influenced the residual time of the product, where the maximum effect achieved was 21 days in the shaded area; and no effectiveness of 60 days was found in any of the tests, as expected according to the larvicide company. The test with and without water replacement did not present significant differences in the mortality rate. Considering the different environments and climate, these results stimulate the need to test larvicide and its effectiveness in specific environmental settings in order to identify the parameters required for better results. Thus, we see the importance of semi-field researches considering the local climate conditions for a successful control of Aedes aegypti.

Keywords: Aedes aegypti, bioassay, larvicida, vector control

Procedia PDF Downloads 128
1138 Sentiment Analysis of Chinese Microblog Comments: Comparison between Support Vector Machine and Long Short-Term Memory

Authors: Xu Jiaqiao

Abstract:

Text sentiment analysis is an important branch of natural language processing. This technology is widely used in public opinion analysis and web surfing recommendations. At present, the mainstream sentiment analysis methods include three parts: sentiment analysis based on a sentiment dictionary, based on traditional machine learning, and based on deep learning. This paper mainly analyzes and compares the advantages and disadvantages of the SVM method of traditional machine learning and the Long Short-term Memory (LSTM) method of deep learning in the field of Chinese sentiment analysis, using Chinese comments on Sina Microblog as the data set. Firstly, this paper classifies and adds labels to the original comment dataset obtained by the web crawler, and then uses Jieba word segmentation to classify the original dataset and remove stop words. After that, this paper extracts text feature vectors and builds document word vectors to facilitate the training of the model. Finally, SVM and LSTM models are trained respectively. After accuracy calculation, it can be obtained that the accuracy of the LSTM model is 85.80%, while the accuracy of SVM is 91.07%. But at the same time, LSTM operation only needs 2.57 seconds, SVM model needs 6.06 seconds. Therefore, this paper concludes that: compared with the SVM model, the LSTM model is worse in accuracy but faster in processing speed.

Keywords: sentiment analysis, support vector machine, long short-term memory, Chinese microblog comments

Procedia PDF Downloads 93
1137 The Lasting Legacy of Six-Day War: How Six Days Changed the Life of Palestinians, Israelis and Their Relationship

Authors: Ziling Chen

Abstract:

Within six days in June 1967, Israeli armies defeated the combined forces of Egypt, Syria, and Jordan. This war was later named the Six-Day War, or Third Arab-Israeli War. This paper examines the lasting legacy of the Six-Day War in the life of Palestinians and Israelis economically, politically, and religiously. The long-term Israeli occupation resulted in Palestinian displacement, impeded the development of the Palestinian economy, as well as a created division within Israeli society. Although the war ended, the conflicts persist, most notably in the Old City of Jerusalem. Due to its sacred nature, the Old City became the center of religious conflicts after the Six-Day War.

Keywords: Israelis, Jerusalem, Palestinians, Six-Day War

Procedia PDF Downloads 122
1136 Insecticide Resistance Detection on Filarial Vector, Simulium (Simulium) nobile (Diptera: Simuliidae) in Malaysia

Authors: Chee Dhang Chen, Hiroyuki Takaoka, Koon Weng Lau, Poh Ruey Tan, Ai Chdon Chin, Van Lun Low, Abdul Aziz Azidah, Mohd Sofian-Azirun

Abstract:

Susceptibility status of Simulium (Simulium) nobile (Diptera: Simuliidae) adults obtained from Pahang, Malaysia was evaluated against 11 adulticides representing four major insecticide classes: organochlorines (DDT, dieldrin), organophosphates (malathion, fenitrothion), carbamates (bendiocarb, propoxur) and pyrethroids (etofenprox, deltamethrin, lambdacyhalothrin, permethrin, cyfluthrin). The adult bioassay was conducted according to WHO standard protocol to determine the insecticide susceptibility. Mortality at 24 h post treatment was used as indicator for susceptibility status. The results revealed that S. nobile obtained was susceptible to propoxur, cyfluthrin and bendiocarb with 100% mortality. S. nobile was resistant or exhibited some tolerant against lambdacyhalothrin and deltamethrin with mortality ranged ≥ 90% but < 98%. S. nobile populations in Pahang exhibited different level of resistant against 11 adulticides with mortality ranged from 60.00 ± 10.00 to 100.00 ± 0.00. In conclusion, S. nobile populations in Pahang were susceptible to propoxur, cyfluthrin and bendiocarb. The susceptibility status of S. nobile in descending order was propoxur, cyfluthrin > bendicarb > deltamethrin > lambdacyhalothrin > permethrin > etofenprox > DDT > malathion > fenitrothion > dieldrin. Regular surveys should be conducted to monitor the susceptibility status of this insect vector in order to prevent further development of resistance.

Keywords: black fly, adult bioassay, insecticide resistance, Malaysia

Procedia PDF Downloads 272
1135 Prediction of Sepsis Illness from Patients Vital Signs Using Long Short-Term Memory Network and Dynamic Analysis

Authors: Marcio Freire Cruz, Naoaki Ono, Shigehiko Kanaya, Carlos Arthur Mattos Teixeira Cavalcante

Abstract:

The systems that record patient care information, known as Electronic Medical Record (EMR) and those that monitor vital signs of patients, such as heart rate, body temperature, and blood pressure have been extremely valuable for the effectiveness of the patient’s treatment. Several kinds of research have been using data from EMRs and vital signs of patients to predict illnesses. Among them, we highlight those that intend to predict, classify, or, at least identify patterns, of sepsis illness in patients under vital signs monitoring. Sepsis is an organic dysfunction caused by a dysregulated patient's response to an infection that affects millions of people worldwide. Early detection of sepsis is expected to provide a significant improvement in its treatment. Preceding works usually combined medical, statistical, mathematical and computational models to develop detection methods for early prediction, getting higher accuracies, and using the smallest number of variables. Among other techniques, we could find researches using survival analysis, specialist systems, machine learning and deep learning that reached great results. In our research, patients are modeled as points moving each hour in an n-dimensional space where n is the number of vital signs (variables). These points can reach a sepsis target point after some time. For now, the sepsis target point was calculated using the median of all patients’ variables on the sepsis onset. From these points, we calculate for each hour the position vector, the first derivative (velocity vector) and the second derivative (acceleration vector) of the variables to evaluate their behavior. And we construct a prediction model based on a Long Short-Term Memory (LSTM) Network, including these derivatives as explanatory variables. The accuracy of the prediction 6 hours before the time of sepsis, considering only the vital signs reached 83.24% and by including the vectors position, speed, and acceleration, we obtained 94.96%. The data are being collected from Medical Information Mart for Intensive Care (MIMIC) Database, a public database that contains vital signs, laboratory test results, observations, notes, and so on, from more than 60.000 patients.

Keywords: dynamic analysis, long short-term memory, prediction, sepsis

Procedia PDF Downloads 124
1134 DNA Barcoding for Identification of Dengue Vectors from Assam and Arunachal Pradesh: North-Eastern States in India

Authors: Monika Soni, Shovonlal Bhowmick, Chandra Bhattacharya, Jitendra Sharma, Prafulla Dutta, Jagadish Mahanta

Abstract:

Aedes aegypti and Aedes albopictus are considered as two major vectors to transmit dengue virus. In North-east India, two states viz. Assam and Arunachal Pradesh are known to be high endemic zone for dengue and Chikungunya viral infection. The taxonomical classification of medically important vectors are important for mapping of actual evolutionary trends and epidemiological studies. However, misidentification of mosquito species in field-collected mosquito specimens could have a negative impact which may affect vector-borne disease control policy. DNA barcoding is a prominent method to record available species, differentiate from new addition and change of population structure. In this study, a combined approach of a morphological and molecular technique of DNA barcoding was adopted to explore sequence variation in mitochondrial cytochrome c oxidase subunit I (COI) gene within dengue vectors. The study has revealed the map distribution of the dengue vector from two states i.e. Assam and Arunachal Pradesh, India. Approximate five hundred mosquito specimens were collected from different parts of two states, and their morphological features were compared with the taxonomic keys. The analysis of detailed taxonomic study revealed identification of two species Aedes aegypti and Aedes albopictus. The species aegypti comprised of 66.6% of the specimen and represented as dominant dengue vector species. The sequences obtained through standard DNA barcoding protocol were compared with public databases, viz. GenBank and BOLD. The sequences of all Aedes albopictus have shown 100% similarity whereas sequence of Aedes aegypti has shown 99.77 - 100% similarity of COI gene with that of different geographically located same species based on BOLD database search. From dengue prevalent different geographical regions fifty-nine sequences were retrieved from NCBI and BOLD databases of the same and related taxa to determine the evolutionary distance model based on the phylogenetic analysis. Neighbor-Joining (NJ) and Maximum Likelihood (ML) phylogenetic tree was constructed in MEGA6.06 software with 1000 bootstrap replicates using Kimura-2-Parameter model. Data were analyzed for sequence divergence and found that intraspecific divergence ranged from 0.0 to 2.0% and interspecific divergence ranged from 11.0 to 12.0%. The transitional and transversional substitutions were tested individually. The sequences were deposited in NCBI: GenBank database. This observation claimed the first DNA barcoding analysis of Aedes mosquitoes from North-eastern states in India and also confirmed the range expansion of two important mosquito species. Overall, this study insight into the molecular ecology of the dengue vectors from North-eastern India which will enhance the understanding to improve the existing entomological surveillance and vector incrimination program.

Keywords: COI, dengue vectors, DNA barcoding, molecular identification, North-east India, phylogenetics

Procedia PDF Downloads 301
1133 Policy Guidelines to Enhance the Mathematics Teachers’ Association of the Philippines (MTAP) Saturday Class Program

Authors: Roselyn Alejandro-Ymana

Abstract:

The study was an attempt to assess the MTAP Saturday Class Program along its eight components namely, modules, instructional materials, scheduling, trainer-teachers, supervisory support, administrative support, financial support and educational facilities, the results of which served as bases in developing policy guidelines to enhance the MTAP Saturday Class Program. Using a descriptive development method of research, this study involved the participation of twenty-eight (28) schools with MTAP Saturday Class Program in the Division of Dasmarinas City where twenty-eight school heads, one hundred twenty-five (125) teacher-trainer, one hundred twenty-five (125) pupil program participants, and their corresponding one hundred twenty-five (125) parents were purposively drawn to constitute the study’s respondent. A self-made validated survey questionnaire together with Pre and Post-Test Assessment Test in Mathematics for pupils participating in the program, and an unstructured interview guide was used to gather the data needed in the study. Data obtained from the instruments administered was organized and analyzed through the use of statistical tools that included the Mean, Weighted Mean, Relative Frequency, Standard Deviation, F-Test or One-Way ANOVA and the T-Test. Results of the study revealed that all the eight domains involved in the MTAP Saturday Class Program were practiced with the areas of 'trainer-teachers', 'educational facilities', and 'supervisory support' identified as the program’s strongest components while the areas of 'financial support', 'modules' and 'scheduling' as being the weakest program’s components. Moreover, the study revealed based on F-Test, that there was a significant difference in the assessment made by the respondents in each of the eight (8) domains. It was found out that the parents deviated significantly from the assessment of either the school heads or the teachers on the indicators of the program. There is much to be desired when it comes to the quality of the implementation of the MTAP Saturday Class Program. With most of the indicators of each component of the program, having received overall average ratings that were at least 0.5 point away from the ideal rating 5 for total quality, school heads, teachers, and supervisors need to work harder for total quality of the implementation of the MTAP Saturday Class Program in the division.

Keywords: mathematics achievement, MTAP program, policy guidelines, program assessment

Procedia PDF Downloads 211
1132 Classifier for Liver Ultrasound Images

Authors: Soumya Sajjan

Abstract:

Liver cancer is the most common cancer disease worldwide in men and women, and is one of the few cancers still on the rise. Liver disease is the 4th leading cause of death. According to new NHS (National Health Service) figures, deaths from liver diseases have reached record levels, rising by 25% in less than a decade; heavy drinking, obesity, and hepatitis are believed to be behind the rise. In this study, we focus on Development of Diagnostic Classifier for Ultrasound liver lesion. Ultrasound (US) Sonography is an easy-to-use and widely popular imaging modality because of its ability to visualize many human soft tissues/organs without any harmful effect. This paper will provide an overview of underlying concepts, along with algorithms for processing of liver ultrasound images Naturaly, Ultrasound liver lesion images are having more spackle noise. Developing classifier for ultrasound liver lesion image is a challenging task. We approach fully automatic machine learning system for developing this classifier. First, we segment the liver image by calculating the textural features from co-occurrence matrix and run length method. For classification, Support Vector Machine is used based on the risk bounds of statistical learning theory. The textural features for different features methods are given as input to the SVM individually. Performance analysis train and test datasets carried out separately using SVM Model. Whenever an ultrasonic liver lesion image is given to the SVM classifier system, the features are calculated, classified, as normal and diseased liver lesion. We hope the result will be helpful to the physician to identify the liver cancer in non-invasive method.

Keywords: segmentation, Support Vector Machine, ultrasound liver lesion, co-occurance Matrix

Procedia PDF Downloads 408
1131 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment

Authors: Arindam Chaudhuri

Abstract:

Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.

Keywords: FRSVM, Hadoop, MapReduce, PFRSVM

Procedia PDF Downloads 489
1130 3D Objects Indexing Using Spherical Harmonic for Optimum Measurement Similarity

Authors: S. Hellam, Y. Oulahrir, F. El Mounchid, A. Sadiq, S. Mbarki

Abstract:

In this paper, we propose a method for three-dimensional (3-D)-model indexing based on defining a new descriptor, which we call new descriptor using spherical harmonics. The purpose of the method is to minimize, the processing time on the database of objects models and the searching time of similar objects to request object. Firstly we start by defining the new descriptor using a new division of 3-D object in a sphere. Then we define a new distance which will be used in the search for similar objects in the database.

Keywords: 3D indexation, spherical harmonic, similarity of 3D objects, measurement similarity

Procedia PDF Downloads 431
1129 Reduced Complexity of ML Detection Combined with DFE

Authors: Jae-Hyun Ro, Yong-Jun Kim, Chang-Bin Ha, Hyoung-Kyu Song

Abstract:

In multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems, many detection schemes have been developed to improve the error performance and to reduce the complexity. Maximum likelihood (ML) detection has optimal error performance but it has very high complexity. Thus, this paper proposes reduced complexity of ML detection combined with decision feedback equalizer (DFE). The error performance of the proposed detection scheme is higher than the conventional DFE. But the complexity of the proposed scheme is lower than the conventional ML detection.

Keywords: detection, DFE, MIMO-OFDM, ML

Procedia PDF Downloads 608