Search results for: taxonomic identification
2596 A Cognitive Semantic Analysis of the Metaphorical Extensions of Come out and Take Over
Authors: Raquel Rossini, Edelvais Caldeira
Abstract:
The aim of this work is to investigate the motivation for the metaphorical uses of two verb combinations: come out and take over. Drawing from cognitive semantics theories, image schemas and metaphors, it was attempted to demonstrate that: a) the metaphorical senses of both 'come out' and 'take over' extend from both the verbs and the particles central (spatial) senses in such verb combinations; and b) the particles 'out' and 'over' also contribute to the whole meaning of the verb combinations. In order to do so, a random selection of 579 concordance lines for come out and 1,412 for take over was obtained from the Corpus of Contemporary American English – COCA. One of the main procedures adopted in the present work was the establishment of verb and particle central senses. As per the research questions addressed in this study, they are as follows: a) how does the identification of trajector and landmark help reveal patterns that contribute for the identification of the semantic network of these two verb combinations?; b) what is the relationship between the schematic structures attributed to the particles and the metaphorical uses found in empirical data?; and c) what conceptual metaphors underlie the mappings from the source to the target domains? The results demonstrated that not only the lexical verbs come and take, but also the particles out and over play an important whole in the different meanings of come out and take over. Besides, image schemas and conceptual metaphors were found to be helpful in order to establish the motivations for the metaphorical uses of these linguistic structures.Keywords: cognitive linguistics, English syntax, multi-word verbs, prepositions
Procedia PDF Downloads 1542595 Impact of Chimerism on Y-STR DNA Determination: Sex Mismatch Analysis
Authors: Anupuma Raina, Ajay P. Balayan, Prateek Pandya, Pankaj Shrivastava, Uma Kanga, Tulika Seth
Abstract:
DNA fingerprinting analysis aids in personal identification for forensic purposes and has always been a driving motivation for law enforcement agencies in almost all countries since its inception. The introduction of DNA markers (Y-STR) has allowed for greater precision and higher discriminatory power in forensic testing. A criminal/ person committing crime after bone marrow transplantation is a rare situation but not an impossible one. Keeping such a situation in mind, a study was carried out to find out the best biological sample to be used for personal identification, especially in forensic situation. We choose a female patient (recipient) and a male donor. The pre transplant sample (blood) and post transplant samples (blood, buccal swab, hair roots) were collected from the recipient (patient). The same were compared with the blood sample of the donor using DNA FP technique. Post transplant samples were collected at different interval of time (15, 30, 60, and 90 days). The study was carried out using Y-STR kit at 23 loci. The results determined discusses the phenomenon of chimerism and its impact on Y-STR. Hair sample was found the most suitable sample which had no donor DNA profiling up to 90 days.Keywords: bone marrow transplantation, chimerism, DNA profiling, Y-STR
Procedia PDF Downloads 1442594 Gold Nanoprobes Assay for the Identification of Foodborn Pathogens Such as Staphylococcus aureus, Listeria monocytogenes and Salmonella enteritis
Authors: D. P. Houhoula, J. Papaparaskevas, S. Konteles, A. Dargenta, A. Farka, C. Spyrou, M. Ziaka, S. Koussisis, E. Charvalos
Abstract:
Objectives: Nanotechnology is providing revolutionary opportunities for the rapid and simple diagnosis of many infectious diseases. Staphylococcus aureus, Listeria monocytogenes and Salmonella enteritis are important human pathogens. Diagnostic assays for bacterial culture and identification are time consuming and laborious. There is an urgent need to develop rapid, sensitive, and inexpensive diagnostic tests. In this study, a gold nanoprobe strategy developed and relies on the colorimetric differentiation of specific DNA sequences based approach on differential aggregation profiles in the presence or absence of specific target hybridization. Method: Gold nanoparticles (AuNPs) were purchased from Nanopartz. They were conjugated with thiolated oligonucleotides specific for the femA gene for the identification of members of Staphylococcus aureus, the mecA gene for the differentiation of Staphylococcus aureus and MRSA Staphylococcus aureus, hly gene encoding the pore-forming cytolysin listeriolysin for the identification of Listeria monocytogenes and the invA sequence for the identification of Salmonella enteritis. DNA isolation from Staphylococcus aureus Listeria monocytogenes and Salmonella enteritis cultures was performed using the commercial kit Nucleospin Tissue (Macherey Nagel). Specifically 20μl of DNA was diluted in 10mMPBS (pH5). After the denaturation of 10min, 20μl of AuNPs was added followed by the annealing step at 58oC. The presence of a complementary target prevents aggregation with the addition of acid and the solution remains pink, whereas in the opposite event it turns to purple. The color could be detected visually and it was confirmed with an absorption spectrum. Results: Specifically, 0.123 μg/μl DNA of St. aureus, L.monocytogenes and Salmonella enteritis was serially diluted from 1:10 to 1:100. Blanks containing PBS buffer instead of DNA were used. The application of the proposed method on isolated bacteria produced positive results with all the species of St. aureus and L. monocytogenes and Salmonella enteritis using the femA, mecA, hly and invA genes respectively. The minimum detection limit of the assay was defined at 0.2 ng/μL of DNA. Below of 0.2 ng/μL of bacterial DNA the solution turned purple after addition of HCl, defining the minimum detection limit of the assay. None of the blank samples was positive. The specificity was 100%. The application of the proposed method produced exactly the same results every time (n = 4) the evaluation was repeated (100% repeatability) using the femA, hly and invA genes. Using the gene mecA for the differentiation of Staphylococcus aureus and MRSA Staphylococcus aureus the method had a repeatability 50%. Conclusion: The proposed method could be used as a highly specific and sensitive screening tool for the detection and differentiation of Staphylococcus aureus Listeria monocytogenes and Salmonella enteritis. The use AuNPs for the colorimetric detection of DNA targets represents an inexpensive and easy-to-perform alternative to common molecular assays. The technology described here, may develop into a platform that could accommodate detection of many bacterial species.Keywords: gold nanoparticles, pathogens, nanotechnology, bacteria
Procedia PDF Downloads 3402593 An Approach of Computer Modalities for Exploration of Hieroglyphics Substantial in an Investigation
Authors: Aditi Chauhan, Neethu S. Mohan
Abstract:
In the modern era, the advancement and digitalization in technology have taken place during an investigation of crime scene. The rapid enhancement and investigative techniques have changed the mean of identification of suspect. Identification of the person is one of the significant aspects, and personal authentication is the key of security and reliability in society. Since early 90 s, people have relied on comparing handwriting through its class and individual characteristics. But in today’s 21st century we need more reliable means to identify individual through handwriting. An approach employing computer modalities have lately proved itself auspicious enough in exploration of hieroglyphics substantial in investigating the case. Various software’s such as FISH, WRITEON, and PIKASO, CEDAR-FOX SYSTEM identify and verify the associated quantitative measure of the similarity between two samples. The research till date has been confined to identify the authorship of the concerned samples. But prospects associated with the use of computational modalities might help to identify disguised writing, forged handwriting or say altered or modified writing. Considering the applications of such modal, similar work is sure to attract plethora of research in immediate future. It has a promising role in national security too. Documents exchanged among terrorist can also be brought under the radar of surveillance, bringing forth their source of existence.Keywords: documents, identity, computational system, suspect
Procedia PDF Downloads 1752592 Electrical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: electrical disaggregation, DTW, general appliance modeling, event detection
Procedia PDF Downloads 752591 Identification of EEG Attention Level Using Empirical Mode Decompositions for BCI Applications
Authors: Chia-Ju Peng, Shih-Jui Chen
Abstract:
This paper proposes a method to discriminate electroencephalogram (EEG) signals between different concentration states using empirical mode decomposition (EMD). Brain-computer interface (BCI), also called brain-machine interface, is a direct communication pathway between the brain and an external device without the inherent pathway such as the peripheral nervous system or skeletal muscles. Attention level is a common index as a control signal of BCI systems. The EEG signals acquired from people paying attention or in relaxation, respectively, are decomposed into a set of intrinsic mode functions (IMF) by EMD. Fast Fourier transform (FFT) analysis is then applied to each IMF to obtain the frequency spectrums. By observing power spectrums of IMFs, the proposed method has the better identification of EEG attention level than the original EEG signals between different concentration states. The band power of IMF3 is the most obvious especially in β wave, which corresponds to fully awake and generally alert. The signal processing method and results of this experiment paves a new way for BCI robotic system using the attention-level control strategy. The integrated signal processing method reveals appropriate information for discrimination of the attention and relaxation, contributing to a more enhanced BCI performance.Keywords: biomedical engineering, brain computer interface, electroencephalography, rehabilitation
Procedia PDF Downloads 3892590 Identification of the Interior Noise Sources of Rail Vehicles
Authors: Hyo-In Koh, Anders Nordborg, Alex Sievi, Chun-Kwon Park
Abstract:
The noise source for the interior room of the high speed train is constituted by the rolling contact between the wheel and the rail, aerodynamic noise and structure-borne sound generated through the vibrations of bogie, connection points to the carbody. Air-borne sound is radiated through the panels and structures into the interior room of the trains. The high-speed lines are constructed with slab track systems and many tunnels. The interior noise level and the frequency characteristics vary according to types of the track structure and the infrastructure. In this paper the main sound sources and the transfer paths are studied to find out the contribution characteristics of the sources to the interior noise of a high-speed rail vehicle. For the identification of the acoustic power of each parts of the rolling noise sources a calculation model of wheel/rail noise is developed and used. For the analysis of the transmission of the sources to the interior noise noise and vibration are measured during the operation of the vehicle. According to operation speeds, the mainly contributed sources and the paths could be analyzed. Results of the calculations on the source generation and the results of the measurement with a high-speed train are shown and discussed.Keywords: rail vehicle, high-speed, interior noise, noise source
Procedia PDF Downloads 3992589 Tropical Squall Lines in Brazil: A Methodology for Identification and Analysis Based on ISCCP Tracking Database
Authors: W. A. Gonçalves, E. P. Souza, C. R. Alcântara
Abstract:
The ISCCP-Tracking database offers an opportunity to study physical and morphological characteristics of Convective Systems based on geostationary meteorological satellites. This database contains 26 years of tracking of Convective Systems for the entire globe. Then, Tropical Squall Lines which occur in Brazil are certainly within the database. In this study, we propose a methodology for identification of these systems based on the ISCCP-Tracking database. A physical and morphological characterization of these systems is also shown. The proposed methodology is firstly based on the year of 2007. The Squall Lines were subjectively identified by visually analyzing infrared images from GOES-12. Based on this identification, the same systems were identified within the ISCCP-Tracking database. It is known, and it was also observed that the Squall Lines which occur on the north coast of Brazil develop parallel to the coast, influenced by the sea breeze. In addition, it was also observed that the eccentricity of the identified systems was greater than 0.7. Then, a methodology based on the inclination (based on the coast) and eccentricity (greater than 0.7) of the Convective Systems was applied in order to identify and characterize Tropical Squall Lines in Brazil. These thresholds were applied back in the ISCCP-Tracking database for the year of 2007. It was observed that other systems, which were not Squall Lines, were also identified. Then, we decided to call all systems identified by the inclination and eccentricity thresholds as Linear Convective Systems, instead of Squall Lines. After this step, the Linear Convective Systems were identified and characterized for the entire database, from 1983 to 2008. The physical and morphological characteristics of these systems were compared to those systems which did not have the required inclination and eccentricity to be called Linear Convective Systems. The results showed that the convection associated with the Linear Convective Systems seems to be more intense and organized than in the other systems. This affirmation is based on all ISCCP-Tracking variables analyzed. This type of methodology, which explores 26 years of satellite data by an objective analysis, was not previously explored in the literature. The physical and morphological characterization of the Linear Convective Systems based on 26 years of data is of a great importance and should be used in many branches of atmospheric sciences.Keywords: squall lines, convective systems, linear convective systems, ISCCP-Tracking
Procedia PDF Downloads 2992588 Vibratinal Spectroscopic Identification of Beta-Carotene in Usnic Acid and PAHs as a Potential Martian Analogue
Authors: A. I. Alajtal, H. G. M. Edwards, M. A. Elbagermi
Abstract:
Raman spectroscopy is currently a part of the instrumentation suite of the ESA ExoMars mission for the remote detection of life signatures in the Martian surface and subsurface. Terrestrial analogues of Martian sites have been identified and the biogeological modifications incurred as a result of extremophilic activity have been studied. Analytical instrumentation protocols for the unequivocal detection of biomarkers in suitable geological matrices are critical for future unmanned explorations, including the forthcoming ESA ExoMars mission to search for life on Mars scheduled for 2018 and Raman spectroscopy is currently a part of the Pasteur instrumentation suite of this mission. Here, Raman spectroscopy using 785nm excitation was evaluated for determining various concentrations of beta-carotene in admixture with polyaromatic hydrocarbons and usnic acid have been investigated by Raman microspectrometry to determine the lowest levels detectable in simulation of their potential identification remotely in geobiological conditions in Martian scenarios. Information from this study will be important for the development of a miniaturized Raman instrument for targetting Martian sites where the biosignatures of relict or extant life could remain in the geological record.Keywords: raman spectroscopy, mars-analog, beta-carotene, PAHs
Procedia PDF Downloads 3362587 Mitigating Supply Chain Risk for Sustainability Using Big Data Knowledge: Evidence from the Manufacturing Supply Chain
Authors: Mani Venkatesh, Catarina Delgado, Purvishkumar Patel
Abstract:
The sustainable supply chain is gaining popularity among practitioners because of increased environmental degradation and stakeholder awareness. On the other hand supply chain, risk management is very crucial for the practitioners as it potentially disrupts supply chain operations. Prediction and addressing the risk caused by social issues in the supply chain is paramount importance to the sustainable enterprise. More recently, the usage of Big data analytics for forecasting business trends has been gaining momentum among professionals. The aim of the research is to explore the application of big data, predictive analytics in successfully mitigating supply chain social risk and demonstrate how such mitigation can help in achieving sustainability (environmental, economic & social). The method involves the identification and validation of social issues in the supply chain by an expert panel and survey. Later, we used a case study to illustrate the application of big data in the successful identification and mitigation of social issues in the supply chain. Our result shows that the company can predict various social issues through big data, predictive analytics and mitigate the social risk. We also discuss the implication of this research to the body of knowledge and practice.Keywords: big data, sustainability, supply chain social sustainability, social risk, case study
Procedia PDF Downloads 4072586 Empirical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;
Procedia PDF Downloads 802585 Developing a Comprehensive Framework for Sustainable Urban Planning and Design: Insights From Iranian Cities
Authors: Mohammad Javad Seddighi, Avar Almukhtar
Abstract:
Sustainable urban planning and design (SUPD) play a critical role in achieving the United Nations Sustainable Development Goals (UN SDGs). While there are many rating systems and standards available to assess the sustainability of the built environment, there is still a lack of a comprehensive framework that can assess the quality of SUPD in a specific context. In this paper, we present a framework for assessing the quality of SUPD in Iranian cities, considering their unique cultural, social, and environmental contexts. The aim of this study is to develop a framework for assessing the quality of SUPD in Iranian cities. To achieve this aim, the following objectives are pursued review and synthesis of relevant literature on SUPD, identification of key indicators and criteria for assessing the quality of SUPD in Iranian cities application of the framework to case studies of Iranian cities and evaluation and refinement of the framework based on the results of the case studies. The framework is developed based on a review and synthesis of relevant literature on SUPD, and the identification of key indicators and criteria for assessing the quality of SUPD in Iranian cities. The framework is then applied to case studies of Iranian cities and the results are evaluated and refined. The data for this study are collected through a review of relevant literature on SUPD, including academic journals, conference proceedings, and books. The case studies of Iranian cities are selected based on their relevance and availability of data. The data are collected through interviews, site visits, and document analysis. This paper presents a framework for assessing the quality of SUPD in Iranian cities. The framework is developed based on a review and synthesis of relevant literature, identification of key indicators and criteria, application to case studies, and evaluation and refinement. The framework provides a comprehensive and context-specific approach to assessing the quality of SUPD in Iranian cities. It can be used by urban planners, designers, and policymakers to improve the sustainability and liveability of Iranian cities, and it can be adapted for use in other contexts.Keywords: sustainable urban planning and design, framework, quality assessment, Iranian cities, case studies
Procedia PDF Downloads 1162584 Analysis of the AZF Region in Slovak Men with Azoospermia
Authors: J. Bernasovská, R. Lohajová Behulová, E. Petrejčiková, I. Boroňová, I. Bernasovský
Abstract:
Y chromosome microdeletions are the most common genetic cause of male infertility and screening for these microdeletions in azoospermic or severely oligospermic men is now standard practice. Analysis of the Y chromosome in men with azoospermia or severe oligozoospermia has resulted in the identification of three regions in the euchromatic part of the long arm of the human Y chromosome (Yq11) that are frequently deleted in men with otherwise unexplained spermatogenic failure. PCR analysis of microdeletions in the AZFa, AZFb and AZFc regions of the human Y chromosome is an important screening tool. The aim of this study was to analyse the type of microdeletions in men with fertility disorders in Slovakia. We evaluated 227 patients with azoospermia and with normal karyotype. All patient samples were analyzed cytogenetically. For PCR amplification of sequence-tagged sites (STS) of the AZFa, AZFb and AZFc regions of the Y chromosome was used Devyser AZF set. Fluorescently labeled primers for all markers in one multiplex PCR reaction were used and for automated visualization and identification of the STS markers we used genetic analyzer ABi 3500xl (Life Technologies). We reported 13 cases of deletions in the AZF region 5,73%. Particular types of deletions were recorded in each region AZFa,b,c .The presence of microdeletions in the AZFc region was the most frequent. The study confirmed that percentage of microdeletions in the AZF region is low in Slovak azoospermic patients, but important from a prognostic view.Keywords: AZF, male infertility, microdeletions, Y chromosome
Procedia PDF Downloads 3702583 Sprinting Beyond Sexism and Gender Stereotypes: Indian Women Fans' Experiences in the Sports Fandom
Authors: Siddhi Deshpande, Jo Jo Chacko Eapen
Abstract:
Despite almost half of India’s female population engages in watching sports, their experiences in the sports fandom are concealed by ‘traditional masculinity,’ leading to potential exclusion and harassment. To explore these experiences in-depth, this qualitative study aims to understand what coping strategies Indian women fans employ, to sustain their team identification. Employing criterion sampling, participants were screened using The Sports Spectators Identification Scale (SSIS) to assess team identification and a Brief Sexism Questionnaire to confirm participants’ experience with sexism as it aligns with the purpose of the study. The participants were Indian women who had been following any sport for more than eight years, were fluent in English, and were not professionals in Sports. Ten highly identified fans with gendered experiences were recruited for one-on-one semi-structured, in-depth interviews. The data was analyzed using Interpretive Phenomenological Analysis (IPA) to understand the lived-in experiences of women fans experiencing sexism and gender stereotypes, revealing superordinate themes of (1) Ontogenesis and Emotional Investment; (2) Gendered Expectations and Sexism; (3) Coping Strategies and Resilience; (4) Identity, Femininity, Empowerment; (5) Advocacy for Equality and Inclusivity. The findings reflect that Indian women fans experience social exclusion, harassment, sexualization, and commodification, in both online and offline fandoms, where they are disproportionately targeted with threats, misogynistic comments, and attraction-based assumptions, questioning their ‘authenticity’ as fans due to their gender. Women fans interchange between proactive strategies of assertiveness, humor, and knowledge demonstration with defensive strategies of selective engagement, self-regulatory censorship, and desensitization to deal with sexism. In this interplay, the integration of women’s ‘fan identity’ with their self-concept showcases how being a sports fan adds meaning to their lives, despite the constant scrutiny in a male-dominated space, reflecting that femininity and sports should coexist. As a result, they find refuge in female fan communities due to their similar experiences in the fandom and advocate for an equal and inclusive environment where sports are above gender, and not the other way around. A key practical implication of this research is enabling sports organizations to develop inclusive fan engagement policies that actively encourage female fan participation. This includes sensitizing stadium staff and security personnel, promoting gender-neutral language, and, most importantly, establishing safety protocols to protect female fans from adverse experiences in the fandom.Keywords: coping strategies, female sports fans, femininity, gendered experiences, team identification
Procedia PDF Downloads 432582 Variations in Wood Traits across Major Gymnosperm and Angiosperm Tree Species and the Driving Factors in China
Authors: Meixia Zhang, Chengjun Ji, Wenxuan Han
Abstract:
Many wood traits are important functional attributes for tree species, connected with resource competition among species, community dynamics, and ecosystem functions. Large variations in these traits exist among taxonomic categories, but variation in these traits between gymnosperms and angiosperms is still poorly documented. This paper explores the systematic differences in 12 traits between the two tree categories and the potential effects of environmental factors and life form. Based on a database of wood traits for major gymnosperm and angiosperm tree species across China, the values of 12 wood traits and their driving factors in gymnosperms vs. angiosperms were compared. The results are summarized below: i) Means of wood traits were all significantly lower in gymnosperms than in angiosperms. ii) Air-dried density (ADD) and tangential shrinkage coefficient (TSC) reflect the basic information of wood traits for gymnosperms, while ADD and radial shrinkage coefficient (RSC) represent those for angiosperms, providing higher explanation power when used as the evaluation index of wood traits. iii) For both gymnosperm and angiosperm species, life form exhibits the largest explanation rate for large-scale spatial patterns of ADD, TSC (RSC), climatic factors the next, and edaphic factors have the least effect, suggesting that life form is the dominant factor controlling spatial patterns of wood traits. Variations in the magnitude and key traits between gymnosperms and angiosperms and the same dominant factors might indicate the evolutionary divergence and convergence in key functional traits among woody plants.Keywords: allometry, functional traits, phylogeny, shrinkage coefficient, wood density
Procedia PDF Downloads 2732581 Recovery and Identification of Phenolic Acids in Honey Samples from Different Floral Sources of Pakistan Having Antimicrobial Activity
Authors: Samiyah Tasleem, Muhammad Abdul Haq, Syed Baqir Shyum Naqvi, Muhammad Abid Husnain, Sajjad Haider Naqvi
Abstract:
The objective of the present study was: a) to investigate the antimicrobial activity of honey samples of different floral sources of Pakistan, b) to recover the phenolic acids in them as a possible contributing factor of antimicrobial activity. Six honey samples from different floral sources, namely: Trachysperm copticum, Acacia species, Helianthus annuus, Carissa opaca, Zizyphus and Magnifera indica were used. The antimicrobial activity was investigated by the disc diffusion method against eight freshly isolated clinical isolates (Staphylococci aureus, Staphylococci epidermidis, Streptococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Proteus vulgaris and Candida albicans). Antimicrobial activity of honey was compared with five commercial antibiotics, namely: doxycycline (DO-30ug/mL), oxytetracycline (OT-30ug/mL), clarithromycin (CLR–15ug/mL), moxifloxacin (MXF-5ug/mL) and nystatin (NT – 100 UT). The fractions responsible for antimicrobial activity were extracted using ethyl acetate. Solid phase extraction (SPE) was used to recover the phenolic acids of honey samples. Identification was carried out via High-Performance Liquid Chromatography (HPLC). The results indicated that antimicrobial activity was present in all honey samples and found comparable to the antibiotics used in the study. In the microbiological assay, the ethyl acetate honey extract was found to exhibit a very promising antimicrobial activity against all the microorganisms tested, indicating the existence of phenolic compounds. Six phenolic acids, namely: gallic, caffeic, ferulic, vanillic, benzoic and cinnamic acids were identified besides some unknown substance by HPLC. In conclusion, Pakistani honey samples showed a broad spectrum antibacterial and promising antifungal activity. Identification of six different phenolic acids showed that Pakistani honey samples are rich sources of phenolic compounds that could be the contributing factor of antimicrobial activity.Keywords: Pakistani honey, antimicrobial activity, Phenolic acids eg.gallic, caffeic, ferulic, vanillic, benzoic and cinnamic acids
Procedia PDF Downloads 5472580 Dysbiosis of the Intestinal Microbiome in Colorectal Cancer Patients at Hospital of Amizour, Bejaia, Algeria
Authors: Adjebli Ahmed, Messis Abdelaziz, Ayeche Riad, Tighilet Karim, Talbi Melissa, Smaili Yanis, Lehri Mokrane, Louardiane Mustapha
Abstract:
Colorectal cancer is one of the most common types of cancer worldwide, and its incidence has been increasing in recent years. Data and fecal samples from colorectal cancer patients were collected at the Amizour Public Hospital's oncology department (Bejaia, Algeria). Microbiological and cohort study were conducted at the Biological Engineering of Cancers laboratory at the Faculty of Medicine of the University of Bejaia. All the data showed that patients aged between 50 and 70 years were the most affected by colorectal cancer, while the age categories of [30-40] and [40-50] were the least affected. Males were more likely to be at risk of contracting colorectal cancer than females. The most common types of colorectal cancer among the studied population were sigmoid cancer, rectal cancer, transverse colon cancer, and ascending colon cancer. The hereditary factor was found to be more dominant than other risk factors. Bacterial identification revealed the presence of certain pathogenic and opportunistic bacterial genera, such as E. coli, K. pneumoniae, Shigella sp, and Streptococcus group D. These results led us to conclude that dysbiosis of the intestinal microbiome is strongly present in colorectal cancer patients at the EPH of Amizour.Keywords: microbiome, colorectal cancer, risk factors, bacterial identification
Procedia PDF Downloads 842579 Design of Speed Bump Recognition System Integrated with Adjustable Shock Absorber Control
Authors: Ming-Yen Chang, Sheng-Hung Ke
Abstract:
This research focuses on the development of a speed bump identification system for real-time control of adjustable shock absorbers in vehicular suspension systems. The study initially involved the collection of images of various speed bumps, and rubber speed bump profiles found on roadways. These images were utilized for training and recognition purposes through the deep learning object detection algorithm YOLOv5. Subsequently, the trained speed bump identification program was integrated with an in-vehicle camera system for live image capture during driving. These images were instantly transmitted to a computer for processing. Using the principles of monocular vision ranging, the distance between the vehicle and an approaching speed bump was determined. The appropriate control distance was established through both practical vehicle measurements and theoretical calculations. Collaboratively, with the electronically adjustable shock absorbers equipped in the vehicle, a shock absorber control system was devised to dynamically adapt the damping force just prior to encountering a speed bump. This system effectively mitigates passenger discomfort and enhances ride quality.Keywords: adjustable shock absorbers, image recognition, monocular vision ranging, ride
Procedia PDF Downloads 652578 Precise Identification of Clustered Regularly Interspaced Short Palindromic Repeats-Induced Mutations via Hidden Markov Model-Based Sequence Alignment
Authors: Jingyuan Hu, Zhandong Liu
Abstract:
CRISPR genome editing technology has transformed molecular biology by accurately targeting and altering an organism’s DNA. Despite the state-of-art precision of CRISPR genome editing, the imprecise mutation outcome and off-target effects present considerable risk, potentially leading to unintended genetic changes. Targeted deep sequencing, combined with bioinformatics sequence alignment, can detect such unwanted mutations. Nevertheless, the classical method, Needleman-Wunsch (NW) algorithm may produce false alignment outcomes, resulting in inaccurate mutation identification. The key to precisely identifying CRISPR-induced mutations lies in determining optimal parameters for the sequence alignment algorithm. Hidden Markov models (HMM) are ideally suited for this task, offering flexibility across CRISPR systems by leveraging forward-backward algorithms for parameter estimation. In this study, we introduce CRISPR-HMM, a statistical software to precisely call CRISPR-induced mutations. We demonstrate that the software significantly improves precision in identifying CRISPR-induced mutations compared to NW-based alignment, thereby enhancing the overall understanding of the CRISPR gene-editing process.Keywords: CRISPR, HMM, sequence alignment, gene editing
Procedia PDF Downloads 492577 Giftedness Cloud Model: A Psychological and Ecological Vision of Giftedness Concept
Authors: Rimeyah H. S. Almutairi, Alaa Eldin A. Ayoub
Abstract:
The aim of this study was to identify empirical and theoretical studies that explored giftedness theories and identification. In order to assess and synthesize the mechanisms, outcomes, and impacts of gifted identification models. Thus, we sought to provide an evidence-informed answer to how does current giftedness theories work and effectiveness. In order to develop a model that incorporates the advantages of existing models and avoids their disadvantages as much as possible. We conducted a systematic literature review (SLR). The disciplined analysis resulted in a final sample consisting of 30 appropriate searches. The results indicated that: (a) there is no uniform and consistent definition of Giftedness; (b) researchers are using several non-consistent criteria to detect gifted, and (d) The detection of talent is largely limited to early ages, and there is obvious neglect of adults. This study contributes to the development of Giftedness Cloud Model (GCM) which defined as a model that attempts to interpretation giftedness within an interactive psychological and ecological framework. GCM aims to help a talented to reach giftedness core and manifestation talent in creative productivity or invention. Besides that, GCM suggests classifying giftedness into four levels of mastery, excellence, creative productivity, and manifestation. In addition, GCM presents an idea to distinguish between talent and giftedness.Keywords: giftedness cloud model, talent, systematic literature review, giftedness concept
Procedia PDF Downloads 1652576 An Insight into the Paddy Soil Denitrifying Bacteria and Their Relation with Soil Phospholipid Fatty Acid Profile
Authors: Meenakshi Srivastava, A. K. Mishra
Abstract:
This study characterizes the metabolic versatility of denitrifying bacterial communities residing in the paddy soil using the GC-MS based Phospholipid Fatty Acid (PLFA) analyses simultaneously with nosZ gene based PCR-DGGE (Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis) and real time Q-PCR analysis. We have analyzed the abundance of nitrous oxide reductase (nosZ) genes, which was subsequently related to soil PLFA profile and DGGE based denitrifier community structure. Soil denitrifying bacterial community comprised majority or dominance of Ochrobactrum sp. following Cupriavidus and uncultured bacteria strains in paddy soil of selected sites. Initially, we have analyzed the abundance of the nitrous oxide reductase gene (nosZ), which was found to be related with PLFA based lipid profile. Chandauli of Eastern UP, India represented greater amount of lipid content (C18-C20) and denitrifier’s diversity. This study suggests the positive co-relation between soil PLFA profiles, DGGE, and Q-PCR data. Thus, a close networking among metabolic abilities and taxonomic composition of soil microbial communities existed, and subsequently, such work at greater extent could be helpful in managing nutrient dynamics as well as microbial dynamics of paddy soil ecosystem.Keywords: denaturing gradient gel electrophoresis, DGGE, nitrifying and denitrifying bacteria, PLFA, Q-PCR
Procedia PDF Downloads 1212575 Identification System for Grading Banana in Food Processing Industry
Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan
Abstract:
In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.Keywords: banana, food processing, identification system, neural network
Procedia PDF Downloads 4662574 Studying the Simultaneous Effect of Petroleum and DDT Pollution on the Geotechnical Characteristics of Sands
Authors: Sara Seyfi
Abstract:
DDT and petroleum contamination in coastal sand alters the physical and mechanical properties of contaminated soils. This article aims to understand the effects of DDT pollution on the geotechnical characteristics of sand groups, including sand, silty sand, and clay sand. First, the studies conducted on the topic of the article will be reviewed. In the initial stage of the tests, this article deals with the identification of the used sands (sand, silty sand, clay sand) by FTIR, µ-XRF and SEM methods. Then, the geotechnical characteristics of these sand groups, including density, permeability, shear strength, compaction, and plasticity, are investigated using a sand cone, head permeability test, Vane shear test, strain gauge penetrometer, and plastic limit test. Sand groups are artificially contaminated with petroleum substances with 1, 2, 4, 8, 10, 12% by weight. In a separate experiment, amounts of 2, 4, 8, 12, 16, 20 mg/liter of DDT were added to the sand groups. Geotechnical characteristics and identification analysis are performed on the contaminated samples. In the final tests, the mentioned amounts of oil pollution and DDT are simultaneously added to the sand groups, and identification and measurement processes are carried out. The results of the tests showed that petroleum contamination had reduced the optimal moisture content, permeability, and plasticity of all samples. Except silty sand’s plasticity, which petroleum increased it by 1-4% and decreased it by 8-12%. The dry density of sand and clay sand increased, but that of silty sand decreased. Also, the shear strength of sand and silty sand increased, but that of clay sand decreased. DDT contamination increased the maximum dry density and decreased the permeability of all samples. It also reduced the optimum moisture content of the sand. The shear resistance of silty sand and clayey sand decreased, and plasticity of clayey sand increased, and silty sand decreased. The simultaneous effect of petroleum and DDT pollution on the maximum dry density of sand and clayey sand has been synergistic, on the plasticity of clayey sand and silty sand, there has been antagonism. This process has caused antagonism of optimal sand content, shear strength of silty sand and clay sand. In other cases, the effect of synergy or antagonism is not observed.Keywords: DDT contamination, geotechnical characteristics, petroleum contamination, sand
Procedia PDF Downloads 472573 Ambiguity-Identification Prompting for Large Language Model to Better Understand Complex Legal Texts
Authors: Haixu Yu, Wenhui Cao
Abstract:
Tailoring Large Language Models (LLMs) to perform legal reasoning has been a popular trend in the study of AI and law. Researchers have mainly employed two methods to unlock the potential of LLMs, namely by finetuning the LLMs to expand their knowledge of law and by restructuring the prompts (In-Context Learning) to optimize the LLMs’ understanding of the legal questions. Although claiming the finetuning and renovated prompting can make LLMs more competent in legal reasoning, most state-of-the-art studies show quite limited improvements of practicability. In this paper, drawing on the study of the complexity and low interpretability of legal texts, we propose a prompting strategy based on the Chain of Thought (CoT) method. Instead of merely instructing the LLM to reason “step by step”, the prompting strategy requires the tested LLM to identify the ambiguity in the questions as the first step and then allows the LLM to generate corresponding answers in line with different understandings of the identified terms as the following step. The proposed prompting strategy attempts to encourage LLMs to "interpret" the given text from various aspects. Experiments that require the LLMs to answer “case analysis” questions of bar examination with general LLMs such as GPT 4 and legal LLMs such as LawGPT show that the prompting strategy can improve LLMs’ ability to better understand complex legal texts.Keywords: ambiguity-identification, prompt, large language model, legal text understanding
Procedia PDF Downloads 592572 Characterizing and Developing the Clinical Grade Microbiome Assay with a Robust Bioinformatics Pipeline for Supporting Precision Medicine Driven Clinical Development
Authors: Danyi Wang, Andrew Schriefer, Dennis O'Rourke, Brajendra Kumar, Yang Liu, Fei Zhong, Juergen Scheuenpflug, Zheng Feng
Abstract:
Purpose: It has been recognized that the microbiome plays critical roles in disease pathogenesis, including cancer, autoimmune disease, and multiple sclerosis. To develop a clinical-grade assay for exploring microbiome-derived clinical biomarkers across disease areas, a two-phase approach is implemented. 1) Identification of the optimal sample preparation reagents using pre-mixed bacteria and healthy donor stool samples coupled with proprietary Sigma-Aldrich® bioinformatics solution. 2) Exploratory analysis of patient samples for enabling precision medicine. Study Procedure: In phase 1 study, we first compared the 16S sequencing results of two ATCC® microbiome standards (MSA 2002 and MSA 2003) across five different extraction kits (Kit A, B, C, D & E). Both microbiome standards samples were extracted in triplicate across all extraction kits. Following isolation, DNA quantity was determined by Qubit assay. DNA quality was assessed to determine purity and to confirm extracted DNA is of high molecular weight. Bacterial 16S ribosomal ribonucleic acid (rRNA) amplicons were generated via amplification of the V3/V4 hypervariable region of the 16S rRNA. Sequencing was performed using a 2x300 bp paired-end configuration on the Illumina MiSeq. Fastq files were analyzed using the Sigma-Aldrich® Microbiome Platform. The Microbiome Platform is a cloud-based service that offers best-in-class 16S-seq and WGS analysis pipelines and databases. The Platform and its methods have been extensively benchmarked using microbiome standards generated internally by MilliporeSigma and other external providers. Data Summary: The DNA yield using the extraction kit D and E is below the limit of detection (100 pg/µl) of Qubit assay as both extraction kits are intended for samples with low bacterial counts. The pre-mixed bacterial pellets at high concentrations with an input of 2 x106 cells for MSA-2002 and 1 x106 cells from MSA-2003 were not compatible with the kits. Among the remaining 3 extraction kits, kit A produced the greatest yield whereas kit B provided the least yield (Kit-A/MSA-2002: 174.25 ± 34.98; Kit-A/MSA-2003: 179.89 ± 30.18; Kit-B/MSA-2002: 27.86 ± 9.35; Kit-B/MSA-2003: 23.14 ± 6.39; Kit-C/MSA-2002: 55.19 ± 10.18; Kit-C/MSA-2003: 35.80 ± 11.41 (Mean ± SD)). Also, kit A produced the greatest yield, whereas kit B provided the least yield. The PCoA 3D visualization of the Weighted Unifrac beta diversity shows that kits A and C cluster closely together while kit B appears as an outlier. The kit A sequencing samples cluster more closely together than both the other kits. The taxonomic profiles of kit B have lower recall when compared to the known mixture profiles indicating that kit B was inefficient at detecting some of the bacteria. Conclusion: Our data demonstrated that the DNA extraction method impacts DNA concentration, purity, and microbial communities detected by next-generation sequencing analysis. Further microbiome analysis performance comparison of using healthy stool samples is underway; also, colorectal cancer patients' samples will be acquired for further explore the clinical utilities. Collectively, our comprehensive qualification approach, including the evaluation of optimal DNA extraction conditions, the inclusion of positive controls, and the implementation of a robust qualified bioinformatics pipeline, assures accurate characterization of the microbiota in a complex matrix for deciphering the deep biology and enabling precision medicine.Keywords: 16S rRNA sequencing, analytical validation, bioinformatics pipeline, metagenomics
Procedia PDF Downloads 1682571 Indian Road Traffic Flow Analysis Using Blob Tracking from Video Sequences
Authors: Balaji Ganesh Rajagopal, Subramanian Appavu alias Balamurugan, Ayyalraj Midhun Kumar, Krishnan Nallaperumal
Abstract:
Intelligent Transportation System is an Emerging area to solve multiple transportation problems. Several forms of inputs are needed in order to solve ITS problems. Advanced Traveler Information System (ATIS) is a core and important ITS area of this modern era. This involves travel time forecasting, efficient road map analysis and cost based path selection, Detection of the vehicle in the dynamic conditions and Traffic congestion state forecasting. This Article designs and provides an algorithm for traffic data generation which can be used for the above said ATIS application. By inputting the real world traffic situation in the form of video sequences, the algorithm determines the Traffic density in terms of congestion, number of vehicles in a given path which can be fed for various ATIS applications. The Algorithm deduces the key frame from the video sequences and follows the Blob detection, Identification and Tracking using connected components algorithm to determine the correlation between the vehicles moving in the real road scene.Keywords: traffic transportation, traffic density estimation, blob identification and tracking, relative velocity of vehicles, correlation between vehicles
Procedia PDF Downloads 5092570 Multi-Labeled Aromatic Medicinal Plant Image Classification Using Deep Learning
Authors: Tsega Asresa, Getahun Tigistu, Melaku Bayih
Abstract:
Computer vision is a subfield of artificial intelligence that allows computers and systems to extract meaning from digital images and video. It is used in a wide range of fields of study, including self-driving cars, video surveillance, medical diagnosis, manufacturing, law, agriculture, quality control, health care, facial recognition, and military applications. Aromatic medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, essential oils, decoration, cleaning, and other natural health products for therapeutic and Aromatic culinary purposes. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs but also going to export for valuable foreign currency exchange. In Ethiopia, there is a lack of technologies for the classification and identification of Aromatic medicinal plant parts and disease type cured by aromatic medicinal plants. Farmers, industry personnel, academicians, and pharmacists find it difficult to identify plant parts and disease types cured by plants before ingredient extraction in the laboratory. Manual plant identification is a time-consuming, labor-intensive, and lengthy process. To alleviate these challenges, few studies have been conducted in the area to address these issues. One way to overcome these problems is to develop a deep learning model for efficient identification of Aromatic medicinal plant parts with their corresponding disease type. The objective of the proposed study is to identify the aromatic medicinal plant parts and their disease type classification using computer vision technology. Therefore, this research initiated a model for the classification of aromatic medicinal plant parts and their disease type by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides roots, flowers, fruits, and latex. For this study, the researcher used RGB leaf images with a size of 128x128 x3. In this study, the researchers trained five cutting-edge models: convolutional neural network, Inception V3, Residual Neural Network, Mobile Network, and Visual Geometry Group. Those models were chosen after a comprehensive review of the best-performing models. The 80/20 percentage split is used to evaluate the model, and classification metrics are used to compare models. The pre-trained Inception V3 model outperforms well, with training and validation accuracy of 99.8% and 98.7%, respectively.Keywords: aromatic medicinal plant, computer vision, convolutional neural network, deep learning, plant classification, residual neural network
Procedia PDF Downloads 1852569 Forensic Study on Personal Identification of Pakistani Population by Individualizing Characteristics of Footprints
Authors: Muneeba Butt
Abstract:
One of the most important physical evidence which leaves suspects at the crime scene is footprints. Analysis of footprints, which can provide useful information for personal identification, is helpful in crime scene investigation. For the current study, 200 samples collected (144 male and 56 female) from Pakistani population with a consent form. The footprints were collected by using black ink with an ink pad. The entire samples were photographed, and then the magnifying glass was used for visualization of individual characteristics including detail of toes, humps, phalange mark, and flat foot cracks in footprint patterns. The descriptive results of individualizing characteristics features were presented in tabular form with respective frequency and percentage. In the result in the male population, the prevalence of tibialis type (T-type) is highest. In the female population, the prevalence of midularis type (M-type) is highest. Humps on the first toe are more found in the male population rather than other humps. In the female population, humps on the third toe are more found rather than other humps. In the male population, the prevalence of phalange mark by toe 1 is highest followed by toe 3, toe 5, toe 2, toe 4 and in female population the prevalence of phalange mark by toe 1 is highest followed by toe 5, 4, 3 and 2. Creases marks are found highest in male population as compared to the female population.Keywords: foot prints, toes, humps, cracks
Procedia PDF Downloads 1622568 Synthetic Cannabinoids: Extraction, Identification and Purification
Authors: Niki K. Burns, James R. Pearson, Paul G. Stevenson, Xavier A. Conlan
Abstract:
In Australian state Victoria, synthetic cannabinoids have recently been made illegal under an amendment to the drugs, poisons and controlled substances act 1981. Identification of synthetic cannabinoids in popular brands of ‘incense’ and ‘potpourri’ has been a difficult and challenging task due to the sample complexity and changes observed in the chemical composition of the cannabinoids of interest. This study has developed analytical methodology for the targeted extraction and determination of synthetic cannabinoids available pre-ban. A simple solvent extraction and solid phase extraction methodology was developed that selectively extracted the cannabinoid of interest. High performance liquid chromatography coupled with UV‐visible and chemiluminescence detection (acidic potassium permanganate and tris (2,2‐bipyridine) ruthenium(III)) were used to interrogate the synthetic cannabinoid products. Mass spectrometry and nuclear magnetic resonance spectroscopy were used for structural elucidation of the synthetic cannabinoids. The tris(2,2‐bipyridine)ruthenium(III) detection was found to offer better sensitivity than the permanganate based reagents. In twelve different brands of herbal incense, cannabinoids were extracted and identified including UR‐144, XLR 11, AM2201, 5‐F‐AKB48 and A796‐260.Keywords: electrospray mass spectrometry, high performance liquid chromatography, solid phase extraction, synthetic cannabinoids
Procedia PDF Downloads 4662567 A New Method of Extracting Polyphenols from Honey Using a Biosorbent Compared to the Commercial Resin Amberlite XAD2
Authors: Farid Benkaci-Alia, Abdelhamid Neggada, Sophie Laurentb
Abstract:
A new extraction method of polyphenols from honey using a biodegradable resin was developed and compared with the common commercial resin amberlite XAD2. For this purpose, three honey samples of Algerian origin were selected for the different physico-chemical and biochemical parameters study. After extraction of the target compounds by both resins, the polyphenol content was determined, the antioxidant activity was tested, and LC-MS analyses were performed for identification and quantification. The results showed that physico-chemical and biochemical parameters meet the norms of the International Honey commission, and the H1 sample seemed to be of high quality. The optimal conditions of extraction by biodegradable resin were a pH of 3, an adsorption dose of 40 g/L, a contact time of 50 min, an extraction temperature of 60°C and no stirring. The regeneration and reuse number of both resins was three cycles. The polyphenol contents demonstrated a higher extraction efficiency of biosorbent than of XAD2, especially in H1. LC-MS analyses allowed for the identification and quantification of fifteen compounds in the different honey samples extracted using both resins and the most abundant compound was 3,4,5-trimethoxybenzoic acid. In addition, the biosorbent extracts showed stronger antioxidant activities than the XAD2 extracts.Keywords: extraction, polyphénols, biosorbent, resin amberlite, HPLC-MS
Procedia PDF Downloads 103