Search results for: solution mixing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6200

Search results for: solution mixing

5780 Optimization Study of Adsorption of Nickel(II) on Bentonite

Authors: B. Medjahed, M. A. Didi, B. Guezzen

Abstract:

This work concerns with the experimental study of the adsorption of the Ni(II) on bentonite. The effects of various parameters such as contact time, stirring rate, initial concentration of Ni(II), masse of clay, initial pH of aqueous solution and temperature on the adsorption yield, were carried out. The study of the effect of the ionic strength on the yield of adsorption was examined by the identification and the quantification of the present chemical species in the aqueous phase containing the metallic ion Ni(II). The adsorbed species were investigated by a calculation program using CHEAQS V. L20.1 in order to determine the relation between the percentages of the adsorbed species and the adsorption yield. The optimization process was carried out using 23 factorial designs. The individual and combined effects of three process parameters, i.e. initial Ni(II) concentration in aqueous solution (2.10−3 and 5.10−3 mol/L), initial pH of the solution (2 and 6.5), and mass of bentonite (0.03 and 0.3 g) on Ni(II) adsorption, were studied.

Keywords: adsorption, bentonite, factorial design, Nickel(II)

Procedia PDF Downloads 142
5779 Rheological Properties of Cellulose/TBAF/DMSO Solutions and Their Application to Fabrication of Cellulose Hydrogel

Authors: Deokyeong Choe, Jae Eun Nam, Young Hoon Roh, Chul Soo Shin

Abstract:

The development of hydrogels with a high mechanical strength is important for numerous applications of hydrogels. As a material for tough hydrogels, cellulose has attracted much interest. However, cellulose cannot be melted and is very difficult to be dissolved in most solvents. Therefore, its dissolution in tetrabutylammonium fluoride/dimethyl sulfoxide (TBAF/DMSO) solvents has attracted researchers for chemical processing of cellulose. For this reason, studies about rheological properties of cellulose/TBAF/DMSO solution will provide useful information. In this study, viscosities of cellulose solutions prepared using different amounts of cellulose and TBAF in DMSO were measured. As expected, the viscosity of cellulose solution decreased with respect to the increasing volume of DMSO. The most viscose cellulose solution was achieved at a 1:1 mass ratio of cellulose to TBAF regardless of their contents in DMSO. At a 1:1 mass ratio of cellulose to TBAF, the formation of cellulose nanoparticles (467 nm) resulted in a dramatic increase in the viscosity, which led to the fabrication of 3D cellulose hydrogels.

Keywords: cellulose, TBAF/DMSO, viscosity, hydrogel

Procedia PDF Downloads 231
5778 Preparation and Biological Evaluation of 186/188Re-Chitosan for Radiosynovectomy

Authors: N. Ahmadi, H. Yousefnia, A. Bahrami-Samani

Abstract:

Chitosan is a natural and biodegradable polysaccharide with special characteristic for application in intracavital therapy. 166Ho-chitosan has been reported for the treatment of hepatocellular carcinoma and RSV with promising results. The aim of this study was to prepare 186/188Re-chitosan for radiosynovectomy purposes and investigate the probability of its leakage from the knee joint. 186/188Re was produced by neutron irradiation of the natural rhenium in a research reactor. Chemical processing was performed to obtain (186/188Re)-NaReO4- according to the IAEA manual. A stock solution of chitosan was prepared by dissolving in 1 % acetic acid aqueous solution (10 mg/mL). 1.5 mL of this stock solution was added to the vial containing the activity and the mixture was stirred for 5 min in the room temperature. The radiochemical purity of the complex was checked by the ITLC method, showing the purity of higher than 98%. Distribution of the radiolabeled complex was determined after intra-articular injection into the knees of rats. Excellent retention was observed in the joint with approximately no activity in the other organs.

Keywords: chitosan, leakage, radiosynovectomy, rhenium

Procedia PDF Downloads 320
5777 Globally Attractive Mild Solutions for Non-Local in Time Subdiffusion Equations of Neutral Type

Authors: Jorge Gonzalez Camus, Carlos Lizama

Abstract:

In this work is proved the existence of at least one globally attractive mild solution to the Cauchy problem, for fractional evolution equation of neutral type, involving the fractional derivate in Caputo sense. An almost sectorial operator on a Banach space X and a kernel belonging to a large class appears in the equation, which covers many relevant cases from physics applications, in particular, the important case of time - fractional evolution equations of neutral type. The main tool used in this work was the Hausdorff measure of noncompactness and fixed point theorems, specifically Darbo-type. Initially, the equation is a Cauchy problem, involving a fractional derivate in Caputo sense. Then, is formulated the equivalent integral version, and defining a convenient functional, using the analytic integral resolvent operator, and verifying the hypothesis of the fixed point theorem of Darbo type, give us the existence of mild solution for the initial problem. Furthermore, each mild solution is globally attractive, a property that is desired in asymptotic behavior for that solution.

Keywords: attractive mild solutions, integral Volterra equations, neutral type equations, non-local in time equations

Procedia PDF Downloads 137
5776 The Effect of a Reactive Poly (2-Vinyl-2-Oxazoline) Monolayer of Carbon Fiber Surface on the Mechanical Property of Carbon Fiber/Polypropylene Composite Using Maleic Anhydride Grafted Polypropylene

Authors: Teruya Goto, Hokuto Chiba, Tatsuhiro Takahashi

Abstract:

Carbon fiber reinforced thermoplastic resin using short carbon fiber has been produced by melt mixing and the improvement of mechanical properties has been frequently reported up to now. One of the most frequently reported enhancement has been seen in carbon fiber / polypropylene (PP) composites by adding small amount of maleic anhydride grafted polypropylene (MA-g-PP) into PP matrix. However, the further enhancement of tensile strength and tensile modules has been expected for lightning the composite more. Our present research aims to improve the mechanical property by using a highly reactive monolayer polymer, which can react with both COOH of carbon fiber surface and maleic anhydride of MA-g-PP in the matrix, on carbon fiber for PP/CF composite. It has been known that oxazoline has much higher reactivity with COOH without catalysts, compared with amine group and alcohol OH group. However, oxazoline group has not been used for the interface. To achieve the purpose, poly-2-vinyl-2-oxazoline (Pvozo), having highly reactivity with COOH and maleic anhydride, has been originally synthesized through radical polymerization using 2-vinyl-2-oxazoline as a monomer, resulting in the Mw around 140,000. Monolayer Pvozo chemically reacted on CF was prepared in 1-methoxy-2-propanol solution of Pvozo by heating at 100oC for 3 hours. After this solution treatment, unreacted Pvozo was completely washed out by methanol, resulting the uniform formation of the monolayer Pvozo on CF. Monolayer Pvozo coated CF was melt mixed by with PP and a small amount of MA-g-PP for the preparation of the composite samples using a batch type melt mixer. With performing the tensile strength tests of the composites, the tensile strength of CF/MA-g-PP/PP showed 40% increase, compared to that of CF/PP. While, that of Pvozo coated CF/MA-g-PP/PP exhibited 80% increase, compared to that of CF/PP. To get deeper insight of the dramatic increase, the weight percentage of chemically grafted polymer based on CF was evaluated by dissolving and removing the matrix polymer by xylene using by thermos gravimetric analysis (TGA). The chemically grafted remained polymer was found to be 0.69wt% in CF/PP, 0.98wt% in CF/MA-g-PP/PP, 1.51wt% in Pvozo coated CF/MA-g-PP/PP, suggesting that monolayer Pvozo contributed to the increase of the grafted polymer amount. In addition, the very strong adhesion by Pvozo was confirmed by observing the fractured cross-sectional surface of the composite by scanning electron micrograph (SEM). As a conclusion, the effectiveness of a highly reactive monolayer Pvozo on CF for the enhancement of the mechanical properties of CF/PP composite was demonstrated, which can be interpreted by the clear evidence of the increase of the grafting polymer on CF.

Keywords: CFRTP, interface, oxazoline, polymer graft, mechanical property

Procedia PDF Downloads 190
5775 Efficient Manageability and Intelligent Classification of Web Browsing History Using Machine Learning

Authors: Suraj Gururaj, Sumantha Udupa U.

Abstract:

Browsing the Web has emerged as the de facto activity performed on the Internet. Although browsing gets tracked, the manageability aspect of Web browsing history is very poor. In this paper, we have a workable solution implemented by using machine learning and natural language processing techniques for efficient manageability of user’s browsing history. The significance of adding such a capability to a Web browser is that it ensures efficient and quick information retrieval from browsing history, which currently is very challenging. Our solution guarantees that any important websites visited in the past can be easily accessible because of the intelligent and automatic classification. In a nutshell, our solution-based paper provides an implementation as a browser extension by intelligently classifying the browsing history into most relevant category automatically without any user’s intervention. This guarantees no information is lost and increases productivity by saving time spent revisiting websites that were of much importance.

Keywords: adhoc retrieval, Chrome extension, supervised learning, tile, Web personalization

Procedia PDF Downloads 354
5774 Investigation Of The Catalyst's Effect On Nickel Sulfide Thin Films

Authors: Randa Slatnia

Abstract:

In this study, the nanostructured stable phase identification elaborated by nickel nitrate hyxahydrate and thiourea compounds. After the preparation of the solution (Stirred mixture with methanol as solvent), a deposition of eight layers of this solution on a glass substrate and annealed at 300 °C for energy applications. The annealed sample was analyzed by X-ray Grazing incidence diffraction (GID) with a Bruker D8 Advance diffractometer using Cu Kα1 radiation at 40 kV and 40 mA (1600 W) and Scanning electron microscopy (Thermo Fisher environmental SEM). The results of XRD-GID analysis for the prepared sample showed the formation of an identified stable phase NiS2 and the XRD-GID pattern of the elaborated sample with eight layers prepared solution and annealed show wide and characteristic peaks of the NiS2 with cubic structure (ICDD card no. PDF 01-078-4702). The morphology of the NiS2 thin films confirmed by XRD-GID analysis was investigated by ESEM showed a surface with a uniform and homogeneous distribution nanostructure.

Keywords: nickel sulfide, thin films, XRD, ESEM

Procedia PDF Downloads 69
5773 Research on Ice Fixed-Abrasive Polishing Mechanism and Technology for High-Definition Display Panel Glass

Authors: Y. L. Sun, L. Shao, Y. Zhao, H. X. Zhou, W. Z. Lu, J. Li, D. W. Zuo

Abstract:

This study introduces an ice fixed-abrasive polishing (IFAP) technology. Using silica solution IFAP pad and Al2O3 IFAP pad, orthogonal tests were performed on polishing high-definition display panel glass, respectively. The results show that the polishing efficiency and effect polished with silica solution IFAP pad are better than those polished with Al2O3 IFAP pad. The optimized silica solution IFAP parameters are: polishing pressure 0.1MPa, polishing time 40min, table velocity 80r/min, and the ratio of accelerator and slurry 1:10. Finally, the IFAP mechanism was studied and it suggests by complicated analysis that IFAP is comprehensive effect of mechanical removal and microchemical reaction, combined with fixed abrasive polishing and free abrasive polishing.

Keywords: ice fixed-abrasive polishing, high-definition display panel glass, material removal rate, surface roughness

Procedia PDF Downloads 371
5772 Evaluation of Corrosion Property of Aluminium-Zirconium Dioxide (AlZrO2) Nanocomposites

Authors: M. Ramachandra, G. Dilip Maruthi, R. Rashmi

Abstract:

This paper aims to study the corrosion property of aluminum matrix nanocomposite of an aluminum alloy (Al-6061) reinforced with zirconium dioxide (ZrO2) particles. The zirconium dioxide particles are synthesized by solution combustion method. The nanocomposite materials are prepared by mechanical stir casting method, varying the percentage of n-ZrO2 (2.5%, 5% and 7.5% by weight). The corrosion behavior of base metal (Al-6061) and Al/ZrO2 nanocomposite in seawater (3.5% NaCl solution) is measured using the potential control method. The corrosion rate is evaluated by Tafel extrapolation technique. The corrosion potential increases with the increase in wt.% of n-ZrO2 in the nanocomposite which means the decrease in corrosion rate. It is found that on addition of n-ZrO2 particles to the aluminum matrix, the corrosion rate has decreased compared to the base metal.

Keywords: Al6061 alloy, corrosion, solution, stir casting, combustion, potentiostat, zirconium dioxide

Procedia PDF Downloads 380
5771 X-Ray Diffraction, Microstructure, and Mössbauer Studies of Nanostructured Materials Obtained by High-Energy Ball Milling

Authors: N. Boudinar, A. Djekoun, A. Otmani, B. Bouzabata, J. M. Greneche

Abstract:

High-energy ball milling is a solid-state powder processing technique that allows synthesizing a variety of equilibrium and non-equilibrium alloy phases starting from elemental powders. The advantage of this process technology is that the powder can be produced in large quantities and the processing parameters can be easily controlled, thus it is a suitable method for commercial applications. It can also be used to produce amorphous and nanocrystalline materials in commercially relevant amounts and is also amenable to the production of a variety of alloy compositions. Mechanical alloying (high-energy ball milling) provides an inter-dispersion of elements through a repeated cold welding and fracture of free powder particles; the grain size decreases to nano metric scale and the element mix together. Progressively, the concentration gradients disappear and eventually the elements are mixed at the atomic scale. The end products depend on many parameters such as the milling conditions and the thermodynamic properties of the milled system. Here, the mechanical alloying technique has been used to prepare nano crystalline Fe_50 and Fe_64 wt.% Ni alloys from powder mixtures. Scanning electron microscopy (SEM) with energy-dispersive, X-ray analyses and Mössbauer spectroscopy were used to study the mixing at nanometric scale. The Mössbauer Spectroscopy confirmed the ferromagnetic ordering and was use to calculate the distribution of hyperfin field. The Mössbauer spectrum for both alloys shows the existence of a ferromagnetic phase attributed to γ-Fe-Ni solid solution.

Keywords: nanocrystalline, mechanical alloying, X-ray diffraction, Mössbauer spectroscopy, phase transformations

Procedia PDF Downloads 422
5770 Optimizing Oil Production through 30-Inch Pipeline in Abu-Attifel Field

Authors: Ahmed Belgasem, Walid Ben Hussin, Emad Krekshi, Jamal Hashad

Abstract:

Waxy crude oil, characterized by its high paraffin wax content, poses significant challenges in the oil & gas industry due to its increased viscosity and semi-solid state at reduced temperatures. The wax formation process, which includes precipitation, crystallization, and deposition, becomes problematic when crude oil temperatures fall below the wax appearance temperature (WAT) or cloud point. Addressing these issues, this paper introduces a technical solution designed to mitigate the wax appearance and enhance the oil production process in Abu-Attifil Field via a 30-inch crude oil pipeline. A comprehensive flow assurance study validates the feasibility and performance of this solution across various production rates, temperatures, and operational scenarios. The study's findings indicate that maintaining the crude oil's temperature above a minimum threshold of 63°C is achievable through the strategic placement of two heating stations along the pipeline route. This approach effectively prevents wax deposition, gelling, and subsequent mobility complications, thereby bolstering the overall efficiency, reliability, safety, and economic viability of the production process. Moreover, this solution significantly curtails the environmental repercussions traditionally associated with wax deposition, which can accumulate up to 7,500kg. The research methodology involves a comprehensive flow assurance study to validate the feasibility and performance of the proposed solution. The study considers various production rates, temperatures, and operational scenarios. It includes crude oil analysis to determine the wax appearance temperature (WAT), as well as the evaluation and comparison of operating options for the heating stations. The study's findings indicate that the proposed solution effectively prevents wax deposition, gelling, and subsequent mobility complications. By maintaining the crude oil's temperature above the specified threshold, the solution improves the overall efficiency, reliability, safety, and economic viability of the oil production process. Additionally, the solution contributes to reducing environmental repercussions associated with wax deposition. The research conclusion presents a technical solution that optimizes oil production in the Abu-Attifil Field by addressing wax formation problems through the strategic placement of two heating stations. The solution effectively prevents wax deposition, improves overall operational efficiency, and contributes to environmental sustainability. Further research is suggested for field data validation and cost-benefit analysis exploration.

Keywords: oil production, wax depositions, solar cells, heating stations

Procedia PDF Downloads 60
5769 Study on Novel Reburning Process for NOx Reduction by Oscillating Injection of Reburn Fuel

Authors: Changyeop Lee, Sewon Kim, Jongho Lee

Abstract:

Reburning technology has been developed to adopt various commercial combustion systems. Fuel lean reburning is an advanced reburning method to reduce NOx economically without using burnout air, however it is not easy to get high NOx reduction efficiency. In the fuel lean reburning system, the localized fuel rich eddies are used to establish partial fuel rich regions so that the NOx can react with hydrocarbon radical restrictively. In this paper, a new advanced reburning method which supplies reburn fuel with oscillatory motion is introduced to increase NOx reduction rate effectively. To clarify whether forced oscillating injection of reburn fuel can effectively reduce NOx emission, experimental tests were conducted in vertical combustion furnace. Experiments were performed in flames stabilized by a gas burner, which was mounted at the bottom of the furnace. The natural gas is used as both main and reburn fuel and total thermal input is about 40kW. The forced oscillating injection of reburn fuel is realized by electronic solenoid valve, so that fuel rich region and fuel lean region is established alternately. In the fuel rich region, NOx is converted to N2 by reburning reaction, however unburned hydrocarbon and CO is oxidized in fuel lean zone and mixing zone at downstream where slightly fuel lean region is formed by mixing of two regions. This paper reports data on flue gas emissions and temperature distribution in the furnace for a wide range of experimental conditions. All experimental data has been measured at steady state. The NOx reduction rate increases up to 41% by forced oscillating reburn motion. The CO emissions were shown to be kept at very low level. And this paper makes clear that in order to decrease NOx concentration in the exhaust when oscillating reburn fuel injection system is adopted, the control of factors such as frequency and duty ratio is very important.

Keywords: NOx, CO, reburning, pollutant

Procedia PDF Downloads 277
5768 A South African Perspective on Palestine and the Motivation for a One-State Solution

Authors: Farhin Delawala

Abstract:

In the context of Palestine and the broader Middle East, this study delves into the Apartheid regime in Palestine, the country under occupation, and the intricate ties between the United States of America (USA) and the settler colony of ‘Israel’. The paper provides an explanation of the colonisation of Palestine as well as the forms of Apartheid. Moreover, it explains the provisions of United Nations (UN) international laws and how they have been broken by the settler colony of ‘Israel’. The paper contends that the US, motivated by its security interests in the region, has strategically influenced the political instability in the Middle East and the illegal occupation of Palestine. Furthermore, this paper proposes an alternative path of a one-state solution to foster a more peaceful and stable society and advocates for the integration of the Palestinian population into the region, from Gaza and the West Bank, under equal citizen rights. Thereby, the ethno-theocratic nature of the settler colony as an ethno-theocratic state is dismantled.

Keywords: apartheid, one-state solution, Palestine, political instability, settler colony

Procedia PDF Downloads 38
5767 Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression

Authors: Wanatchapong Kongkaew

Abstract:

This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches.

Keywords: Gaussian process regression, iterated local search, simulated annealing, single machine total weighted tardiness

Procedia PDF Downloads 291
5766 Numerical Analysis of Rainfall-Induced Roadside Slope Failures and Their Stabilizing Solution

Authors: Muhammad Suradi, Sugiarto, Abdullah Latip

Abstract:

Many roadside slope failures occur during the rainy season, particularly in the period of extreme rainfall along Connecting National Road of Salubatu-Mambi, West Sulawesi, Indonesia. These occurrences cause traffic obstacles and endanger people along and around the road. Research collaboration between P2JN (National Road Construction Board) West Sulawesi Province, who authorize to supervise the road condition, and Ujung Pandang State Polytechnic (Applied University) was established to cope with the landslide problem. This research aims to determine factors triggering roadside slope failures and their optimum stabilizing solution. To achieve this objective, site observation and soil investigation were carried out to obtain parameters for analyses of rainfall-induced slope instability and reinforcement design using the SV Flux and SV Slope software. The result of this analysis will be taken into account for the next analysis to get an optimum design of the slope reinforcement. The result indicates some factors such as steep slopes, sandy soils, and unvegetated slope surface mainly contribute to the slope failures during intense rainfall. With respect to the contributing factors as well as construction material and technology, cantilever/butressing retaining wall becomes the optimum solution for the roadside slope reinforcement.

Keywords: roadside slope, failure, rainfall, slope reinforcement, optimum solution

Procedia PDF Downloads 84
5765 Whale Optimization Algorithm for Optimal Reactive Power Dispatch Solution Under Various Contingency Conditions

Authors: Medani Khaled Ben Oualid

Abstract:

Most of researchers solved and analyzed the ORPD problem in the normal conditions. However, network collapses appear in contingency conditions. In this paper, ORPD under several contingencies is presented using the proposed method WOA. To ensure viability of the power system in contingency conditions, several critical cases are simulated in order to prevent and prepare the power system to face such situations. The results obtained are carried out in IEEE 30 bus test system for the solution of ORPD problem in which control of bus voltages, tap position of transformers and reactive power sources are involved. Moreover, another method, namely, Particle Swarm Optimization with Time Varying Acceleration Coefficient (PSO-TVAC) has been compared with the proposed technique. Simulation results indicate that the proposed WOA gives remarkable solution in terms of effectiveness in case of outages.

Keywords: optimal reactive power dispatch, metaheuristic techniques, whale optimization algorithm, real power loss minimization, contingency conditions

Procedia PDF Downloads 77
5764 Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Partitioned Solution Approach and an Exponential Model

Authors: Nicolò Vaiana, Filip C. Filippou, Giorgio Serino

Abstract:

The solution of the nonlinear dynamic equilibrium equations of base-isolated structures adopting a conventional monolithic solution approach, i.e. an implicit single-step time integration method employed with an iteration procedure, and the use of existing nonlinear analytical models, such as differential equation models, to simulate the dynamic behavior of seismic isolators can require a significant computational effort. In order to reduce numerical computations, a partitioned solution method and a one dimensional nonlinear analytical model are presented in this paper. A partitioned solution approach can be easily applied to base-isolated structures in which the base isolation system is much more flexible than the superstructure. Thus, in this work, the explicit conditionally stable central difference method is used to evaluate the base isolation system nonlinear response and the implicit unconditionally stable Newmark’s constant average acceleration method is adopted to predict the superstructure linear response with the benefit in avoiding iterations in each time step of a nonlinear dynamic analysis. The proposed mathematical model is able to simulate the dynamic behavior of seismic isolators without requiring the solution of a nonlinear differential equation, as in the case of widely used differential equation model. The proposed mixed explicit-implicit time integration method and nonlinear exponential model are adopted to analyze a three dimensional seismically isolated structure with a lead rubber bearing system subjected to earthquake excitation. The numerical results show the good accuracy and the significant computational efficiency of the proposed solution approach and analytical model compared to the conventional solution method and mathematical model adopted in this work. Furthermore, the low stiffness value of the base isolation system with lead rubber bearings allows to have a critical time step considerably larger than the imposed ground acceleration time step, thus avoiding stability problems in the proposed mixed method.

Keywords: base-isolated structures, earthquake engineering, mixed time integration, nonlinear exponential model

Procedia PDF Downloads 263
5763 Least Squares Method Identification of Corona Current-Voltage Characteristics and Electromagnetic Field in Electrostatic Precipitator

Authors: H. Nouri, I. E. Achouri, A. Grimes, H. Ait Said, M. Aissou, Y. Zebboudj

Abstract:

This paper aims to analysis the behaviour of DC corona discharge in wire-to-plate electrostatic precipitators (ESP). Current-voltage curves are particularly analysed. Experimental results show that discharge current is strongly affected by the applied voltage. The proposed method of current identification is to use the method of least squares. Least squares problems that of into two categories: linear or ordinary least squares and non-linear least squares, depending on whether or not the residuals are linear in all unknowns. The linear least-squares problem occurs in statistical regression analysis; it has a closed-form solution. A closed-form solution (or closed form expression) is any formula that can be evaluated in a finite number of standard operations. The non-linear problem has no closed-form solution and is usually solved by iterative.

Keywords: electrostatic precipitator, current-voltage characteristics, least squares method, electric field, magnetic field

Procedia PDF Downloads 415
5762 Network Analysis and Sex Prediction based on a full Human Brain Connectome

Authors: Oleg Vlasovets, Fabian Schaipp, Christian L. Mueller

Abstract:

we conduct a network analysis and predict the sex of 1000 participants based on ”connectome” - pairwise Pearson’s correlation across 436 brain parcels. We solve the non-smooth convex optimization problem, known under the name of Graphical Lasso, where the solution includes a low-rank component. With this solution and machine learning model for a sex prediction, we explain the brain parcels-sex connectivity patterns.

Keywords: network analysis, neuroscience, machine learning, optimization

Procedia PDF Downloads 127
5761 Flooring Solution for Sports Courts Such as Ecological Mortar

Authors: Helida T. G. Soares, Antonio J. P. da Silva

Abstract:

As the society develops, the accumulation of solid waste in landfills, in the environment, and the depletion of the raw material increases. In this way, there is relevance in researching the interaction between the environmental management and civil construction; therefore, this project has for scope the analysis and the effects of the rubber microparticles use as a small aggregate added to the sand, producing an ecological mortar for the pavement constitution, from the mixture of a paste, composed of Portland cement and water, and its application in sports courts. It was used the detailed reutilization of micro rubber in its most primordial, micro form, highlighting the powder pattern as the additional balancing of the mortar, analyzing the evolution of the mechanical properties. Percentages of 5, 10 and 15% rubber were used based on the total mass of the trace, where there is no removal of aggregates or cement, only increment of the rubber. The results obtained through the mechanical test of simple compression showed that the rubber, added to the mortar, presents low mechanical resistance compared to the reference trait, the study of this subject is vast of possibilities to be explored. In this sense, we seek sustainability and innovation from the use of an ecological material, thus adding value and reducing the impact of this material on the environment. The manufacturing process takes place from the direct mixing of cement paste and rubber, whether manually, mechanically or industrially. It results in the production of a low-cost mortar, through the use of recycled rubber, with high efficiency in general properties, such as compressive strength and friction coefficient, allowing its use for the construction of floors for sports courts with high durability. Thus, it is possible to reuse this micro rubber residue in other applications in simple concrete artifacts.

Keywords: civil construction, ecological mortar, high efficiency, rubber

Procedia PDF Downloads 126
5760 Sorption of Congo Red from Aqueous Solution by Surfactant-Modified Bentonite: Kinetic and Factorial Design Study

Authors: B. Guezzen, M. A. Didi, B. Medjahed

Abstract:

An organoclay (HDTMA-B) was prepared from sodium bentonite (Na-B). The starting material was modified using the hexadecyltrimethylammonium ion (HDTMA+) in the amounts corresponding to 100 % of the CEC value. Batch experiments were carried out in order to model and optimize the sorption of Congo red dye from aqueous solution. The pseudo-first order and pseudo-second order kinetic models have been developed to predict the rate constant and the sorption capacity at equilibrium with the effect of temperature, the solid/solution ratio and the initial dye concentration. The equilibrium time was reached within 60 min. At room temperature (20 °C), optimum dye sorption of 49.4 mg/g (98.9%) was achieved at pH 6.6, sorbent dosage of 1g/L and initial dye concentration of 50 mg/L, using surfactant modified bentonite. The optimization of adsorption parameters mentioned above on dye removal was carried out using Box-Behnken design. The sorption parameters were analyzed statistically by means of variance analysis by using the Statgraphics Centurion XVI software.

Keywords: adsorption, dye, factorial design, kinetic, organo-bentonite

Procedia PDF Downloads 180
5759 Effect of Temperature on the Binary Mixture of Imidazolium Ionic Liquid with Pyrrolidin-2-One: Volumetric and Ultrasonic Study

Authors: T. Srinivasa Krishna, K. Narendra, K. Thomas, S. S. Raju, B. Munibhadrayya

Abstract:

The densities, speeds of sound and refractive index of the binary mixture of ionic liquid (IL) 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Imide]) and Pyrrolidin-2-one(PY) was measured at atmospheric pressure, and over the range of temperatures T= (298.15 -323.15)K. The excess molar volume, excess isentropic compressibility, excess speed of sound, partial molar volumes, and isentropic partial molar compressibility were calculated from the values of the experimental density and speed of sound. From the experimental data excess thermal expansion coefficients and isothermal pressure coefficient of excess molar enthalpy at 298.15K were calculated. The results were analyzed and were discussed from the point of view of structural changes. Excess properties were calculated and correlated by the Redlich–Kister and the Legendre polynomial equation and binary coefficients were obtained. Values of excess partial volumes at infinite dilution for the binary system at different temperatures were calculated from the adjustable parameters obtained from Legendre polynomial and Redlich–Kister smoothing equation. Deviation in refractive indices ΔnD and deviation in molar refraction, ΔRm were calculated from the measured refractive index values. Equations of state and several mixing rules were used to predict refractive indices of the binary mixtures and compared with the experimental values by means of the standard deviation and found to be in excellent agreement. By using Prigogine–Flory–Patterson (PFP) theory, the above thermodynamic mixing functions have been calculated and the results obtained from this theory were compared with experimental results.

Keywords: density, refractive index, speeds of sound, Prigogine-Flory-Patterson theory

Procedia PDF Downloads 391
5758 DHL CSI Solution Design Project

Authors: Mohammed Al-Yamani, Yaser Miaji

Abstract:

DHL Customer Solutions and Innovation Department (CSI) have been experiencing difficulties while comparing quotes for different customers in different years. Currently, the employees are processing data by opening several loaded Excel files where the quotes are and manually copying values to another Excel Workbook where the comparison is made. This project consists of developing a new and effective database for DHL CSI department so that information is stored altogether on the same catalog. That being said, we have been assigned to find an efficient algorithm that can deal with the different formats of the Excel Workbooks to copy and store the express customer rates for core products (DOX, WPX, IMP) for comparisons purposes.

Keywords: DHL, solution design, ORACLE, EXCEL

Procedia PDF Downloads 392
5757 Study of the Morphological and Optical Properties of Nanometric NiO

Authors: Nassima Hamzaoui, Mostefa Ghamnia

Abstract:

Nanoscale thin films of pure and Mn-doped Nickel oxide (NiO) were prepared by dissolving nickel chloride hexahydrate (NiCl2, 6H2O) and manganese chloride tetrahydrate (MnCl2,4H2O) under experimental conditions. The resulting solution was stirred at room temperature for 30 OC minutes in order to obtain homogeneity. The solution was sprayed onto heated glass substrates. The films obtained were characterized by X-ray diffraction to verify crystallinity. Atomic force microscopy (AFM) reveals surface topographical structure. UV-visible spectroscopy shows good transparency of the NiO layers.

Keywords: films, NiO, AFM, X-ray diffraction

Procedia PDF Downloads 40
5756 Analytical Solution for Thermo-Hydro-Mechanical Analysis of Unsaturated Porous Media Using AG Method

Authors: Davood Yazdani Cherati, Hussein Hashemi Senejani

Abstract:

In this paper, a convenient analytical solution for a system of coupled differential equations, derived from thermo-hydro-mechanical analysis of three-phase porous media such as unsaturated soils is developed. This kind of analysis can be used in various fields such as geothermal energy systems and seepage of leachate from buried municipal and domestic waste in geomaterials. Initially, a system of coupled differential equations, including energy, mass, and momentum conservation equations is considered, and an analytical method called AGM is employed to solve the problem. The method is straightforward and comprehensible and can be used to solve various nonlinear partial differential equations (PDEs). Results indicate the accuracy of the applied method for solving nonlinear partial differential equations.

Keywords: AGM, analytical solution, porous media, thermo-hydro-mechanical, unsaturated soils

Procedia PDF Downloads 214
5755 Measuring Regional Inequality: The Italian Case

Authors: Arbolino R., Boffardi R., L. De Simone

Abstract:

The success of a development policy requires the definition of a proper investment planning on behalf of policymakers. Such planning should consider both tangible and intangible features characterizing a territory and, moreover, evaluate both state of place and an ideal situation to be achieved, that represents the final goal of the policy. The aim of this research is to propose a methodological approach to implement this ideal solution or the best solution appliable to the Italian regions. It consists of two steps: the first one is a measure of regional inequality through building a composite indicator for analyzing the level of development and compare the differences among the regions. It is constructed by means of a principal component analysis. Ranking regions according to the scores achieved is useful as benchmark, to identify a best solution towards which other regions should strive. Thus, this distance is measured through a revised Sen index that allows to assign a weight on which calculate the financing resource programming. The results show that this approach is a good instrument to fairly and efficiently allocate public funds, in order to reduce regional inequalities.

Keywords: public economics, inequalities, growth, development

Procedia PDF Downloads 49
5754 Meniscus Guided Film Coating for Large-Area Perovskite Solar Cells

Authors: Gizachew Belay Adugna, Yu-Tai Tao

Abstract:

Perovskite solar cells (PSCs) have been gaining impressive progress with excellent power conversion efficiency (PCE) of 25.5% in small-area devices. However, the conventional film coating approach is not applicable to large-area module fabrication. Meniscus-guided coating, including blade coating, slot-die coating, and bar coating, is solution processing and promising for large-area and cost-effective film coating to industrial-scale PSCs. Here, we develop simple and scalable solution shearing (SS) and bar coating (BC) methods to coat all layers on large-area (10x10 cm²) substrate in FTO/c-TiO₂/mp-TiO₂/ CH₃NH₃PbI₃/Spiro-OMeTAD/Ag device structure, except the Ag electrode. All solution-sheared PSC exhibited a champion power conversion efficiency of 15.89% in the conational DMF/DMSO solvent. Whereas a very high PCE of 20.30% compared to the controlled spin-coated device (SC, 17.60%) was achieved from the large area sheared perovskite film in a green ACN/MA solvent. Similarly, a remarkable PCE of 18.50% was achieved for a device fabricated from a large-area perovskite film in a simpler and more compatible Bar-coating system. This strategy demonstrates the huge potential for module fabrication and future PSC commercialization.

Keywords: Perovskite solar cells, larger area film coating, meniscus-guided film coating, solution-shearing, bar-coating, power conversion efficiency

Procedia PDF Downloads 55
5753 Catalytic Degradation of Tetracycline in Aqueous Solution by Magnetic Ore Pyrite Nanoparticles

Authors: Allah Bakhsh Javid, Ali Mashayekh-Salehi, Fatemeh Davardoost

Abstract:

This study presents the preparation, characterization and catalytic activity of a novel natural mineral-based catalyst for destructive adsorption of tetracycline (TTC) as water emerging compounds. Degradation potential of raw and calcined magnetite catalyst was evaluated at different experiments situations such as pH, catalyst dose, reaction time and pollutant concentration. Calcined magnetite attained greater catalytic potential than the raw ore in the degradation of tetracycline, around 69% versus 3% at reaction time of 30 min and TTC aqueous solution of 50 mg/L, respectively. Complete removal of TTC could be obtained using 2 g/L calcined nanoparticles at reaction time of 60 min. The removal of TTC increased with the increase in solution temperature. Accordingly, considering its abundance in nature together with its very high catalytic potential, calcined pyrite is a promising and reliable catalytic material for destructive decomposition for catalytic decomposition and mineralization of such pharmaceutical compounds as TTC in water and wastewater.

Keywords: catalytic degradation, tetracycline, pyrite, emerging pollutants

Procedia PDF Downloads 163
5752 Study of Nanoclay Blends Based on PET/PEN Prepared by Reactive Extrusion

Authors: F. Zouai, F. Z. Benabid, S. Bouhelal, D. Benachour

Abstract:

A new route of preparation of compatible blends, based on poly(ethylene terephthalate)(PET)/poly(ethylenenaphthalene2,6-dicarboxylate) (PEN)/clay nanocomposites has been successfully performed in one step by reactive melt extrusion. To achieve this, untreated clay was first purified and functionalized “in situ” with a compound based on an organic peroxide/sulfur mixture and (tetra methyl thiuram disulfide) TMTD as accelerator or activator for sulfur. The PET and PEN materials were first mixed separately in the melt state with different amounts of functionalized clay. It was observed that the compositions PET/4 wt% clay and PEN/7.5 wt% clay showed total exfoliation. These completely exfoliated compositions, called nPET and nPEN, respectively, were used to prepare new nPET/nPEN nanoblends in the same mixing batch. The nPET/nPEN nanoblends were compared to neat blends of PET/PEN. The blends and the nanocomposites were characterized by different techniques: differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS). The micro and nanostructure/properties relationships were investigated. The results of the WAXS measurements study showed that the exfoliation of tetrahedral nanolayers of clay was complete and the octahedral structure disappeared totally. From the different WAXS patterns, it is seen that all samples are amorphous phase. The thermal study showed that there are only one glass transition temperature Tg, one crystallization temperature Tc and one melting temperature Tm for every composition. This indicated that both PET/PEN blends and nPET/nPEN blends were compatible in the entire range of compositions. In addition, nPET/nPEN blends present lower Tc values and higher Tm values than the corresponding neat PET/PEN blends. The obtained results indicate that nPET/nPEN blends are somewhat different from the pure ones in nanostructure and behavior, thus showing the additional effect of nanolayers. The present study allowed establishing good correlations between the different measured properties.

Keywords: PET, PEN, montmorillonite, nanocomposites, exfoliation, reactive melt-mixing

Procedia PDF Downloads 283
5751 Practical Design Procedures of 3D Reinforced Concrete Shear Wall-Frame Structure Based on Structural Optimization Method

Authors: H. Nikzad, S. Yoshitomi

Abstract:

This study investigates and develops the structural optimization method. The effect of size constraints on practical solution of reinforced concrete (RC) building structure with shear wall is proposed. Cross-sections of beam and column, and thickness of shear wall are considered as design variables. The objective function to be minimized is total cost of the structure by using a simple and efficient automated MATLAB platform structural optimization methodology. With modification of mathematical formulations, the result is compared with optimal solution without size constraints. The most suitable combination of section sizes is selected as for the final design application based on linear static analysis. The findings of this study show that defining higher value of upper bound of sectional sizes significantly affects optimal solution, and defining of size constraints play a vital role in finding of global and practical solution during optimization procedures. The result and effectiveness of proposed method confirm the ability and efficiency of optimal solutions for 3D RC shear wall-frame structure.

Keywords: structural optimization, linear static analysis, ETABS, MATLAB, RC shear wall-frame structures

Procedia PDF Downloads 363