Search results for: recognition methods
16194 The Role of Bridging Stakeholder in Water Management: Examining Social Networks in Working Groups and Co-Management
Authors: Fariba Ebrahimi, Mehdi Ghorbani
Abstract:
Comprehensive water management considers economic, environmental, technical and social sustainability of water resources for future generations. Integrated water management implies cooperative approach and involves all stakeholders and also introduces issues to managers and decision makers. Solving these issues needs integrated and system approach according to the recognition of actors or key persons in necessary to apply cooperative management of water resources. Therefore, social network analysis can be used to demonstrate the most effective actors for environmental base decisions. The linkage of diverse sets of actors and knowledge systems across management levels and institutional boundaries often poses one of the greatest challenges in adaptive water management. Bridging stakeholder can facilitate interactions among actors in management settings by lowering the transaction costs of collaboration. This research examines how network connections between group members affect in co- management. Cohesive network structures allow groups to more effectively achieve their goals and objectives Strong; centralized leadership is a better predictor of working group success in achieving goals and objectives. Finally, geometric position of each actor was illustrated in the network. The results of the research based on between centrality index have a key and bridging actor in recognition of cooperative management of water resources in Darbandsar village and also will help managers and planners of water in the case of recognition to organization and implementation of sustainable management of water resources and water security.Keywords: co-management, water management, social network, bridging stakeholder, darbandsar village
Procedia PDF Downloads 30816193 A Literature Review on Emotion Recognition Using Wireless Body Area Network
Authors: Christodoulou Christos, Politis Anastasios
Abstract:
The utilization of Wireless Body Area Network (WBAN) is experiencing a notable surge in popularity as a result of its widespread implementation in the field of smart health. WBANs utilize small sensors implanted within the human body to monitor and record physiological indicators. These sensors transmit the collected data to hospitals and healthcare facilities through designated access points. Bio-sensors exhibit a diverse array of shapes and sizes, and their deployment can be tailored to the condition of the individual. Multiple sensors may be strategically placed within, on, or around the human body to effectively observe, record, and transmit essential physiological indicators. These measurements serve as a basis for subsequent analysis, evaluation, and therapeutic interventions. In conjunction with physical health concerns, numerous smartwatches are engineered to employ artificial intelligence techniques for the purpose of detecting mental health conditions such as depression and anxiety. The utilization of smartwatches serves as a secure and cost-effective solution for monitoring mental health. Physiological signals are widely regarded as a highly dependable method for the recognition of emotions due to the inherent inability of individuals to deliberately influence them over extended periods of time. The techniques that WBANs employ to recognize emotions are thoroughly examined in this article.Keywords: emotion recognition, wireless body area network, WBAN, ERC, wearable devices, psychological signals, emotion, smart-watch, prediction
Procedia PDF Downloads 5016192 Smart Multifunctionalized and Responsive Polymersomes as Targeted and Selective Recognition Systems
Authors: Silvia Moreno, Banu Iyisan, Hannes Gumz, Brigitte Voit, Dietmar Appelhans
Abstract:
Polymersomes are materials which are considered as artificial counterparts of natural vesicles. The nanotechnology of such smart nanovesicles is very useful to enhance the efficiency of many therapeutic and diagnostic drugs. Those compounds show a higher stability, flexibility, and mechanical strength to the membrane compared to natural liposomes. In addition, they can be designed in detail, the permeability of the membrane can be controlled by different stimuli, and the surface can be functionalized with different biological molecules to facilitate monitoring and target. For this purpose, this study demonstrates the formation of multifunctional and pH sensitive polymersomes and their functionalization with different reactive groups or biomolecules inside and outside of polymersomes´ membrane providing by crossing the membrane and docking/undocking processes for biomedical applications. Overall, they are highly versatile and thus present new opportunities for the design of targeted and selective recognition systems, for example, in mimicking cell functions and in synthetic biology.Keywords: multifunctionalized, pH stimulus, controllable release, cellular uptake
Procedia PDF Downloads 32016191 Improvement of the Numerical Integration's Quality in Meshless Methods
Authors: Ahlem Mougaida, Hedi Bel Hadj Salah
Abstract:
Several methods are suggested to improve the numerical integration in Galerkin weak form for Meshless methods. In fact, integrating without taking into account the characteristics of the shape functions reproduced by Meshless methods (rational functions, with compact support etc.), causes a large integration error that influences the PDE’s approximate solution. Comparisons between different methods of numerical integration for rational functions are discussed and compared. The algorithms are implemented in Matlab. Finally, numerical results were presented to prove the efficiency of our algorithms in improving results.Keywords: adaptive methods, meshless, numerical integration, rational quadrature
Procedia PDF Downloads 36416190 Binarization and Recognition of Characters from Historical Degraded Documents
Authors: Bency Jacob, S.B. Waykar
Abstract:
Degradations in historical document images appear due to aging of the documents. It is very difficult to understand and retrieve text from badly degraded documents as there is variation between the document foreground and background. Thresholding of such document images either result in broken characters or detection of false texts. Numerous algorithms exist that can separate text and background efficiently in the textual regions of the document; but portions of background are mistaken as text in areas that hardly contain any text. This paper presents a way to overcome these problems by a robust binarization technique that recovers the text from a severely degraded document images and thereby increases the accuracy of optical character recognition systems. The proposed document recovery algorithm efficiently removes degradations from document images. Here we are using the ostus method ,local thresholding and global thresholding and after the binarization training and recognizing the characters in the degraded documents.Keywords: binarization, denoising, global thresholding, local thresholding, thresholding
Procedia PDF Downloads 34416189 Molecular Characterization and Identification of C-Type Lectin in Red Palm Weevil, Rhynchophorus ferrugineus Oliver
Authors: Hafiza Javaria Ashraf, Xinghong Wang, Zhanghong Shi, Youming Hou
Abstract:
Insect’s innate immunity depends on a variety of defense responses for the recognition of invading pathogens. Pathogen recognition involves particular proteins known as pattern recognition receptors (PRRs). These PRRs interact with pathogen-associated molecular patterns (PAMPs) present on the surface of pathogens to distinguish between self and non-self. C-type lectins (CTLs) belong to a superfamily of PPRs which involved in insect immunity and defense mechanism. Rhynchophorus ferrugineus Olivier is a devastating pest of Palm cultivations in China. Although studies on R. ferrugineus immune mechanism and host defense have conducted, however, the role of CTL in immune responses of R. ferrugineus remains elusive. Here, we report RfCTL, which is a secreted protein containing a single-CRD domain. The open reading frame (ORF) of CTL is 226 bp, which encodes a putative protein of 168 amino acids. Transcript expression analysis revealed that RfCTL highly expressed in immune-related tissues, i.e., hemolymph and fat body. The abundance of RfCTL in the gut and fat body dramatically increased upon Staphylococcus aureus and Escherichia coli bacterial challenges, suggesting a role in defense against gram-positive and gram-negative bacterial infection. Taken together, we inferred that RfCTL might be involved in the immune defense of R. ferrugineus and established a solid foundation for future studies on R. ferrugineus CTL domain proteins for better understanding of insect immunity.Keywords: biological invasion, c-type lectin, insect immunity, Rhynchophorus ferrugineus Oliver
Procedia PDF Downloads 15716188 Cricket Shot Recognition using Conditional Directed Spatial-Temporal Graph Networks
Authors: Tanu Aneja, Harsha Malaviya
Abstract:
Capturing pose information in cricket shots poses several challenges, such as low-resolution videos, noisy data, and joint occlusions caused by the nature of the shots. In response to these challenges, we propose a CondDGConv-based framework specifically for cricket shot prediction. By analyzing the spatial-temporal relationships in batsman shot sequences from an annotated 2D cricket dataset, our model achieves a 97% accuracy in predicting shot types. This performance is made possible by conditioning the graph network on batsman 2D poses, allowing for precise prediction of shot outcomes based on pose dynamics. Our approach highlights the potential for enhancing shot prediction in cricket analytics, offering a robust solution for overcoming pose-related challenges in sports analysis.Keywords: action recognition, cricket. sports video analytics, computer vision, graph convolutional networks
Procedia PDF Downloads 1816187 Enhancing Metaverse Security: A Multi-Factor Authentication Scheme
Authors: R. Chinnaiyaprabhu, S. Bharanidharan, V. Dharsana, Rajalavanya
Abstract:
The concept of the Metaverse represents a potential evolution in the realm of cyberspace. In the early stages of Web 2.0, we observed a proliferation of online pseudonyms or 'nyms,' which increased the prevalence of fake accounts and made it challenging to establish unique online identities for various roles. However, in the era of Web 3.0, particularly in the context of the Metaverse, an individual's digital identity is intrinsically linked to their real-world identity. Consequently, actions taken in the Metaverse can carry significant consequences in the physical world. In light of these considerations, we propose the development of an innovative authentication system known as 'Metasec.' This system is designed to enhance security for digital assets, online identities, avatars, and user accounts within the Metaverse. Notably, Metasec operates as a password less authentication solution, relying on a multifaceted approach to security, encompassing device attestation, facial recognition, and pattern-based security keys.Keywords: metaverse, multifactor authentication, security, facial recognition, patten password
Procedia PDF Downloads 6716186 A High Performance Piano Note Recognition Scheme via Precise Onset Detection and Segmented Short-Time Fourier Transform
Authors: Sonali Banrjee, Swarup Kumar Mitra, Aritra Acharyya
Abstract:
A piano note recognition method has been proposed by the authors in this paper. The authors have used a comprehensive method for onset detection of each note present in a piano piece followed by segmented short-time Fourier transform (STFT) for the identification of piano notes. The performance evaluation of the proposed method has been carried out in different harsh noisy environments by adding different levels of additive white Gaussian noise (AWGN) having different signal-to-noise ratio (SNR) in the original signal and evaluating the note detection error rate (NDER) of different piano pieces consisting of different number of notes at different SNR levels. The NDER is found to be remained within 15% for all piano pieces under consideration when the SNR is kept above 8 dB.Keywords: AWGN, onset detection, piano note, STFT
Procedia PDF Downloads 16016185 The Impact of an Educational Program on Knowledge, Attitude and Practices of Healthcare Professionals towards Family Presence during Resuscitation in an Emergency Department at a Tertiary Care Setting, in Karachi, Pakistan
Authors: Shaista Meghani, Rozina Karmaliani, Khairulnissa Ajani, Shireen Shahzad, Nadeem Ullah Khan
Abstract:
Background: The concept of Family Presence During Resuscitation (FPDR) is gradually gaining recognition in western countries, however, it is rarely considered in South Asian countries including Pakistan. Over time, patients’ and families’ rights have gained recognition and healthcare has progressed to become more patient-family centered. Objectives: The objective of this study was to evaluate the impact of an educational program on the Knowledge, Attitude, and Practices (KAP) of healthcare professionals (HCPs) towards FPDR in Emergency Department (ED), at a tertiary care setting, in Karachi, Pakistan. Methods: This was a Pre-test and Post-test study design. A convenient universal sampling was done, and all ED nurses and physicians with more than one year of experience were eligible. The intervention included one-hour training sessions for physicians (three sessions) and nurses (eight sessions), The KAP of nurses and physicians were assessed immediately after (post-test I), and two weeks(post-test II) after the intervention using a pretested questionnaire. Results: The findings of the study revealed that the mean scores of knowledge and attitude of HCPs at both time points were statistically significant (p-value=<0.001), however, an insignificant difference was found on practice of FPDR (p-value=>0.05). Conclusion: The study findings recommend that the educational program on FPDR for HCPs needs to be offered on an ongoing basis. Moreover, training modules need to be developed for the staff, and formal guidelines need to be proposed for FPDR, through a multidisciplinary team approach.Keywords: family presence, cardiopulmonary resuscitation, attitude, education, practices, health care professionals
Procedia PDF Downloads 18716184 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs
Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu
Abstract:
This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network
Procedia PDF Downloads 6316183 A Review of Methods for Handling Missing Data in the Formof Dropouts in Longitudinal Clinical Trials
Abstract:
Much clinical trials data-based research are characterized by the unavoidable problem of dropout as a result of missing or erroneous values. This paper aims to review some of the various techniques to address the dropout problems in longitudinal clinical trials. The fundamental concepts of the patterns and mechanisms of dropout are discussed. This study presents five general techniques for handling dropout: (1) Deletion methods; (2) Imputation-based methods; (3) Data augmentation methods; (4) Likelihood-based methods; and (5) MNAR-based methods. Under each technique, several methods that are commonly used to deal with dropout are presented, including a review of the existing literature in which we examine the effectiveness of these methods in the analysis of incomplete data. Two application examples are presented to study the potential strengths or weaknesses of some of the methods under certain dropout mechanisms as well as to assess the sensitivity of the modelling assumptions.Keywords: incomplete longitudinal clinical trials, missing at random (MAR), imputation, weighting methods, sensitivity analysis
Procedia PDF Downloads 41516182 Predicting the Human Impact of Natural Onset Disasters Using Pattern Recognition Techniques and Rule Based Clustering
Authors: Sara Hasani
Abstract:
This research focuses on natural sudden onset disasters characterised as ‘occurring with little or no warning and often cause excessive injuries far surpassing the national response capacities’. Based on the panel analysis of the historic record of 4,252 natural onset disasters between 1980 to 2015, a predictive method was developed to predict the human impact of the disaster (fatality, injured, homeless) with less than 3% of errors. The geographical dispersion of the disasters includes every country where the data were available and cross-examined from various humanitarian sources. The records were then filtered into 4252 records of the disasters where the five predictive variables (disaster type, HDI, DRI, population, and population density) were clearly stated. The procedure was designed based on a combination of pattern recognition techniques and rule-based clustering for prediction and discrimination analysis to validate the results further. The result indicates that there is a relationship between the disaster human impact and the five socio-economic characteristics of the affected country mentioned above. As a result, a framework was put forward, which could predict the disaster’s human impact based on their severity rank in the early hours of disaster strike. The predictions in this model were outlined in two worst and best-case scenarios, which respectively inform the lower range and higher range of the prediction. A necessity to develop the predictive framework can be highlighted by noticing that despite the existing research in literature, a framework for predicting the human impact and estimating the needs at the time of the disaster is yet to be developed. This can further be used to allocate the resources at the response phase of the disaster where the data is scarce.Keywords: disaster management, natural disaster, pattern recognition, prediction
Procedia PDF Downloads 15316181 Cultural Disposition and Implicit Dehumanization of Sexualized Females by Women
Authors: Hong Im Shin
Abstract:
Previous research demonstrated that self-objectification (women view themselves as objects for use) is related to system-justification. Three studies investigated whether cultural disposition as its system-justifying function could have an impact on self-objectification and dehumanization of sexualized women and men. Study 1 (N = 91) employed a survey methodology to examine the relationship between cultural disposition (collectivism vs. individualism), trait of system-justification, and self-objectification. The results showed that the higher tendency of collectivism was related to stronger system-justification and self-objectification. Study 2 (N = 60 females) introduced a single category implicit association task (SC-IAT) to assess the extent to which sexually objectified women were associated with uniquely human attributes (i.e., culture) compared to animal-related attributes (i.e., nature). According to results, female participants associated sexually objectified female targets less with human attributes compared to animal-related attributes. Study 3 (N = 46) investigated whether priming to individualism or collectivism was associated to system justification and sexual objectification of men and women with the use of a recognition task involving upright and inverted pictures of sexualized women and men. The results indicated that the female participants primed to individualism showed an inversion effect for sexualized women and men (person-like recognition), whereas there was no inversion effect for sexualized women in the priming condition of collectivism (object-like recognition). This implies that cultural disposition plays a mediating role for rationalizing the gender status, implicit dehumanization of sexualized females and self-objectification. Future research directions are discussed.Keywords: cultural disposition, dehumanization, implicit test, self-objectification
Procedia PDF Downloads 23816180 Towards a Complete Automation Feature Recognition System for Sheet Metal Manufacturing
Authors: Bahaa Eltahawy, Mikko Ylihärsilä, Reino Virrankoski, Esko Petäjä
Abstract:
Sheet metal processing is automated, but the step from product models to the production machine control still requires human intervention. This may cause time consuming bottlenecks in the production process and increase the risk of human errors. In this paper we present a system, which automatically recognizes features from the CAD-model of the sheet metal product. By using these features, the system produces a complete model of the particular sheet metal product. Then the model is used as an input for the sheet metal processing machine. Currently the system is implemented, capable to recognize more than 11 of the most common sheet metal structural features, and the procedure is fully automated. This provides remarkable savings in the production time, and protects against the human errors. This paper presents the developed system architecture, applied algorithms and system software implementation and testing.Keywords: feature recognition, automation, sheet metal manufacturing, CAD, CAM
Procedia PDF Downloads 35416179 Biosignal Recognition for Personal Identification
Authors: Hadri Hussain, M.Nasir Ibrahim, Chee-Ming Ting, Mariani Idroas, Fuad Numan, Alias Mohd Noor
Abstract:
A biometric security system has become an important application in client identification and verification system. A conventional biometric system is normally based on unimodal biometric that depends on either behavioural or physiological information for authentication purposes. The behavioural biometric depends on human body biometric signal (such as speech) and biosignal biometric (such as electrocardiogram (ECG) and phonocardiogram or heart sound (HS)). The speech signal is commonly used in a recognition system in biometric, while the ECG and the HS have been used to identify a person’s diseases uniquely related to its cluster. However, the conventional biometric system is liable to spoof attack that will affect the performance of the system. Therefore, a multimodal biometric security system is developed, which is based on biometric signal of ECG, HS, and speech. The biosignal data involved in the biometric system is initially segmented, with each segment Mel Frequency Cepstral Coefficients (MFCC) method is exploited for extracting the feature. The Hidden Markov Model (HMM) is used to model the client and to classify the unknown input with respect to the modal. The recognition system involved training and testing session that is known as client identification (CID). In this project, twenty clients are tested with the developed system. The best overall performance at 44 kHz was 93.92% for ECG and the worst overall performance was ECG at 88.47%. The results were compared to the best overall performance at 44 kHz for (20clients) to increment of clients, which was 90.00% for HS and the worst overall performance falls at ECG at 79.91%. It can be concluded that the difference multimodal biometric has a substantial effect on performance of the biometric system and with the increment of data, even with higher frequency sampling, the performance still decreased slightly as predicted.Keywords: electrocardiogram, phonocardiogram, hidden markov model, mel frequency cepstral coeffiecients, client identification
Procedia PDF Downloads 28016178 Small Target Recognition Based on Trajectory Information
Authors: Saad Alkentar, Abdulkareem Assalem
Abstract:
Recognizing small targets has always posed a significant challenge in image analysis. Over long distances, the image signal-to-noise ratio tends to be low, limiting the amount of useful information available to detection systems. Consequently, visual target recognition becomes an intricate task to tackle. In this study, we introduce a Track Before Detect (TBD) approach that leverages target trajectory information (coordinates) to effectively distinguish between noise and potential targets. By reframing the problem as a multivariate time series classification, we have achieved remarkable results. Specifically, our TBD method achieves an impressive 97% accuracy in separating target signals from noise within a mere half-second time span (consisting of 10 data points). Furthermore, when classifying the identified targets into our predefined categories—airplane, drone, and bird—we achieve an outstanding classification accuracy of 96% over a more extended period of 1.5 seconds (comprising 30 data points).Keywords: small targets, drones, trajectory information, TBD, multivariate time series
Procedia PDF Downloads 4716177 Identity Verification Based on Multimodal Machine Learning on Red Green Blue (RGB) Red Green Blue-Depth (RGB-D) Voice Data
Authors: LuoJiaoyang, Yu Hongyang
Abstract:
In this paper, we experimented with a new approach to multimodal identification using RGB, RGB-D and voice data. The multimodal combination of RGB and voice data has been applied in tasks such as emotion recognition and has shown good results and stability, and it is also the same in identity recognition tasks. We believe that the data of different modalities can enhance the effect of the model through mutual reinforcement. We try to increase the three modalities on the basis of the dual modalities and try to improve the effectiveness of the network by increasing the number of modalities. We also implemented the single-modal identification system separately, tested the data of these different modalities under clean and noisy conditions, and compared the performance with the multimodal model. In the process of designing the multimodal model, we tried a variety of different fusion strategies and finally chose the fusion method with the best performance. The experimental results show that the performance of the multimodal system is better than that of the single modality, especially in dealing with noise, and the multimodal system can achieve an average improvement of 5%.Keywords: multimodal, three modalities, RGB-D, identity verification
Procedia PDF Downloads 7016176 Fight against Money Laundering with Optical Character Recognition
Authors: Saikiran Subbagari, Avinash Malladhi
Abstract:
Anti Money Laundering (AML) regulations are designed to prevent money laundering and terrorist financing activities worldwide. Financial institutions around the world are legally obligated to identify, assess and mitigate the risks associated with money laundering and report any suspicious transactions to governing authorities. With increasing volumes of data to analyze, financial institutions seek to automate their AML processes. In the rise of financial crimes, optical character recognition (OCR), in combination with machine learning (ML) algorithms, serves as a crucial tool for automating AML processes by extracting the data from documents and identifying suspicious transactions. In this paper, we examine the utilization of OCR for AML and delve into various OCR techniques employed in AML processes. These techniques encompass template-based, feature-based, neural network-based, natural language processing (NLP), hidden markov models (HMMs), conditional random fields (CRFs), binarizations, pattern matching and stroke width transform (SWT). We evaluate each technique, discussing their strengths and constraints. Also, we emphasize on how OCR can improve the accuracy of customer identity verification by comparing the extracted text with the office of foreign assets control (OFAC) watchlist. We will also discuss how OCR helps to overcome language barriers in AML compliance. We also address the implementation challenges that OCR-based AML systems may face and offer recommendations for financial institutions based on the data from previous research studies, which illustrate the effectiveness of OCR-based AML.Keywords: anti-money laundering, compliance, financial crimes, fraud detection, machine learning, optical character recognition
Procedia PDF Downloads 14416175 An Experience Report on Course Teaching in Information Systems
Authors: Carlos Oliveira
Abstract:
This paper is a criticism of the traditional model of teaching and presents alternative teaching methods, different from the traditional lecture. These methods are accompanied by reports of experience of their application in a class. It was concluded that in the lecture, the student has a low learning rate and that other methods should be used to make the most engaging learning environment for the student, contributing (or facilitating) his learning process. However, the teacher should not use a single method, but rather a range of different methods to ensure the learning experience does not become repetitive and fatiguing for the student.Keywords: educational practices, experience report, IT in education, teaching methods
Procedia PDF Downloads 39716174 A Hybrid System for Boreholes Soil Sample
Authors: Ali Ulvi Uzer
Abstract:
Data reduction is an important topic in the field of pattern recognition applications. The basic concept is the reduction of multitudinous amounts of data down to the meaningful parts. The Principal Component Analysis (PCA) method is frequently used for data reduction. The Support Vector Machine (SVM) method is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which categorizes new examples. This study offers a hybrid approach that uses the PCA for data reduction and Support Vector Machines (SVM) for classification. In order to detect the accuracy of the suggested system, two boreholes taken from the soil sample was used. The classification accuracies for this dataset were obtained through using ten-fold cross-validation method. As the results suggest, this system, which is performed through size reduction, is a feasible system for faster recognition of dataset so our study result appears to be very promising.Keywords: feature selection, sequential forward selection, support vector machines, soil sample
Procedia PDF Downloads 45516173 A Smartphone-Based Real-Time Activity Recognition and Fall Detection System
Authors: Manutchanok Jongprasithporn, Rawiphorn Srivilai, Paweena Pongsopha
Abstract:
Fall is the most serious accident leading to increased unintentional injuries and mortality. Falls are not only the cause of suffering and functional impairments to the individuals, but also the cause of increasing medical cost and days away from work. The early detection of falls could be an advantage to reduce fall-related injuries and consequences of falls. Smartphones, embedded accelerometer, have become a common device in everyday life due to decreasing technology cost. This paper explores a physical activity monitoring and fall detection application in smartphones which is a non-invasive biomedical device to determine physical activities and fall event. The combination of application and sensors could perform as a biomedical sensor to monitor physical activities and recognize a fall. We have chosen Android-based smartphone in this study since android operating system is an open-source and no cost. Moreover, android phone users become a majority of Thai’s smartphone users. We developed Thai 3 Axis (TH3AX) as a physical activities and fall detection application which included command, manual, results in Thai language. The smartphone was attached to right hip of 10 young, healthy adult subjects (5 males, 5 females; aged< 35y) to collect accelerometer and gyroscope data during performing physical activities (e.g., walking, running, sitting, and lying down) and falling to determine threshold for each activity. Dependent variables are including accelerometer data (acceleration, peak acceleration, average resultant acceleration, and time between peak acceleration). A repeated measures ANOVA was performed to test whether there are any differences between DVs’ means. Statistical analyses were considered significant at p<0.05. After finding threshold, the results were used as training data for a predictive model of activity recognition. In the future, accuracies of activity recognition will be performed to assess the overall performance of the classifier. Moreover, to help improve the quality of life, our system will be implemented with patients and elderly people who need intensive care in hospitals and nursing homes in Thailand.Keywords: activity recognition, accelerometer, fall, gyroscope, smartphone
Procedia PDF Downloads 69216172 CTHTC: A Convolution-Backed Transformer Architecture for Temporal Knowledge Graph Embedding with Periodicity Recognition
Authors: Xinyuan Chen, Mohd Nizam Husen, Zhongmei Zhou, Gongde Guo, Wei Gao
Abstract:
Temporal Knowledge Graph Completion (TKGC) has attracted increasing attention for its enormous value; however, existing models lack capabilities to capture both local interactions and global dependencies simultaneously with evolutionary dynamics, while the latest achievements in convolutions and Transformers haven't been employed in this area. What’s more, periodic patterns in TKGs haven’t been fully explored either. To this end, a multi-stage hybrid architecture with convolution-backed Transformers is introduced in TKGC tasks for the first time combining the Hawkes process to model evolving event sequences in a continuous-time domain. In addition, the seasonal-trend decomposition is adopted to identify periodic patterns. Experiments on six public datasets are conducted to verify model effectiveness against state-of-the-art (SOTA) methods. An extensive ablation study is carried out accordingly to evaluate architecture variants as well as the contributions of independent components in addition, paving the way for further potential exploitation. Besides complexity analysis, input sensitivity and safety challenges are also thoroughly discussed for comprehensiveness with novel methods.Keywords: temporal knowledge graph completion, convolution, transformer, Hawkes process, periodicity
Procedia PDF Downloads 7816171 Evaluation of Robust Feature Descriptors for Texture Classification
Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo
Abstract:
Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.Keywords: texture classification, texture descriptor, SIFT, SURF, ORB
Procedia PDF Downloads 36916170 Investigating the Influences of Long-Term, as Compared to Short-Term, Phonological Memory on the Word Recognition Abilities of Arabic Readers vs. Arabic Native Speakers: A Word-Recognition Study
Authors: Insiya Bhalloo
Abstract:
It is quite common in the Muslim faith for non-Arabic speakers to be able to convert written Arabic, especially Quranic Arabic, into a phonological code without significant semantic or syntactic knowledge. This is due to prior experience learning to read the Quran (a religious text written in Classical Arabic), from a very young age such as via enrolment in Quranic Arabic classes. As compared to native speakers of Arabic, these Arabic readers do not have a comprehensive morpho-syntactic knowledge of the Arabic language, nor can understand, or engage in Arabic conversation. The study seeks to investigate whether mere phonological experience (as indicated by the Arabic readers’ experience with Arabic phonology and the sound-system) is sufficient to cause phonological-interference during word recognition of previously-heard words, despite the participants’ non-native status. Both native speakers of Arabic and non-native speakers of Arabic, i.e., those individuals that learned to read the Quran from a young age, will be recruited. Each experimental session will include two phases: An exposure phase and a test phase. During the exposure phase, participants will be presented with Arabic words (n=40) on a computer screen. Half of these words will be common words found in the Quran while the other half will be words commonly found in Modern Standard Arabic (MSA) but either non-existent or prevalent at a significantly lower frequency within the Quran. During the test phase, participants will then be presented with both familiar (n = 20; i.e., those words presented during the exposure phase) and novel Arabic words (n = 20; i.e., words not presented during the exposure phase. ½ of these presented words will be common Quranic Arabic words and the other ½ will be common MSA words but not Quranic words. Moreover, ½ the Quranic Arabic and MSA words presented will be comprised of nouns, while ½ the Quranic Arabic and MSA will be comprised of verbs, thereby eliminating word-processing issues affected by lexical category. Participants will then determine if they had seen that word during the exposure phase. This study seeks to investigate whether long-term phonological memory, such as via childhood exposure to Quranic Arabic orthography, has a differential effect on the word-recognition capacities of native Arabic speakers and Arabic readers; we seek to compare the effects of long-term phonological memory in comparison to short-term phonological exposure (as indicated by the presentation of familiar words from the exposure phase). The researcher’s hypothesis is that, despite the lack of lexical knowledge, early experience with converting written Quranic Arabic text into a phonological code will help participants recall the familiar Quranic words that appeared during the exposure phase more accurately than those that were not presented during the exposure phase. Moreover, it is anticipated that the non-native Arabic readers will also report more false alarms to the unfamiliar Quranic words, due to early childhood phonological exposure to Quranic Arabic script - thereby causing false phonological facilitatory effects.Keywords: modern standard arabic, phonological facilitation, phonological memory, Quranic arabic, word recognition
Procedia PDF Downloads 35716169 Traffic Light Detection Using Image Segmentation
Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra
Abstract:
Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks
Procedia PDF Downloads 17316168 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata
Authors: Pavan K. Rallabandi, Kailash C. Patidar
Abstract:
In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata
Procedia PDF Downloads 38816167 The Use of Water Hyacinth for Bioenergy Electric Generation: For the case of Tana Water Hyacinth
Authors: Seada Hussen Adem, Frie Ayalew Yimam
Abstract:
Due to its high biomass output and potential to produce renewable energy, water hyacinth, a rapidly expanding aquatic weed, has gained recognition as a prospective bioenergy feedstock. Through a variety of conversion processes, such as anaerobic digestion, combustion, and gasification, this study suggests using water hyacinth to generate energy. The suggested strategy helps to reduce the annoyance brought on by the excessive growth of water hyacinth in Tana water bodies in addition to offering an alternate source of energy. The study emphasizes the value of environmentally friendly methods for managing Tana water resources as well as the potential of water hyacinth as a source of bioenergy.Keywords: anaerobic digestion, bioenergy, combustion, gasification, water hyacinth
Procedia PDF Downloads 6716166 Effect of Signal Acquisition Procedure on Imagined Speech Classification Accuracy
Authors: M.R Asghari Bejestani, Gh. R. Mohammad Khani, V.R. Nafisi
Abstract:
Imagined speech recognition is one of the most interesting approaches to BCI development and a lot of works have been done in this area. Many different experiments have been designed and hundreds of combinations of feature extraction methods and classifiers have been examined. Reported classification accuracies range from the chance level to more than 90%. Based on non-stationary nature of brain signals, we have introduced 3 classification modes according to time difference in inter and intra-class samples. The modes can explain the diversity of reported results and predict the range of expected classification accuracies from the brain signal accusation procedure. In this paper, a few samples are illustrated by inspecting results of some previous works.Keywords: brain computer interface, silent talk, imagined speech, classification, signal processing
Procedia PDF Downloads 15316165 Difficulties in the Emotional Processing of Intimate Partner Violence Perpetrators
Authors: Javier Comes Fayos, Isabel RodríGuez Moreno, Sara Bressanutti, Marisol Lila, Angel Romero MartíNez, Luis Moya Albiol
Abstract:
Given the great impact produced by gender-based violence, its comprehensive approach seems essential. Consequently, research has focused on risk factors for violent behaviour, linking various psychosocial variables, as well as cognitive and neuropsychological deficits with the aggressors. However, studies on affective processing are scarce, so the present study investigates possible emotional alterations in men convicted of gender violence. The participants were 51 aggressors, who attended the CONTEXTO program with sentences of less than two years, and 47 men with no history of violence. The sample did not differ in age, socioeconomic level, education, or alcohol and other substances consumption. Anger, alexithymia and facial recognition of other people´s emotions were assessed through the State-Trait Anger Expression Inventory (STAXI-2), the Toronto Alexithymia Scale (TAS-20) and Reading the mind in the eyes (REM), respectively. Men convicted of gender-based violence showed higher scores on the anger trait and temperament dimensions, as well as on the anger expression index. They also scored higher on alexithymia and in the identification and emotional expression subscales. In addition, they showed greater difficulties in the facial recognition of emotions by having a lower score in the REM. These results seem to show difficulties in different affective areas in men condemned for gender violence. The deficits are reflected in greater difficulty in identifying and expressing emotions, in processing anger and in recognizing the emotions of others. All these difficulties have been related to the use of violent behavior. Consequently, it is essential and necessary to include emotional regulation in intervention programs for men who have been convicted of gender-based violence.Keywords: alexithymia, anger, emotional processing, emotional recognition, empathy, intimate partner violence
Procedia PDF Downloads 199