Search results for: penalized logistic regression
3009 Plasmodium falciparum Infection and SARS-CoV-2 Immunoglobulin-G Positivity Rates Among Primary Healthcare Centre Attendees in Osogbo, Nigeria
Authors: Ojo Oo, Akinde S. B., Kiilani A. O., Jayeola Jo, Jogbodo T. M., Ajani Ka, Olaniyan So, Adeagbo Oy, Bolarinwa Ra, Durosomo Ha, Sule W. F.
Abstract:
Lockdown imposed to control SARS-CoV-2 transmission hampered malaria control services in Nigeria. Considering COVID-19 vaccination, we assessed Plasmodium falciparum (Pf) antigen and SARS-CoV-2 immunoglobulin-G (IgG) positivity among adults in Osogbo, Osun State, Nigeria. Consenting attendees of four Healthcare Centres were consecutively enrolled for blood sampling; relevant socio-demographic/behavioral/clinical/environmental data were collected with a questionnaire. Samples were tested, using commercial rapid test kits, for Pf antigen and SARS-CoV-2 IgG and results were analyzed using logistic regression. Participants' mean age was 40.99 years (n=200), and they were predominantly females (84.5%), traders/businessmen/women (86.0%), with self-reported receipt of COVID-19 vaccine from 123 (61.5%). Pf antigen positivity was 17.5% (95% CI: 12.23–22.77%) with age (p=0.004), marital status (p=0.004), report of stagnant water around the workplace (p=0.041) and bush around homes (p=0.008) being associated. SARS-CoV-2 IgG positivity was 56.5% (95% CI: 49.63–63.37%) with age (p=0.012) and receipt of COVID-19 vaccination (p=0.001) being associated. Although the vaccinated had a 22.8 times higher likelihood of IgG positivity, no factor was predictive of COVID-19 vaccine receipt. We report 17.5% Pf antigen positivity with four predictors, and 56.5% SARS-CoV-2 IgG positivity with two predictors.Keywords: COVID-19, vaccine, IgG, Plasmodium falciparum, SARS-CoV-2
Procedia PDF Downloads 1413008 Association of Post-Traumatic Stress Disorder with Work Performance amongst Emergency Medical Service Personnel, Karachi, Pakistan
Authors: Salima Kerai, Muhammad Islam, Uzma Khan, Nargis Asad, Junaid Razzak, Omrana Pasha
Abstract:
Background: Pre-hospital care providers are exposed to various kinds of stressors. Their daily exposure to diverse critical and traumatic incidents can lead to stress reactions like Post-Traumatic Stress Disorder (PTSD). Consequences of PTSD in terms of work loss can be catastrophic because of its compound effect on families, which affect them economically, socially and emotionally. Therefore, it is critical to assess the association between PTSD and Work performance in Emergency Medical Service (EMS) if exist any. Methods: This prospective observational study was carried out at AMAN EMS in Karachi, Pakistan. EMS personnel were screened for potential PTSD using impact of event scale-revised (IES-R). Work performance was assessed on basis of five variables; number of late arrivals to work, number of days absent, number of days sick, adherence to protocol and patient satisfaction survey over the period of 3 months. In order to model outcomes like number of late arrivals to work, days absent and days late; negative binomial regression was used whereas logistic regression was applied for adherence to protocol and linear for patient satisfaction scores. Results: Out of 536 EMS personnel, 525 were found to be eligible, of them 518 consented. However data on 507 were included because 7 left the job during study period. The mean score of PTSD was found to be 24.0 ± 12.2. However, weak and insignificant association was found between PTSD and work performance measures: number of late arrivals (RRadj 0.99; 95% CI 0.98-1.00), days absent (RRadj 0.98; 95% CI 0.96-0.99), days sick (Rradj 0.99; 95% CI 0.98 to 1.00), adherence to protocol (ORadj 1.01: 95% CI 0.99 to 1.04) and patient satisfaction (0.001% score; 95% CI -0.03% to 0.03%). Conclusion: No association was found between PTSD and Work performance in the selected EMS population in Karachi Pakistan. Further studies are needed to explore the phenomenon of resiliency in these populations. Moreover, qualitative work is required to explore perceptions and feelings like willingness to go to work, readiness to carry out job responsibilities.Keywords: trauma, emergency medical service, stress, pakistan
Procedia PDF Downloads 3403007 Study of Seismic Damage Reinforced Concrete Frames in Variable Height with Logistic Statistic Function Distribution
Authors: P. Zarfam, M. Mansouri Baghbaderani
Abstract:
In seismic design, the proper reaction to the earthquake and the correct and accurate prediction of its subsequent effects on the structure are critical. Choose a proper probability distribution, which gives a more realistic probability of the structure's damage rate, is essential in damage discussions. With the development of design based on performance, analytical method of modal push over as an inexpensive, efficacious, and quick one in the estimation of the structures' seismic response is broadly used in engineering contexts. In this research three concrete frames of 3, 6, and 13 stories are analyzed in non-linear modal push over by 30 different earthquake records by OpenSEES software, then the detriment indexes of roof's displacement and relative displacement ratio of the stories are calculated by two parameters: peak ground acceleration and spectra acceleration. These indexes are used to establish the value of damage relations with log-normal distribution and logistics distribution. Finally the value of these relations is compared and the effect of height on the mentioned damage relations is studied, too.Keywords: modal pushover analysis, concrete structure, seismic damage, log-normal distribution, logistic distribution
Procedia PDF Downloads 2473006 Prevalence of Microalbuminuria and Its Relation with Various Risk Factors in Type 1 Diabetes Mellitus
Authors: Singh Baljinder, Sharma Navneet
Abstract:
Microalbuminuria is the earliest detectable marker of diabetic nephropathy. We planned to evaluate the prevalence of microalbuminuria in type 1 diabetics and correlate with various risk factor. We randomly selected 100 type 1 diabetic patients after inclusion and exclusion criteria from DCRC, S. P. Medical College, Bikaner. Clinical examinations for anthropometeric parameters, hypertension, retinopathy, glycaemic status, lipid profile were done and microalbuminuria was estimated by micral test. Microalbuminuria was seen in 38% patients. The mean urinary albumin concentration was 96.61 mg/l in microalbuminuria positive cases, 134 mg/L in hypertensive patients while 74.5 mg/L in normal patients. Mean diabetic duration was 6.43 years in microalbuminurics. Albumin excretion increased significantly with age at onset of 10-18 years and declined thereafter. Microalbuminuria cases exhibited mean cholesterol 181.63 mg%, TG 130.94 mg%, LDL 109.87 mg%, HDL 57.5 mg% and VLDL 30.64 mg%. Mean urinary albumin concentration in patients with retinopathy was 160.52 mg/L while 78.66 mg/L without retinopathy. In multiple stepwise logistic regression analysis, a strong positive association was seen between microalbuminuria and hypertension (OR=5.087, CI=2.1319-12.101), fasting blood sugar (OR=3. 491, CI=1.138-10.70), duration of diabetes (OR=3.41, CI=1.360-8.55) and HbA1c (OR=2.381, CI-=1.1-5.64). The present study indicates that microalbuminuria is a common complication of type 1 diabetes mellitus and can be prevented by careful management of risk factors.Keywords: type 1 diabetes, microalbuminuria, diabetic nephropathy, retinopathy, hypertension
Procedia PDF Downloads 4463005 Drivers of Land Degradation in Trays Ecosystem as Modulated under a Changing Climate: Case Study of Côte d'Ivoire
Authors: Kadio Valere R. Angaman, Birahim Bouna Niang
Abstract:
Land degradation is a serious problem in developing countries, including Cote d’Ivoire, which has its economy focused on agriculture. It occurs in all kinds of ecosystems over the world. However, the drivers of land degradation vary from one region to another and from one ecosystem to another. Thus, identifying these drivers is an essential prerequisite to developing and implementing appropriate policies to reverse the trend of land degradation in the country, especially in the trays ecosystem. Using the binary logistic model with primary data obtained through 780 farmers surveyed, we analyze and identify the drivers of land degradation in the trays ecosystem. The descriptive statistics show that 52% of farmers interviewed have stated facing land degradation in their farmland. This high rate shows the extent of land degradation in this ecosystem. Also, the results obtained from the binary logit regression reveal that land degradation is significantly influenced by a set of variables such as sex, education, slope, erosion, pesticide, agricultural activity, deforestation, and temperature. The drivers identified are mostly local; as a result, the government must implement some policies and strategies that facilitate and incentive the adoption of sustainable land management practices by farmers to reverse the negative trend of land degradation.Keywords: drivers, land degradation, trays ecosystem, sustainable land management
Procedia PDF Downloads 1463004 Change of Endocrine and Exocrine Insufficiency on Non-Diabetes Patients after Distal Pancreatectomy: A Nationwide Database Study
Authors: Jin-Ming Wu, Te-Wei Ho, Yu-Wen Tien
Abstract:
Background: The aim of this population-based study was to determine the occurrence of diabetes and exocrine pancreatic insufficiencies (EPI) on non-diabetes subjects receiving distal pancreatectomy (DP). Method: A nationwide cohort study between 2000 and 2010 was collected from the Taiwan National Health Insurance Research Database. Among 3264 DP patients, we identified 1410 non-diabetes and 966 non-diabetes non-EPI. Results. Of 1410 non-diabetes DP subjects, 312 patients (22.1%) developed newly-diagnosed diabetes after PD. On a multiple logistic regression model, co-morbid hyperlipidemia (odds ratio, 1.640; 95% CI, 1.362–2.763; P < 0.001) and pancreatitis (odds ratio, 2.428; 95% CI, 1.889–3.121; P < 0.001) significantly contributed to higher incidences of diabetes after DP. Moreover, 380 subjects (39.3%) developed EPI, and pancreatic cancer is the statistically significant risk factor (odds ratio, 4.663; 95% CI, 2.108–6.085; P < 0.001). Conclusion: The patients with co-morbid hyperlipidemia and chronic pancreatitis had higher rates of newly-diagnosed diabetes after DP, moreover, pancreatic cancer subjects had higher rates of pancreatic exocrine insufficiency after DP. The clinicians should be alert to follow up glucose metabolism and clinical symptoms of fat intolerance for DP patients.Keywords: distal pancreatectomy, National database, diabetes, exocrine insufficiency
Procedia PDF Downloads 1983003 Support Vector Regression for Retrieval of Soil Moisture Using Bistatic Scatterometer Data at X-Band
Authors: Dileep Kumar Gupta, Rajendra Prasad, Pradeep Kumar, Varun Narayan Mishra, Ajeet Kumar Vishwakarma, Prashant K. Srivastava
Abstract:
An approach was evaluated for the retrieval of soil moisture of bare soil surface using bistatic scatterometer data in the angular range of 200 to 700 at VV- and HH- polarization. The microwave data was acquired by specially designed X-band (10 GHz) bistatic scatterometer. The linear regression analysis was done between scattering coefficients and soil moisture content to select the suitable incidence angle for retrieval of soil moisture content. The 250 incidence angle was found more suitable. The support vector regression analysis was used to approximate the function described by the input-output relationship between the scattering coefficient and corresponding measured values of the soil moisture content. The performance of support vector regression algorithm was evaluated by comparing the observed and the estimated soil moisture content by statistical performance indices %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE). The values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 2.9451, 1.0986, and 0.9214, respectively at HH-polarization. At VV- polarization, the values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 3.6186, 0.9373, and 0.9428, respectively.Keywords: bistatic scatterometer, soil moisture, support vector regression, RMSE, %Bias, NSE
Procedia PDF Downloads 4293002 A Comparative Analysis of Machine Learning Techniques for PM10 Forecasting in Vilnius
Authors: Mina Adel Shokry Fahim, Jūratė Sužiedelytė Visockienė
Abstract:
With the growing concern over air pollution (AP), it is clear that this has gained more prominence than ever before. The level of consciousness has increased and a sense of knowledge now has to be forwarded as a duty by those enlightened enough to disseminate it to others. This realisation often comes after an understanding of how poor air quality indices (AQI) damage human health. The study focuses on assessing air pollution prediction models specifically for Lithuania, addressing a substantial need for empirical research within the region. Concentrating on Vilnius, it specifically examines particulate matter concentrations 10 micrometers or less in diameter (PM10). Utilizing Gaussian Process Regression (GPR) and Regression Tree Ensemble, and Regression Tree methodologies, predictive forecasting models are validated and tested using hourly data from January 2020 to December 2022. The study explores the classification of AP data into anthropogenic and natural sources, the impact of AP on human health, and its connection to cardiovascular diseases. The study revealed varying levels of accuracy among the models, with GPR achieving the highest accuracy, indicated by an RMSE of 4.14 in validation and 3.89 in testing.Keywords: air pollution, anthropogenic and natural sources, machine learning, Gaussian process regression, tree ensemble, forecasting models, particulate matter
Procedia PDF Downloads 543001 Forecasting Equity Premium Out-of-Sample with Sophisticated Regression Training Techniques
Authors: Jonathan Iworiso
Abstract:
Forecasting the equity premium out-of-sample is a major concern to researchers in finance and emerging markets. The quest for a superior model that can forecast the equity premium with significant economic gains has resulted in several controversies on the choice of variables and suitable techniques among scholars. This research focuses mainly on the application of Regression Training (RT) techniques to forecast monthly equity premium out-of-sample recursively with an expanding window method. A broad category of sophisticated regression models involving model complexity was employed. The RT models include Ridge, Forward-Backward (FOBA) Ridge, Least Absolute Shrinkage and Selection Operator (LASSO), Relaxed LASSO, Elastic Net, and Least Angle Regression were trained and used to forecast the equity premium out-of-sample. In this study, the empirical investigation of the RT models demonstrates significant evidence of equity premium predictability both statistically and economically relative to the benchmark historical average, delivering significant utility gains. They seek to provide meaningful economic information on mean-variance portfolio investment for investors who are timing the market to earn future gains at minimal risk. Thus, the forecasting models appeared to guarantee an investor in a market setting who optimally reallocates a monthly portfolio between equities and risk-free treasury bills using equity premium forecasts at minimal risk.Keywords: regression training, out-of-sample forecasts, expanding window, statistical predictability, economic significance, utility gains
Procedia PDF Downloads 1083000 Self-Image of Police Officers
Authors: Leo Carlo B. Rondina
Abstract:
Self-image is an important factor to improve the self-esteem of the personnel. The purpose of the study is to determine the self-image of the police. The respondents were the 503 policemen assigned in different Police Station in Davao City, and they were chosen with the used of random sampling. With the used of Exploratory Factor Analysis (EFA), latent construct variables of police image were identified as follows; professionalism, obedience, morality and justice and fairness. Further, ordinal regression indicates statistical characteristics on ages 21-40 which means the age of the respondent statistically improves self-image.Keywords: police image, exploratory factor analysis, ordinal regression, Galatea effect
Procedia PDF Downloads 2892999 Regression Analysis of Travel Indicators and Public Transport Usage in Urban Areas
Authors: Mehdi Moeinaddini, Zohreh Asadi-Shekari, Muhammad Zaly Shah, Amran Hamzah
Abstract:
Currently, planners try to have more green travel options to decrease economic, social and environmental problems. Therefore, this study tries to find significant urban travel factors to be used to increase the usage of alternative urban travel modes. This paper attempts to identify the relationship between prominent urban mobility indicators and daily trips by public transport in 30 cities from various parts of the world. Different travel modes, infrastructures and cost indicators were evaluated in this research as mobility indicators. The results of multi-linear regression analysis indicate that there is a significant relationship between mobility indicators and the daily usage of public transport.Keywords: green travel modes, urban travel indicators, daily trips by public transport, multi-linear regression analysis
Procedia PDF Downloads 5512998 Development of Generalized Correlation for Liquid Thermal Conductivity of N-Alkane and Olefin
Authors: A. Ishag Mohamed, A. A. Rabah
Abstract:
The objective of this research is to develop a generalized correlation for the prediction of thermal conductivity of n-Alkanes and Alkenes. There is a minority of research and lack of correlation for thermal conductivity of liquids in the open literature. The available experimental data are collected covering the groups of n-Alkanes and Alkenes.The data were assumed to correlate to temperature using Filippov correlation. Nonparametric regression of Grace Algorithm was used to develop the generalized correlation model. A spread sheet program based on Microsoft Excel was used to plot and calculate the value of the coefficients. The results obtained were compared with the data that found in Perry's Chemical Engineering Hand Book. The experimental data correlated to the temperature ranged "between" 273.15 to 673.15 K, with R2 = 0.99.The developed correlation reproduced experimental data that which were not included in regression with absolute average percent deviation (AAPD) of less than 7 %. Thus the spread sheet was quite accurate which produces reliable data.Keywords: N-Alkanes, N-Alkenes, nonparametric, regression
Procedia PDF Downloads 6542997 Exercise Behavior of Infertile Women at Risk of Osteoporosis: Application of The Health Belief Model
Authors: Arezoo Fallahi
Abstract:
We aimed at investigating the association between health beliefs and exercise behavior in infertile women who were at risk of developing osteoporosis. This cross-sectional study was conducted in Sanandaj city, west of Iran in 2018. From 35 comprehensive healthcare centers, 483 infertile women were included in the study through convenience sampling. Standardized face-to-face interviews were conducted using established, reliable instruments for the assessment of exercise behavior behavior and health beliefs. Logistic regression models were applied to assess the association between exercise behavior and health beliefs. Estimates were adjusted for age, job status, income, literacy, and duration and type of infertility. We reported estimated logits and Odds Ratios (OR) with corresponding 95% confidence intervals (95% CI). Employed women compared to housewives had substantially higher odds of adopting exercise behavior behaviors (OR=3.19, 95% CI=1.53-6.66, p<0.01). Moreover, the odds of exercise behavior adoption increased with self-efficacy (OR=1.35, 95% CI=1.20-1.52, p<0.01), and decreased with perceived barriers (OR=0.90, 95% CI=0.84-0.97, p<0.01). It is essential to increase perceived self-efficacy and reduce perceived barriers to promote EB in infertile women. Consequently, health professionals should develop or adopt appropriate strategies to decrease barriers and increase self-efficacy to enhance exercise behavior in this group of women.Keywords: infertility, women, exercise, osteoporosis
Procedia PDF Downloads 712996 Premature Menopause among Women in India: Evidence from National Family Health Survey-IV
Authors: Trupti Meher, Harihar Sahoo
Abstract:
Premature menopause refers to the occurrence of menopause before the age of 40 years. Women who experience premature menopause either due to biological or induced reasons have a longer duration of exposure to severe symptoms and adverse health consequences when compared to those who undergo menopause at a later age, despite the fact that premature menopause has a profound effect on the health of women. This study attempted to determine the prevalence and predictors of premature menopause among women aged 25-39 years, using data from the National Family Health Survey (NFHS-4) conducted during 2015–16 in India. Descriptive statistics and multinomial logistic regression were used to carry out the result. The results revealed that the prevalence of premature menopause in India was 3.7 percent. Out of which, 2.1 percent of women had experienced natural premature menopause, whereas 1.7 percent had premature surgical menopause. The prevalence of premature menopause was highest in the southern region of India. Further, results of the multivariate model indicated that rural women, women with higher parity, early age at childbearing and women with smoking habits were at a greater risk of premature menopause. A sizeable proportion of women in India are attaining menopause prematurely. Unless due attention is given to this matter, it will emerge as a major problem in India in the future. The study also emphasized the need for further research to enhance knowledge on the problems of premature menopausal women in different socio-cultural settings in India.Keywords: India, natural menopause, premature menopause, surgical menopause
Procedia PDF Downloads 2072995 Factors Influencing Disclosure and CSR Spending in Indian Companies: An Econometric Analysis
Authors: Shekar Babu, Amalendu Jyothishi
Abstract:
The New Companies Bill-2013 in India has mandated all the companies with a certain profit to spend on Corporate Social Responsibility (CSR). Despite the Corporate Governance (CG) compliances at the strategic level the firms have to engage in social good. For both the Central Public Sector Enterprises (CPSE) and the private companies in India the need for strategic CSR focus through operational efficiency measures are mandated. In this paper the focus is to find out if the Indian companies understand their responsibility towards the society despite government making CSR mandatory. Analyzing both the CPSEs and Private companies the researchers find out which set of companies behave responsibly towards the society. Does any particular industry group(s) impact the society by disclosing their CSR spending activities. The key financial and non-financial parameters that influence CSR spending were identified and through econometric analysis methodologies (logistic regression and OLS models) the results were analyzed. The innovative methods were developed to identify if the firms operate efficiently and at the same time complying with the new CSR laws. An innovative matrix was developed to explain how companies could operate efficiently and be compliant in parallel how some of the companies can strategically realign their spending by operating efficiently.Keywords: corporate social responsibility(CSR), corporate governance(CG), India, logit function, ordinary least squares (OLS)
Procedia PDF Downloads 3572994 Response Surface Methodology for the Optimization of Paddy Husker by Medium Brown Rice Peeling Machine 6 Rubber Type
Authors: S. Bangphan, P. Bangphan, C. Ketsombun, T. Sammana
Abstract:
Optimization of response surface methodology (RSM) was employed to study the effects of three factor (rubber of clearance, spindle of speed, and rice of moisture) in brown rice peeling machine of the optimal good rice yield (99.67, average of three repeats). The optimized composition derived from RSM regression was analyzed using Regression analysis and Analysis of Variance (ANOVA). At a significant level α=0.05, the values of Regression coefficient, R2 adjust were 96.55% and standard deviation were 1.05056. The independent variables are initial rubber of clearance, spindle of speed and rice of moisture parameters namely. The investigating responses are final rubber clearance, spindle of speed and moisture of rice.Keywords: brown rice, response surface methodology (RSM), peeling machine, optimization, paddy husker
Procedia PDF Downloads 5752993 Correlation of IFNL4 ss469415590 and IL28B rs12979860 with the Hepatitis C Virus Treatment Response among Tunisian Patients
Authors: Khaoula Azraiel, Mohamed Mehdi Abassi, Amel Sadraoui, Walid Hammami, Azouz Msaddek, Imed Cheikh, Maria Mancebo, Elisabet Perez-Navarro, Antonio Caruz, Henda Triki, Ahlem Djebbi
Abstract:
IL28B rs12979860 genotype is confirmed as an important predictor of response to peginterferon/ribavirin therapy in patients with chronic hepatitis C (CHC). IFNL4 ss469415590 is a newly discovered polymorphism that could also affect the sustained virological response (SVR). The aim of this study was to evaluate the association of IL28B and IFNL4 genotypes with peginterferon/ribavirin treatment response in Tunisians patients with CHC and to determine which of these SNPs, was the stronger marker. A total of 120 patients were genotyped for both rs12979860 and ss469415590 polymorphisms. The association of each genetic marker with SVR was analyzed and comparison between the two SNPs was calculated by logistic regression models. For rs12979860, 69.6% of patients with CC, 41.8% with CT and 42.8% with TT achieved SVR (p = 0.003). Regarding ss469415590, 70.4% of patients with TT/TT genotype achieved SVR compared to 42.8% with TT/ΔG and 37.5% with ΔG /ΔG (p = 0.002). The presence of CC and TT/TT genotypes was independently associated with treatment response with an OR of 3.86 for each. In conclusion, both IL28B rs12979860 and IFNL4 ss469415590 variants were associated with response to pegIFN/RBV in Tunisian patients, without any additional benefit in performance for IFNL4. Our results are different from those detected in Sub-Saharan Africa countries.Keywords: Hepatitis C virus, IFNL4, IL28B, Peginterferon/ribavirin, polymorphism
Procedia PDF Downloads 3382992 Influence of Causal beliefs on self-management in Korean patients with hypertension
Authors: Hyun-E Yeom
Abstract:
Patients’ views about the cause of hypertension may influence their present and proactive behaviors to regulate high blood pressure. This study aimed to examine the internal structure underlying the causal beliefs about hypertension and the influence of causal beliefs on self-care intention and medical compliance in Korean patients with hypertension. The causal beliefs of 145 patients (M age = 57.7) were assessed using the Illness Perception Questionnaire-Revised. An exploratory factor analysis was used to identify the factor structure of the causal beliefs, and the factors’ influence on self-care intention and medication compliance was analyzed using multiple and logistic regression analyses. The four-factor structure including psychological, fate-related, risk and habitual factors was identified and the psychological factor was the most representative component of causal beliefs. The risk and fate-related factors were significant factors affecting lower intention to engage in self-care and poor compliance with medication regimens, respectively. The findings support the critical role of causal beliefs about hypertension in driving patients’ current and future self-care behaviors. This study highlights the importance of educational interventions corresponding to patients’ awareness of hypertension for improving their adherence to a healthy lifestyle and medication regimens.Keywords: hypertension, self-care, beliefs, medication compliance
Procedia PDF Downloads 3512991 On the Performance of Improvised Generalized M-Estimator in the Presence of High Leverage Collinearity Enhancing Observations
Authors: Habshah Midi, Mohammed A. Mohammed, Sohel Rana
Abstract:
Multicollinearity occurs when two or more independent variables in a multiple linear regression model are highly correlated. The ridge regression is the commonly used method to rectify this problem. However, the ridge regression cannot handle the problem of multicollinearity which is caused by high leverage collinearity enhancing observation (HLCEO). Since high leverage points (HLPs) are responsible for inducing multicollinearity, the effect of HLPs needs to be reduced by using Generalized M estimator. The existing GM6 estimator is based on the Minimum Volume Ellipsoid (MVE) which tends to swamp some low leverage points. Hence an improvised GM (MGM) estimator is presented to improve the precision of the GM6 estimator. Numerical example and simulation study are presented to show how HLPs can cause multicollinearity. The numerical results show that our MGM estimator is the most efficient method compared to some existing methods.Keywords: identification, high leverage points, multicollinearity, GM-estimator, DRGP, DFFITS
Procedia PDF Downloads 2642990 Vaccination Coverage and Its Associated Factors in India: An ML Approach to Understand the Hierarchy and Inter-Connections
Authors: Anandita Mitro, Archana Srivastava, Bidisha Banerjee
Abstract:
The present paper attempts to analyze the hierarchy and interconnection of factors responsible for the uptake of BCG vaccination in India. The study uses National Family Health Survey (NFHS-5) data which was conducted during 2019-21. The univariate logistic regression method is used to understand the univariate effects while the interconnection effects have been studied using the Categorical Inference Tree (CIT) which is a non-parametric Machine Learning (ML) model. The hierarchy of the factors is further established using Conditional Inference Forest which is an extension of the CIT approach. The results suggest that BCG vaccination coverage was influenced more by system-level factors and awareness than education or socio-economic status. Factors such as place of delivery, antenatal care, and postnatal care were crucial, with variations based on delivery location. Region-specific differences were also observed which could be explained by the factors. Awareness of the disease was less impactful along with the factor of wealth and urban or rural residence, although awareness did appear to substitute for inadequate ANC. Thus, from the policy point of view, it is revealed that certain subpopulations have less prevalence of vaccination which implies that there is a need for population-specific policy action to achieve a hundred percent coverage.Keywords: vaccination, NFHS, machine learning, public health
Procedia PDF Downloads 602989 Suicidal Ideation and Associated Factors among Students Aged 13-15 Years in Association of Southeast Asian Nations (ASEAN) Member States, 2007-2014
Authors: Karl Peltzer, Supa Pengpid
Abstract:
Introduction: The aim of this study was to assess suicidal ideation and associated factors in school-going adolescents in the Association of Southeast Asian Nations (ASEAN) Member States. Methods: The analysis included 30284 school children aged 13-15 years from seven ASEAN that participated in the cross-sectional Global School-based Student Health Survey (GSHS) between 2007 and 2013. Results: The overall prevalence of suicidal ideation across seven ASEAN countries (excluding Brunei) was 12.3%, significantly higher in girls (15.1%) than boys (9.3%). Among eight ASEAN countries with the highest prevalence of suicidal ideation was in the Philippines (17.0%) and Vietnam (16.9%) and the lowest in Myanmar (1.1%) and Indonesia (4.2%). In multivariate logistic regression analysis, female gender, older age (14 or 15 years), living in a low income or lower middle income country, having no friends, loneliness, bullying victimization, having been in a physical fight in the past 12 months, lack of parental or guardian support, tobacco use and having a history of ever got drunk were associated with suicidal ideatiion. Conclusion: Different rates of suicidal ideation were observed in ASEAN member states. Several risk factors for suicidal ideation were identified which can help guide preventive efforts.Keywords: adolesents, ASEAN, correlates, suicidal behaviour
Procedia PDF Downloads 2692988 Epileptic Seizures in Patients with Multiple Sclerosis
Authors: Anat Achiron
Abstract:
Background: Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system in young adults. It involves the immune system attacking the protective covering of nerve fibers (myelin), leading to inflammation and damage. MS can result in various neurological symptoms, such as muscle weakness, coordination problems, and sensory disturbances. Seizures are not common in MS, and the frequency is estimated between 0.4 to 6.4% over the disease course. Objective: Investigate the frequency of seizures in individuals with multiple sclerosis and to identify associated risk factors. Methods: We evaluated the frequency of seizures in a large cohort of 5686 MS patients followed at the Sheba Multiple Sclerosis Center and studied associated risk factors and comorbidities. Our research was based on data collection using a cohort study design. We applied logistic regression analysis to assess the strength of associations. Results: We found that younger age at onset, longer disease duration, and prolonged time to immunomodulatory treatment initiation were associated with increased risk for seizures. Conclusions: Our findings suggest that seizures in people with MS are directly related to the demyelination process and not associated with other factors like medication side effects or comorbid conditions. Therefore, initiating immunomodulatory treatment early in the disease course could reduce not only disease activity but also decrease seizure risk.Keywords: epilepsy, seizures, multiple sclerosis, white matter, age
Procedia PDF Downloads 712987 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: crime prediction, machine learning, public safety, smart city
Procedia PDF Downloads 1132986 Exploration of Abuse of Position for Sexual Gain by UK Police
Authors: Terri Cole, Fay Sweeting
Abstract:
Abuse of position for sexual gain by police is defined as behavior involving individuals taking advantage of their role to pursue a sexual or improper relationship. Previous research has considered whether it involves ‘bad apples’ - individuals with poor moral ethos or ‘bad barrels’ – broader organizational flaws which may unconsciously allow, minimize, or do not effectively deal with such behavior. Low level sexual misconduct (e.g., consensual sex on duty) is more common than more serious offences (e.g., rape), yet the impact of such behavior can have severe implications not only for those involved but can also negatively undermine public confidence in the police. This ongoing, collaborative research project has identified variables from 514 historic case files from 35 UK police forces in order to identify potential risk indicators which may lead to such behavior. Quantitative analysis using logistic regression and the Cox proportion hazard model has resulted in the identification of specific risk factors of significance in prediction. Factors relating to both perpetrator background such as a history of intimate partner violence, debt, and substance misuse coupled with in work behavior such as misusing police systems increase the risk. Findings are able to provide pragmatic recommendations for those tasked with identifying potential or investigating suspected perpetrators of misconduct.Keywords: abuse of position, forensic psychology, misconduct, sexual abuse
Procedia PDF Downloads 1962985 Neural Network Modelling for Turkey Railway Load Carrying Demand
Authors: Humeyra Bolakar Tosun
Abstract:
The transport sector has an undisputed place in human life. People need transport access to continuous increase day by day with growing population. The number of rail network, urban transport planning, infrastructure improvements, transportation management and other related areas is a key factor affecting our country made it quite necessary to improve the work of transportation. In this context, it plays an important role in domestic rail freight demand planning. Alternatives that the increase in the transportation field and has made it mandatory requirements such as the demand for improving transport quality. In this study generally is known and used in studies by the definition, rail freight transport, railway line length, population, energy consumption. In this study, Iron Road Load Net Demand was modeled by multiple regression and ANN methods. In this study, model dependent variable (Output) is Iron Road Load Net demand and 6 entries variable was determined. These outcome values extracted from the model using ANN and regression model results. In the regression model, some parameters are considered as determinative parameters, and the coefficients of the determinants give meaningful results. As a result, ANN model has been shown to be more successful than traditional regression model.Keywords: railway load carrying, neural network, modelling transport, transportation
Procedia PDF Downloads 1442984 Using the Bootstrap for Problems Statistics
Authors: Brahim Boukabcha, Amar Rebbouh
Abstract:
The bootstrap method based on the idea of exploiting all the information provided by the initial sample, allows us to study the properties of estimators. In this article we will present a theoretical study on the different methods of bootstrapping and using the technique of re-sampling in statistics inference to calculate the standard error of means of an estimator and determining a confidence interval for an estimated parameter. We apply these methods tested in the regression models and Pareto model, giving the best approximations.Keywords: bootstrap, error standard, bias, jackknife, mean, median, variance, confidence interval, regression models
Procedia PDF Downloads 3812983 Enhancing Predictive Accuracy in Pharmaceutical Sales through an Ensemble Kernel Gaussian Process Regression Approach
Authors: Shahin Mirshekari, Mohammadreza Moradi, Hossein Jafari, Mehdi Jafari, Mohammad Ensaf
Abstract:
This research employs Gaussian Process Regression (GPR) with an ensemble kernel, integrating Exponential Squared, Revised Matern, and Rational Quadratic kernels to analyze pharmaceutical sales data. Bayesian optimization was used to identify optimal kernel weights: 0.76 for Exponential Squared, 0.21 for Revised Matern, and 0.13 for Rational Quadratic. The ensemble kernel demonstrated superior performance in predictive accuracy, achieving an R² score near 1.0, and significantly lower values in MSE, MAE, and RMSE. These findings highlight the efficacy of ensemble kernels in GPR for predictive analytics in complex pharmaceutical sales datasets.Keywords: Gaussian process regression, ensemble kernels, bayesian optimization, pharmaceutical sales analysis, time series forecasting, data analysis
Procedia PDF Downloads 712982 A Meta Regression Analysis to Detect Price Premium Threshold for Eco-Labeled Seafood
Authors: Cristina Giosuè, Federica Biondo, Sergio Vitale
Abstract:
In the last years, the consumers' awareness for environmental concerns has been increasing, and seafood eco-labels are considered as a possible instrument to improve both seafood markets and sustainable fishing management. In this direction, the aim of this study was to carry out a meta-analysis on consumers’ willingness to pay (WTP) for eco-labeled wild seafood, by a meta-regression. Therefore, only papers published on ISI journals were searched on “Web of Knowledge” and “SciVerse Scopus” platforms, using the combinations of the following key words: seafood, ecolabel, eco-label, willingness, WTP and premium. The dataset was built considering: paper’s and survey’s codes, year of publication, first author’s nationality, species’ taxa and family, sample size, survey’s continent and country, data collection (where and how), gender and age of consumers, brand and ΔWTP. From analysis the interest on eco labeled seafood emerged clearly, in particular in developed countries. In general, consumers declared greater willingness to pay than that actually applied for eco-label products, with difference related to taxa and brand.Keywords: eco label, meta regression, seafood, willingness to pay
Procedia PDF Downloads 1232981 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models
Authors: Jay L. Fu
Abstract:
Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction
Procedia PDF Downloads 1432980 Human Factors Simulation Approach to Analyze Older Drivers’ Performance in Intersections Left-Turn Scenarios
Authors: Yassir AbdelRazig, Eren Ozguven, Ren Moses
Abstract:
While there exists a greater understanding of the differences between the driving behaviors of older and younger drivers, there is still a need to further understand how the two groups perform when attempting to perform complex intersection maneuvers. This paper looks to determine if, and to what extent, these differences exist when drivers encounter permissive left-hand turns, pedestrian traffic, two and four-lane intersections, heavy fog, and night conditions. The study will utilize a driving simulator to develop custom drivable scenarios containing one or more of the previously mentioned conditions. 32 younger and 32 older (+65 years) participants perform driving simulation scenarios and have their velocity, time to the nearest oncoming vehicle, accepted and rejected gaps, etc., recorded. The data collected from the simulator is analyzed via Raff’s method and logistic regression in order to determine and compare the critical gaps values of the two cohorts. Out of the parameters considered for this study, only the age of the driver, their experience (if they are a younger driver), the size of a gap, and the presence of pedestrians on the crosswalk proved significant. The results did not support the hypothesis that older drivers would be significantly more conservative in their critical gaps judgment and acceptance.Keywords: older drivers, simulation, left-turn, human factors
Procedia PDF Downloads 248