Search results for: panel models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7557

Search results for: panel models

7137 Evaluation and Compression of Different Language Transformer Models for Semantic Textual Similarity Binary Task Using Minority Language Resources

Authors: Ma. Gracia Corazon Cayanan, Kai Yuen Cheong, Li Sha

Abstract:

Training a language model for a minority language has been a challenging task. The lack of available corpora to train and fine-tune state-of-the-art language models is still a challenge in the area of Natural Language Processing (NLP). Moreover, the need for high computational resources and bulk data limit the attainment of this task. In this paper, we presented the following contributions: (1) we introduce and used a translation pair set of Tagalog and English (TL-EN) in pre-training a language model to a minority language resource; (2) we fine-tuned and evaluated top-ranking and pre-trained semantic textual similarity binary task (STSB) models, to both TL-EN and STS dataset pairs. (3) then, we reduced the size of the model to offset the need for high computational resources. Based on our results, the models that were pre-trained to translation pairs and STS pairs can perform well for STSB task. Also, having it reduced to a smaller dimension has no negative effect on the performance but rather has a notable increase on the similarity scores. Moreover, models that were pre-trained to a similar dataset have a tremendous effect on the model’s performance scores.

Keywords: semantic matching, semantic textual similarity binary task, low resource minority language, fine-tuning, dimension reduction, transformer models

Procedia PDF Downloads 211
7136 A Comparative Analysis of ARIMA and Threshold Autoregressive Models on Exchange Rate

Authors: Diteboho Xaba, Kolentino Mpeta, Tlotliso Qejoe

Abstract:

This paper assesses the in-sample forecasting of the South African exchange rates comparing a linear ARIMA model and a SETAR model. The study uses a monthly adjusted data of South African exchange rates with 420 observations. Akaike information criterion (AIC) and the Schwarz information criteria (SIC) are used for model selection. Mean absolute error (MAE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) are error metrics used to evaluate forecast capability of the models. The Diebold –Mariano (DM) test is employed in the study to check forecast accuracy in order to distinguish the forecasting performance between the two models (ARIMA and SETAR). The results indicate that both models perform well when modelling and forecasting the exchange rates, but SETAR seemed to outperform ARIMA.

Keywords: ARIMA, error metrices, model selection, SETAR

Procedia PDF Downloads 244
7135 A Trend Based Forecasting Framework of the ATA Method and Its Performance on the M3-Competition Data

Authors: H. Taylan Selamlar, I. Yavuz, G. Yapar

Abstract:

It is difficult to make predictions especially about the future and making accurate predictions is not always easy. However, better predictions remain the foundation of all science therefore the development of accurate, robust and reliable forecasting methods is very important. Numerous number of forecasting methods have been proposed and studied in the literature. There are still two dominant major forecasting methods: Box-Jenkins ARIMA and Exponential Smoothing (ES), and still new methods are derived or inspired from them. After more than 50 years of widespread use, exponential smoothing is still one of the most practically relevant forecasting methods available due to their simplicity, robustness and accuracy as automatic forecasting procedures especially in the famous M-Competitions. Despite its success and widespread use in many areas, ES models have some shortcomings that negatively affect the accuracy of forecasts. Therefore, a new forecasting method in this study will be proposed to cope with these shortcomings and it will be called ATA method. This new method is obtained from traditional ES models by modifying the smoothing parameters therefore both methods have similar structural forms and ATA can be easily adapted to all of the individual ES models however ATA has many advantages due to its innovative new weighting scheme. In this paper, the focus is on modeling the trend component and handling seasonality patterns by utilizing classical decomposition. Therefore, ATA method is expanded to higher order ES methods for additive, multiplicative, additive damped and multiplicative damped trend components. The proposed models are called ATA trended models and their predictive performances are compared to their counter ES models on the M3 competition data set since it is still the most recent and comprehensive time-series data collection available. It is shown that the models outperform their counters on almost all settings and when a model selection is carried out amongst these trended models ATA outperforms all of the competitors in the M3- competition for both short term and long term forecasting horizons when the models’ forecasting accuracies are compared based on popular error metrics.

Keywords: accuracy, exponential smoothing, forecasting, initial value

Procedia PDF Downloads 177
7134 Advancing Communication Theory in the Age of Digital Technology: Bridging the Gap Between Traditional Models and Emerging Platforms

Authors: Sidique Fofanah

Abstract:

This paper explores the intersection of traditional communication theories and modern digital technologies, analyzing how established models adapt to contemporary communication platforms. It examines the evolving nature of interpersonal, group, and mass communication within digital environments, emphasizing the role of social media, AI-driven communication tools, and virtual reality in reshaping communication paradigms. The paper also discusses the implications for future research and practice in communication studies, proposing an integrated framework that accommodates both classical and emerging theories.

Keywords: communication, traditional models, emerging platforms, digital media

Procedia PDF Downloads 25
7133 Mathematical Modeling of Carotenoids and Polyphenols Content of Faba Beans (Vicia faba L.) during Microwave Treatments

Authors: Ridha Fethi Mechlouch, Ahlem Ayadi, Ammar Ben Brahim

Abstract:

Given the importance of the preservation of polyphenols and carotenoids during thermal processing, we attempted in this study to investigate the variation of these two parameters in faba beans during microwave treatment using different power densities (1; 2; and 3W/g), then to perform a mathematical modeling by using non-linear regression analysis to evaluate the models constants. The variation of the carotenoids and polyphenols ratio of faba beans and the models are tested to validate the experimental results. Exponential models were found to be suitable to describe the variation of caratenoid ratio (R²= 0.945, 0.927 and 0.946) for power densities (1; 2; and 3W/g) respectively, and polyphenol ratio (R²= 0.931, 0.989 and 0.982) for power densities (1; 2; and 3W/g) respectively. The effect of microwave power density Pd(W/g) on the coefficient k of models were also investigated. The coefficient is highly correlated (R² = 1) and can be expressed as a polynomial function.

Keywords: microwave treatment, power density, carotenoid, polyphenol, modeling

Procedia PDF Downloads 259
7132 Exchange Rate Forecasting by Econometric Models

Authors: Zahid Ahmad, Nosheen Imran, Nauman Ali, Farah Amir

Abstract:

The objective of the study is to forecast the US Dollar and Pak Rupee exchange rate by using time series models. For this purpose, daily exchange rates of US and Pakistan for the period of January 01, 2007 - June 2, 2017, are employed. The data set is divided into in sample and out of sample data set where in-sample data are used to estimate as well as forecast the models, whereas out-of-sample data set is exercised to forecast the exchange rate. The ADF test and PP test are used to make the time series stationary. To forecast the exchange rate ARIMA model and GARCH model are applied. Among the different Autoregressive Integrated Moving Average (ARIMA) models best model is selected on the basis of selection criteria. Due to the volatility clustering and ARCH effect the GARCH (1, 1) is also applied. Results of analysis showed that ARIMA (0, 1, 1 ) and GARCH (1, 1) are the most suitable models to forecast the future exchange rate. Further the GARCH (1,1) model provided the volatility with non-constant conditional variance in the exchange rate with good forecasting performance. This study is very useful for researchers, policymakers, and businesses for making decisions through accurate and timely forecasting of the exchange rate and helps them in devising their policies.

Keywords: exchange rate, ARIMA, GARCH, PAK/USD

Procedia PDF Downloads 561
7131 Study on Flexible Diaphragm In-Plane Model of Irregular Multi-Storey Industrial Plant

Authors: Cheng-Hao Jiang, Mu-Xuan Tao

Abstract:

The rigid diaphragm model may cause errors in the calculation of internal forces due to neglecting the in-plane deformation of the diaphragm. This paper thus studies the effects of different diaphragm in-plane models (including in-plane rigid model and in-plane flexible model) on the seismic performance of structures. Taking an actual industrial plant as an example, the seismic performance of the structure is predicted using different floor diaphragm models, and the analysis errors caused by different diaphragm in-plane models including deformation error and internal force error are calculated. Furthermore, the influence of the aspect ratio on the analysis errors is investigated. Finally, the code rationality is evaluated by assessing the analysis errors of the structure models whose floors were determined as rigid according to the code’s criterion. It is found that different floor models may cause great differences in the distribution of structural internal forces, and the current code may underestimate the influence of the floor in-plane effect.

Keywords: industrial plant, diaphragm, calculating error, code rationality

Procedia PDF Downloads 140
7130 Probing Language Models for Multiple Linguistic Information

Authors: Bowen Ding, Yihao Kuang

Abstract:

In recent years, large-scale pre-trained language models have achieved state-of-the-art performance on a variety of natural language processing tasks. The word vectors produced by these language models can be viewed as dense encoded presentations of natural language that in text form. However, it is unknown how much linguistic information is encoded and how. In this paper, we construct several corresponding probing tasks for multiple linguistic information to clarify the encoding capabilities of different language models and performed a visual display. We firstly obtain word presentations in vector form from different language models, including BERT, ELMo, RoBERTa and GPT. Classifiers with a small scale of parameters and unsupervised tasks are then applied on these word vectors to discriminate their capability to encode corresponding linguistic information. The constructed probe tasks contain both semantic and syntactic aspects. The semantic aspect includes the ability of the model to understand semantic entities such as numbers, time, and characters, and the grammatical aspect includes the ability of the language model to understand grammatical structures such as dependency relationships and reference relationships. We also compare encoding capabilities of different layers in the same language model to infer how linguistic information is encoded in the model.

Keywords: language models, probing task, text presentation, linguistic information

Procedia PDF Downloads 110
7129 Application Difference between Cox and Logistic Regression Models

Authors: Idrissa Kayijuka

Abstract:

The logistic regression and Cox regression models (proportional hazard model) at present are being employed in the analysis of prospective epidemiologic research looking into risk factors in their application on chronic diseases. However, a theoretical relationship between the two models has been studied. By definition, Cox regression model also called Cox proportional hazard model is a procedure that is used in modeling data regarding time leading up to an event where censored cases exist. Whereas the Logistic regression model is mostly applicable in cases where the independent variables consist of numerical as well as nominal values while the resultant variable is binary (dichotomous). Arguments and findings of many researchers focused on the overview of Cox and Logistic regression models and their different applications in different areas. In this work, the analysis is done on secondary data whose source is SPSS exercise data on BREAST CANCER with a sample size of 1121 women where the main objective is to show the application difference between Cox regression model and logistic regression model based on factors that cause women to die due to breast cancer. Thus we did some analysis manually i.e. on lymph nodes status, and SPSS software helped to analyze the mentioned data. This study found out that there is an application difference between Cox and Logistic regression models which is Cox regression model is used if one wishes to analyze data which also include the follow-up time whereas Logistic regression model analyzes data without follow-up-time. Also, they have measurements of association which is different: hazard ratio and odds ratio for Cox and logistic regression models respectively. A similarity between the two models is that they are both applicable in the prediction of the upshot of a categorical variable i.e. a variable that can accommodate only a restricted number of categories. In conclusion, Cox regression model differs from logistic regression by assessing a rate instead of proportion. The two models can be applied in many other researches since they are suitable methods for analyzing data but the more recommended is the Cox, regression model.

Keywords: logistic regression model, Cox regression model, survival analysis, hazard ratio

Procedia PDF Downloads 455
7128 Comparison of Wake Oscillator Models to Predict Vortex-Induced Vibration of Tall Chimneys

Authors: Saba Rahman, Arvind K. Jain, S. D. Bharti, T. K. Datta

Abstract:

The present study compares the semi-empirical wake-oscillator models that are used to predict vortex-induced vibration of structures. These models include those proposed by Facchinetti, Farshidian, and Dolatabadi, and Skop and Griffin. These models combine a wake oscillator model resembling the Van der Pol oscillator model and a single degree of freedom oscillation model. In order to use these models for estimating the top displacement of chimneys, the first mode vibration of the chimneys is only considered. The modal equation of the chimney constitutes the single degree of freedom model (SDOF). The equations of the wake oscillator model and the SDOF are simultaneously solved using an iterative procedure. The empirical parameters used in the wake-oscillator models are estimated using a newly developed approach, and response is compared with experimental data, which appeared comparable. For carrying out the iterative solution, the ode solver of MATLAB is used. To carry out the comparative study, a tall concrete chimney of height 210m has been chosen with the base diameter as 28m, top diameter as 20m, and thickness as 0.3m. The responses of the chimney are also determined using the linear model proposed by E. Simiu and the deterministic model given in Eurocode. It is observed from the comparative study that the responses predicted by the Facchinetti model and the model proposed by Skop and Griffin are nearly the same, while the model proposed by Fashidian and Dolatabadi predicts a higher response. The linear model without considering the aero-elastic phenomenon provides a less response as compared to the non-linear models. Further, for large damping, the prediction of the response by the Euro code is relatively well compared to those of non-linear models.

Keywords: chimney, deterministic model, van der pol, vortex-induced vibration

Procedia PDF Downloads 221
7127 Procyclicality of Leverage: An Empirical Analysis from Turkish Banks

Authors: Emin Avcı, Çiydem Çatak

Abstract:

The recent economic crisis have shown that procyclicality, which could threaten the stability and growth of the economy, is a major problem of financial and real sector. The term procyclicality refers here the cyclical behavior of banks that lead them to follow the same patterns as the real economy. In this study, leverage which demonstrate how a bank manage its debt, is chosen as bank specific variable to see the effect of changes in it over the economic cycle. The procyclical behavior of Turkish banking sector (commercial, participation, development-investment banks) is tried to explain with analyzing the relationship between leverage and asset growth. On the basis of theoretical explanations, eight different leverage ratios are utilized in eight different panel data models to demonstrate the procyclicality effect of Turkish banks leverage using monthly data covering the 2005-2014 period. It is tested whether there is an increasing (decreasing) trend in the leverage ratio of Turkish banks when there is an enlargement (contraction) in their balance sheet. The major finding of the study indicates that asset growth has a significant effect on all eight leverage ratios. In other words, the leverage of Turkish banks follow a cyclical pattern, which is in line with those of earlier literature.

Keywords: banking, economic cycles, leverage, procyclicality

Procedia PDF Downloads 265
7126 Phillips Curve Estimation in an Emerging Economy: Evidence from Sub-National Data of Indonesia

Authors: Harry Aginta

Abstract:

Using Phillips curve framework, this paper seeks for new empirical evidence on the relationship between inflation and output in a major emerging economy. By exploiting sub-national data, the contribution of this paper is threefold. First, it resolves the issue of using on-target national inflation rates that potentially causes weakening inflation-output nexus. This is very relevant for Indonesia as its central bank has been adopting inflation targeting framework based on national consumer price index (CPI) inflation. Second, the study tests the relevance of mining sector in output gap estimation. The test for mining sector is important to control for the effects of mining regulation and nominal effects of coal prices on real economic activities. Third, the paper applies panel econometric method by incorporating regional variation that help to improve model estimation. The results from this paper confirm the strong presence of Phillips curve in Indonesia. Positive output gap that reflects excess demand condition gives rise to the inflation rates. In addition, the elasticity of output gap is higher if the mining sector is excluded from output gap estimation. In addition to inflation adaptation, the dynamics of exchange rate and international commodity price are also found to affect inflation significantly. The results are robust to the alternative measurement of output gap

Keywords: Phillips curve, inflation, Indonesia, panel data

Procedia PDF Downloads 122
7125 Analysis of Moving Loads on Bridges Using Surrogate Models

Authors: Susmita Panda, Arnab Banerjee, Ajinkya Baxy, Bappaditya Manna

Abstract:

The design of short to medium-span high-speed bridges in critical locations is an essential aspect of vehicle-bridge interaction. Due to dynamic interaction between moving load and bridge, mathematical models or finite element modeling computations become time-consuming. Thus, to reduce the computational effort, a universal approximator using an artificial neural network (ANN) has been used to evaluate the dynamic response of the bridge. The data set generation and training of surrogate models have been conducted over the results obtained from mathematical modeling. Further, the robustness of the surrogate model has been investigated, which showed an error percentage of less than 10% with conventional methods. Additionally, the dependency of the dynamic response of the bridge on various load and bridge parameters has been highlighted through a parametric study.

Keywords: artificial neural network, mode superposition method, moving load analysis, surrogate models

Procedia PDF Downloads 100
7124 A Quantitative Study on the Structure of Corporate Social Responsibility in India

Authors: Raj C. Aparna

Abstract:

In India, the mandatory clause on Corporate Social Responsibility (CSR) in Companies Act, 2013 has led to varying responses from the companies. From excessive spending to resistance, the private and the public stakeholders have been considering the law from different perspectives. This paper tends to study the characteristics of CSR spending in India with emphasis on the locations to which the funds are routed. This study examines the effects of CSR fund flow on regional development by considering the growth in Gross State Domestic Product (GSDP), agriculture, education and healthcare using panel data for the 29 States in the country. The results confirm that the CSR funds have been instrumental in improving the quality of teaching and healthcare in the areas around the industrial hubs. However, the study shows that the corporates mostly invest in regions which are easily accessible to them, by their physical presence, irrespective of whether the area is developed or not. Such a skewness is visible in the extensive spending in and around the metropolitan cities, the established centers, in the country to which large chunks of CSR funds are channeled. The results show that there is a variation from what the government had proposed while initiating the CSR law to promote social inclusion and equality in the rural and isolated areas in the country. The implication is that even though societal improvement is the aim of CSR, ease of access to the needy is an essential factor in corporate choices. As poverty and lack of facilities are found in the innermost parts, it is vital to have government policies for their aid as corporate help.

Keywords: corporate social responsibility, geographic spread, panel data analysis, strategic implementation

Procedia PDF Downloads 109
7123 The Photovoltaic Panel at End of Life: Experimental Study of Metals Release

Authors: M. Tammaro, S. Manzo, J. Rimauro, A. Salluzzo, S. Schiavo

Abstract:

The solar photovoltaic (PV) modules are considered to have a negligible environmental impact compared to the fossil energy. Therefore also the waste management and the corresponding potential environmental hazard needs to be considered. The case of the photovoltaic panel is unique because the time lag from the manufacturing to the decommissioning as waste usually takes 25-30 years. Then the environmental hazard associated with end life of PV panels has been largely related to their metal contents. The principal concern regards the presence of heavy metals as Cd in thin film (TF) modules or Pb and Cr in crystalline silicon (c-Si) panels. At the end of life of PV panels, these dangerous substances could be released in the environment, if special requirements for their disposal are not adopted. Nevertheless, in literature, only a few experimental study about metal emissions from silicon crystalline/thin film panels and the corresponding environmental effect are present. As part of a study funded by the Italian national consortium for the waste collection and recycling (COBAT), the present work was aimed to analyze experimentally the potential release into the environment of hazardous elements, particularly metals, from PV waste. In this paper, for the first time, eighteen releasable metals a large number of photovoltaic panels, by c-Si and TF, manufactured in the last 30 years, together with the environmental effects by a battery of ecotoxicological tests, were investigated. Leaching tests are conducted on the crushed samples of PV module. The test is conducted according to Italian and European Standard procedure for hazard assessment of the granular waste and of the sludge. The sample material is shaken for 24 hours in HDPE bottles with an overhead mixer Rotax 6.8 VELP at indoor temperature and using pure water (18 MΩ resistivity) as leaching solution. The liquid-to-solid ratio was 10 (L/S=10, i.e. 10 liters of water per kg of solid). The ecotoxicological tests were performed in the subsequent 24 hours. A battery of toxicity test with bacteria (Vibrio fisheri), algae (Pseudochirneriella subcapitata) and crustacea (Daphnia magna) was carried out on PV panel leachates obtained as previously described and immediately stored in dark and at 4°C until testing (in the next 24 hours). For understand the actual pollution load, a comparison with the current European and Italian benchmark limits was performed. The trend of leachable metal amount from panels in relation to manufacturing years was then highlighted in order to assess the environmental sustainability of PV technology over time. The experimental results were very heterogeneous and show that the photovoltaic panels could represent an environmental hazard. The experimental results showed that the amounts of some hazardous metals (Pb, Cr, Cd, Ni), for c-Si and TF, exceed the law limits and they are a clear indication of the potential environmental risk of photovoltaic panels "as a waste" without a proper management.

Keywords: photovoltaic panel, environment, ecotoxicity, metals emission

Procedia PDF Downloads 260
7122 Applying Multiplicative Weight Update to Skin Cancer Classifiers

Authors: Animish Jain

Abstract:

This study deals with using Multiplicative Weight Update within artificial intelligence and machine learning to create models that can diagnose skin cancer using microscopic images of cancer samples. In this study, the multiplicative weight update method is used to take the predictions of multiple models to try and acquire more accurate results. Logistic Regression, Convolutional Neural Network (CNN), and Support Vector Machine Classifier (SVMC) models are employed within the Multiplicative Weight Update system. These models are trained on pictures of skin cancer from the ISIC-Archive, to look for patterns to label unseen scans as either benign or malignant. These models are utilized in a multiplicative weight update algorithm which takes into account the precision and accuracy of each model through each successive guess to apply weights to their guess. These guesses and weights are then analyzed together to try and obtain the correct predictions. The research hypothesis for this study stated that there would be a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The SVMC model had an accuracy of 77.88%. The CNN model had an accuracy of 85.30%. The Logistic Regression model had an accuracy of 79.09%. Using Multiplicative Weight Update, the algorithm received an accuracy of 72.27%. The final conclusion that was drawn was that there was a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The conclusion was made that using a CNN model would be the best option for this problem rather than a Multiplicative Weight Update system. This is due to the possibility that Multiplicative Weight Update is not effective in a binary setting where there are only two possible classifications. In a categorical setting with multiple classes and groupings, a Multiplicative Weight Update system might become more proficient as it takes into account the strengths of multiple different models to classify images into multiple categories rather than only two categories, as shown in this study. This experimentation and computer science project can help to create better algorithms and models for the future of artificial intelligence in the medical imaging field.

Keywords: artificial intelligence, machine learning, multiplicative weight update, skin cancer

Procedia PDF Downloads 79
7121 Chemometric Estimation of Inhibitory Activity of Benzimidazole Derivatives by Linear Least Squares and Artificial Neural Networks Modelling

Authors: Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević, Lidija R. Jevrić, Stela Jokić

Abstract:

The subject of this paper is to correlate antibacterial behavior of benzimidazole derivatives with their molecular characteristics using chemometric QSAR (Quantitative Structure–Activity Relationships) approach. QSAR analysis has been carried out on the inhibitory activity of benzimidazole derivatives against Staphylococcus aureus. The data were processed by linear least squares (LLS) and artificial neural network (ANN) procedures. The LLS mathematical models have been developed as a calibration models for prediction of the inhibitory activity. The quality of the models was validated by leave one out (LOO) technique and by using external data set. High agreement between experimental and predicted inhibitory acivities indicated the good quality of the derived models. These results are part of the CMST COST Action No. CM1306 "Understanding Movement and Mechanism in Molecular Machines".

Keywords: Antibacterial, benzimidazoles, chemometric, QSAR.

Procedia PDF Downloads 316
7120 Thermal Effect on Wave Interaction in Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry

Abstract:

There exist a wide range of failure modes in composite structures due to the increased usage of the structures especially in aerospace industry. Moreover, temperature dependent wave response of composite and layered structures have been continuously studied, though still limited, in the last decade mainly due to the broad operating temperature range of aerospace structures. A wave finite element (WFE) and finite element (FE) based computational method is presented by which the temperature dependent wave dispersion characteristics and interaction phenomenon in composite structures can be predicted. Initially, the temperature dependent mechanical properties of the panel in the range of -100 ◦C to 150 ◦C are measured experimentally using the Thermal Mechanical Analysis (TMA). Temperature dependent wave dispersion characteristics of each waveguide of the structural system, which is discretized as a system of a number of waveguides coupled by a coupling element, is calculated using the WFE approach. The wave scattering properties, as a function of temperature, is determined by coupling the WFE wave characteristics models of the waveguides with the full FE modelling of the coupling element on which defect is included. Numerical case studies are exhibited for two waveguides coupled through a coupling element.

Keywords: finite element, temperature dependency, wave dispersion characteristics, wave finite element, wave scattering properties

Procedia PDF Downloads 308
7119 Fusion of MOLA-based DEMs and HiRISE Images for Large-Scale Mars Mapping

Authors: Ahmed F. Elaksher, Islam Omar

Abstract:

In this project, we used MOLA-based DEMs to orthorectify HiRISE optical images. The MOLA data was interpolated using the kriging interpolation technique. Corresponding tie points were then digitized from both datasets. These points were employed in co-registering both datasets using GIS analysis tools. Different transformation models, including the affine and projective transformation models, were used with different sets and distributions of tie points. Additionally, we evaluated the use of the MOLA elevations in co-registering the MOLA and HiRISE datasets. The planimetric RMSEs achieved for each model are reported. Results suggested the use of 3D-2D transformation models.

Keywords: photogrammetry, Mars, MOLA, HiRISE

Procedia PDF Downloads 77
7118 Damage of Laminated Corrugated Sandwich Panels under Inclined Impact Loading

Authors: Muhammad Kamran, Xue Pu, Naveed Ahmed

Abstract:

Sandwich foam structures are efficient in impact energy absorption and making components lightweight; however their efficient use require a detailed understanding of its mechanical response. In this study, the foam core, laminated facings’ sandwich panel with internal triangular rib configuration is impacted by a spherical steel projectile at different angles using ABAQUS finite element package and damage mechanics is studied. Laminated ribs’ structure is sub-divided into three formations; all zeros, all 45 and optimized combination of zeros and 45 degrees. Impact velocity is varied from 250 m/s to 500 m/s with an increment of 50 m/s. The impact damage can significantly demolish the structural integrity and energy absorption due to fiber breakage, matrix cracking, and de-bonding. Macroscopic fracture study of the panel and core along with load-displacement responses and failure modes are the key parameters in the design of smart ballistic resistant structures. Ballistic impact characteristics of panels are studied on different speed, different inclination angles and its dependency on the base, and core materials, ribs formation, and cross-sectional spaces among them are determined. Impact momentum, penetration and kinetic energy absorption data and curves are compiled to predict the first and proximity impact in an effort to enhance the dynamic energy absorption.

Keywords: dynamic energy absorption, proximity impact, sandwich panels, impact momentum

Procedia PDF Downloads 388
7117 Evaluation of QSRR Models by Sum of Ranking Differences Approach: A Case Study of Prediction of Chromatographic Behavior of Pesticides

Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević

Abstract:

The present study deals with the selection of the most suitable quantitative structure-retention relationship (QSRR) models which should be used in prediction of the retention behavior of basic, neutral, acidic and phenolic pesticides which belong to different classes: fungicides, herbicides, metabolites, insecticides and plant growth regulators. Sum of ranking differences (SRD) approach can give a different point of view on selection of the most consistent QSRR model. SRD approach can be applied not only for ranking of the QSRR models, but also for detection of similarity or dissimilarity among them. Applying the SRD analysis, the most similar models can be found easily. In this study, selection of the best model was carried out on the basis of the reference ranking (“golden standard”) which was defined as the row average values of logarithm of retention time (logtr) defined by high performance liquid chromatography (HPLC). Also, SRD analysis based on experimental logtr values as reference ranking revealed similar grouping of the established QSRR models already obtained by hierarchical cluster analysis (HCA).

Keywords: chemometrics, chromatography, pesticides, sum of ranking differences

Procedia PDF Downloads 375
7116 Dual Language Immersion Models in Theory and Practice

Authors: S. Gordon

Abstract:

Dual language immersion is growing fast in language teaching today. This study provides an overview and evaluation of the different models of Dual language immersion programs in US K-12 schools. First, the paper provides a brief current literature review on the theory of Dual Language Immersion (DLI) in Second Language Acquisition (SLA) studies. Second, examples of several types of DLI language teaching models in US K-12 public schools are presented (including 50/50 models, 90/10 models, etc.). Third, we focus on the unique example of DLI education in the state of Utah, a successful, growing program in K-12 schools that includes: French, Chinese, Spanish, and Portuguese. The project investigates the theory and practice particularly of the case of public elementary and secondary school children that study half their school day in the L1 and the other half in the chosen L2, from kindergarten (age 5-6) through high school (age 17-18). Finally, the project takes the observations of Utah French DLI elementary through secondary programs as a case study. To conclude, we look at the principal challenges, pedagogical objectives and outcomes, and important implications for other US states and other countries (such as France currently) that are in the process of developing similar language learning programs.

Keywords: dual language immersion, second language acquisition, language teaching, pedagogy, teaching, French

Procedia PDF Downloads 175
7115 Fixed-Bed Column Studies of Green Malachite Removal by Use of Alginate-Encapsulated Aluminium Pillared Clay

Authors: Lazhar mouloud, Chemat Zoubida, Ouhoumna Faiza

Abstract:

The main objective of this study, concerns the modeling of breakthrough curves obtained in the adsorption column of malachite green into alginate-encapsulated aluminium pillared clay in fixed bed according to various operating parameters such as the initial concentration, the feed rate and the height fixed bed, applying mathematical models namely: the model of Bohart and Adams, Wolborska, Bed Depth Service Time, Clark and Yoon-Nelson. These models allow us to express the different parameters controlling the performance of the dynamic adsorption system. The results have shown that all models were found suitable for describing the whole or a definite part of the dynamic behavior of the column with respect to the flow rate, the inlet dye concentration and the height of fixed bed.

Keywords: adsorption column, malachite green, pillared clays, alginate, modeling, mathematic models, encapsulation.

Procedia PDF Downloads 508
7114 Survival Analysis Based Delivery Time Estimates for Display FAB

Authors: Paul Han, Jun-Geol Baek

Abstract:

In the flat panel display industry, the scheduler and dispatching system to meet production target quantities and the deadline of production are the major production management system which controls each facility production order and distribution of WIP (Work in Process). In dispatching system, delivery time is a key factor for the time when a lot can be supplied to the facility. In this paper, we use survival analysis methods to identify main factors and a forecasting model of delivery time. Of survival analysis techniques to select important explanatory variables, the cox proportional hazard model is used to. To make a prediction model, the Accelerated Failure Time (AFT) model was used. Performance comparisons were conducted with two other models, which are the technical statistics model based on transfer history and the linear regression model using same explanatory variables with AFT model. As a result, the Mean Square Error (MSE) criteria, the AFT model decreased by 33.8% compared to the existing prediction model, decreased by 5.3% compared to the linear regression model. This survival analysis approach is applicable to implementing a delivery time estimator in display manufacturing. And it can contribute to improve the productivity and reliability of production management system.

Keywords: delivery time, survival analysis, Cox PH model, accelerated failure time model

Procedia PDF Downloads 543
7113 An Improvement of a Dynamic Model of the Secondary Sedimentation Tank and Field Validation

Authors: Zahir Bakiri, Saci Nacefa

Abstract:

In this paper a comparison in made between two models, with and without dispersion term, and focused on the characterization of the movement of the sludge blanket in the secondary sedimentation tank using the solid flux theory and the velocity settling. This allowed us develop a one-dimensional models, with and without dispersion based on a thorough experimental study carried out in situ and the application of online data which are the mass load flow, transfer concentration, and influent characteristic. On the other hand, in the proposed model, the new settling velocity law (double-exponential function) used is based on the Vesilind function.

Keywords: wastewater, activated sludge, sedimentation, settling velocity, settling models

Procedia PDF Downloads 388
7112 Mapping Poverty in the Philippines: Insights from Satellite Data and Spatial Econometrics

Authors: Htet Khaing Lin

Abstract:

This study explores the relationship between a diverse set of variables, encompassing both environmental and socio-economic factors, and poverty levels in the Philippines for the years 2012, 2015, and 2018. Employing Ordinary Least Squares (OLS), Spatial Lag Models (SLM), and Spatial Error Models (SEM), this study delves into the dynamics of key indicators, including daytime and nighttime land surface temperature, cropland surface, urban land surface, rainfall, population size, normalized difference water, vegetation, and drought indices. The findings reveal consistent patterns and unexpected correlations, highlighting the need for nuanced policies that address the multifaceted challenges arising from the interplay of environmental and socio-economic factors.

Keywords: poverty analysis, OLS, spatial lag models, spatial error models, Philippines, google earth engine, satellite data, environmental dynamics, socio-economic factors

Procedia PDF Downloads 101
7111 Statistical Analysis of Parameters Effects on Maximum Strain and Torsion Angle of FRP Honeycomb Sandwich Panels Subjected to Torsion

Authors: Mehdi Modabberifar, Milad Roodi, Ehsan Souri

Abstract:

In recent years, honeycomb fiber reinforced plastic (FRP) sandwich panels have been increasingly used in various industries. Low weight, low price, and high mechanical strength are the benefits of these structures. However, their mechanical properties and behavior have not been fully explored. The objective of this study is to conduct a combined numerical-statistical investigation of honeycomb FRP sandwich beams subject to torsion load. In this paper, the effect of geometric parameters of the sandwich panel on the maximum shear strain in both face and core and angle of torsion in a honeycomb FRP sandwich structures in torsion is investigated. The effect of Parameters including core thickness, face skin thickness, cell shape, cell size, and cell thickness on mechanical behavior of the structure were numerically investigated. Main effects of factors were considered in this paper and regression equations were derived. Taguchi method was employed as experimental design and an optimum parameter combination for the maximum structure stiffness has been obtained. The results showed that cell size and face skin thickness have the most significant impacts on torsion angle, maximum shear strain in face and core.

Keywords: finite element, honeycomb FRP sandwich panel, torsion, civil engineering

Procedia PDF Downloads 418
7110 Geopotential Models Evaluation in Algeria Using Stochastic Method, GPS/Leveling and Topographic Data

Authors: M. A. Meslem

Abstract:

For precise geoid determination, we use a reference field to subtract long and medium wavelength of the gravity field from observations data when we use the remove-compute-restore technique. Therefore, a comparison study between considered models should be made in order to select the optimal reference gravity field to be used. In this context, two recent global geopotential models have been selected to perform this comparison study over Northern Algeria. The Earth Gravitational Model (EGM2008) and the Global Gravity Model (GECO) conceived with a combination of the first model with anomalous potential derived from a GOCE satellite-only global model. Free air gravity anomalies in the area under study have been used to compute residual data using both gravity field models and a Digital Terrain Model (DTM) to subtract the residual terrain effect from the gravity observations. Residual data were used to generate local empirical covariance functions and their fitting to the closed form in order to compare their statistical behaviors according to both cases. Finally, height anomalies were computed from both geopotential models and compared to a set of GPS levelled points on benchmarks using least squares adjustment. The result described in details in this paper regarding these two models has pointed out a slight advantage of GECO global model globally through error degree variances comparison and ground-truth evaluation.

Keywords: quasigeoid, gravity aomalies, covariance, GGM

Procedia PDF Downloads 137
7109 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models

Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai

Abstract:

Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.

Keywords: plant identification, CNN, image processing, vision transformer, classification

Procedia PDF Downloads 103
7108 Sensitivity and Uncertainty Analysis of One Dimensional Shape Memory Alloy Constitutive Models

Authors: A. B. M. Rezaul Islam, Ernur Karadogan

Abstract:

Shape memory alloys (SMAs) are known for their shape memory effect and pseudoelasticity behavior. Their thermomechanical behaviors are modeled by numerous researchers using microscopic thermodynamic and macroscopic phenomenological point of view. Tanaka, Liang-Rogers and Ivshin-Pence models are some of the most popular SMA macroscopic phenomenological constitutive models. They describe SMA behavior in terms of stress, strain and temperature. These models involve material parameters and they have associated uncertainty present in them. At different operating temperatures, the uncertainty propagates to the output when the material is subjected to loading followed by unloading. The propagation of uncertainty while utilizing these models in real-life application can result in performance discrepancies or failure at extreme conditions. To resolve this, we used probabilistic approach to perform the sensitivity and uncertainty analysis of Tanaka, Liang-Rogers, and Ivshin-Pence models. Sobol and extended Fourier Amplitude Sensitivity Testing (eFAST) methods have been used to perform the sensitivity analysis for simulated isothermal loading/unloading at various operating temperatures. As per the results, it is evident that the models vary due to the change in operating temperature and loading condition. The average and stress-dependent sensitivity indices present the most significant parameters at several temperatures. This work highlights the sensitivity and uncertainty analysis results and shows comparison of them at different temperatures and loading conditions for all these models. The analysis presented will aid in designing engineering applications by eliminating the probability of model failure due to the uncertainty in the input parameters. Thus, it is recommended to have a proper understanding of sensitive parameters and the uncertainty propagation at several operating temperatures and loading conditions as per Tanaka, Liang-Rogers, and Ivshin-Pence model.

Keywords: constitutive models, FAST sensitivity analysis, sensitivity analysis, sobol, shape memory alloy, uncertainty analysis

Procedia PDF Downloads 144