Search results for: nonparametric geographically weighted regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3907

Search results for: nonparametric geographically weighted regression

3487 Importance of Knowledge in the Interdisciplinary Production Processes of Innovative Medical Tools

Authors: Katarzyna Mleczko

Abstract:

Processes of production of innovative medical tools have interdisciplinary character. They consist of direct and indirect close cooperation of specialists of different scientific branches. The Knowledge they have seems to be important for undertaken design, construction and manufacturing processes. The Knowledge exchange between participants of these processes is therefore crucial for the final result, which are innovative medical products. The paper draws attention to the necessity of feedback from the end user to the designer / manufacturer of medical tools which will allow for more accurate understanding of user needs. The study describes prerequisites of production processes of innovative medical (surgical) tools including participants and category of knowledge resources occurring in these processes. They are the result of research in selected Polish organizations involved in the production of medical instruments and are the basis for further work on the development of knowledge sharing model in interdisciplinary teams geographically dispersed.

Keywords: interdisciplinary production processes, knowledge exchange, knowledge sharing, medical tools

Procedia PDF Downloads 442
3486 6D Posture Estimation of Road Vehicles from Color Images

Authors: Yoshimoto Kurihara, Tad Gonsalves

Abstract:

Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.

Keywords: 6D posture estimation, image recognition, deep learning, AlexNet

Procedia PDF Downloads 155
3485 Effective Parameter Selection for Audio-Based Music Mood Classification for Christian Kokborok Song: A Regression-Based Approach

Authors: Sanchali Das, Swapan Debbarma

Abstract:

Music mood classification is developing in both the areas of music information retrieval (MIR) and natural language processing (NLP). Some of the Indian languages like Hindi English etc. have considerable exposure in MIR. But research in mood classification in regional language is very less. In this paper, powerful audio based feature for Kokborok Christian song is identified and mood classification task has been performed. Kokborok is an Indo-Burman language especially spoken in the northeastern part of India and also some other countries like Bangladesh, Myanmar etc. For performing audio-based classification task, useful audio features are taken out by jMIR software. There are some standard audio parameters are there for the audio-based task but as known to all that every language has its unique characteristics. So here, the most significant features which are the best fit for the database of Kokborok song is analysed. The regression-based model is used to find out the independent parameters that act as a predictor and predicts the dependencies of parameters and shows how it will impact on overall classification result. For classification WEKA 3.5 is used, and selected parameters create a classification model. And another model is developed by using all the standard audio features that are used by most of the researcher. In this experiment, the essential parameters that are responsible for effective audio based mood classification and parameters that do not significantly change for each of the Christian Kokborok songs are analysed, and a comparison is also shown between the two above model.

Keywords: Christian Kokborok song, mood classification, music information retrieval, regression

Procedia PDF Downloads 222
3484 A Stochastic Model to Predict Earthquake Ground Motion Duration Recorded in Soft Soils Based on Nonlinear Regression

Authors: Issam Aouari, Abdelmalek Abdelhamid

Abstract:

For seismologists, the characterization of seismic demand should include the amplitude and duration of strong shaking in the system. The duration of ground shaking is one of the key parameters in earthquake resistant design of structures. This paper proposes a nonlinear statistical model to estimate earthquake ground motion duration in soft soils using multiple seismicity indicators. Three definitions of ground motion duration proposed by literature have been applied. With a comparative study, we select the most significant definition to use for predict the duration. A stochastic model is presented for the McCann and Shah Method using nonlinear regression analysis based on a data set for moment magnitude, source to site distance and site conditions. The data set applied is taken from PEER strong motion databank and contains shallow earthquakes from different regions in the world; America, Turkey, London, China, Italy, Chili, Mexico...etc. Main emphasis is placed on soft site condition. The predictive relationship has been developed based on 600 records and three input indicators. Results have been compared with others published models. It has been found that the proposed model can predict earthquake ground motion duration in soft soils for different regions and sites conditions.

Keywords: duration, earthquake, prediction, regression, soft soil

Procedia PDF Downloads 153
3483 Algorithm for Recognizing Trees along Power Grid Using Multispectral Imagery

Authors: C. Hamamura, V. Gialluca

Abstract:

Much of the Eclectricity Distributors has about 70% of its electricity interruptions arising from cause "trees", alone or associated with wind and rain and with or without falling branch and / or trees. This contributes inexorably and significantly to outages, resulting in high costs as compensation in addition to the operation and maintenance costs. On the other hand, there is little data structure and solutions to better organize the trees pruning plan effectively, minimizing costs and environmentally friendly. This work describes the development of an algorithm to provide data of trees associated to power grid. The method is accomplished on several steps using satellite imagery and geographically vectorized grid. A sliding window like approach is performed to seek the area around the grid. The proposed method counted 764 trees on a patch of the grid, which was very close to the 738 trees counted manually. The trees data was used as a part of a larger project that implements a system to optimize tree pruning plan.

Keywords: image pattern recognition, trees pruning, trees recognition, neural network

Procedia PDF Downloads 499
3482 Factors for Entry Timing Choices Using Principal Axis Factorial Analysis and Logistic Regression Model

Authors: C. M. Mat Isa, H. Mohd Saman, S. R. Mohd Nasir, A. Jaapar

Abstract:

International market expansion involves a strategic process of market entry decision through which a firm expands its operation from domestic to the international domain. Hence, entry timing choices require the needs to balance the early entry risks and the problems in losing opportunities as a result of late entry into a new market. Questionnaire surveys administered to 115 Malaysian construction firms operating in 51 countries worldwide have resulted in 39.1 percent response rate. Factor analysis was used to determine the most significant factors affecting entry timing choices of the firms to penetrate the international market. A logistic regression analysis used to examine the firms’ entry timing choices, indicates that the model has correctly classified 89.5 per cent of cases as late movers. The findings reveal that the most significant factor influencing the construction firms’ choices as late movers was the firm factor related to the firm’s international experience, resources, competencies and financing capacity. The study also offers valuable information to construction firms with intention to internationalize their businesses.

Keywords: factors, early movers, entry timing choices, late movers, logistic regression model, principal axis factorial analysis, Malaysian construction firms

Procedia PDF Downloads 378
3481 Investment Projects Selection Problem under Hesitant Fuzzy Environment

Authors: Irina Khutsishvili

Abstract:

In the present research, a decision support methodology for the multi-attribute group decision-making (MAGDM) problem is developed, namely for the selection of investment projects. The objective of the investment project selection problem is to choose the best project among the set of projects, seeking investment, or to rank all projects in descending order. The project selection is made considering a set of weighted attributes. To evaluate the attributes in our approach, expert assessments are used. In the proposed methodology, lingual expressions (linguistic terms) given by all experts are used as initial attribute evaluations, since they are the most natural and convenient representation of experts' evaluations. Then lingual evaluations are converted into trapezoidal fuzzy numbers, and the aggregate trapezoidal hesitant fuzzy decision matrix will be built. The case is considered when information on the attribute weights is completely unknown. The attribute weights are identified based on the De Luca and Termini information entropy concept, determined in the context of hesitant fuzzy sets. The decisions are made using the extended Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) method under a hesitant fuzzy environment. Hence, a methodology is based on a trapezoidal valued hesitant fuzzy TOPSIS decision-making model with entropy weights. The ranking of alternatives is performed by the proximity of their distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). For this purpose, the weighted hesitant Hamming distance is used. An example of investment decision-making is shown that clearly explains the procedure of the proposed methodology.

Keywords: In the present research, a decision support methodology for the multi-attribute group decision-making (MAGDM) problem is developed, namely for the selection of investment projects. The objective of the investment project selection problem is to choose the best project among the set of projects, seeking investment, or to rank all projects in descending order. The project selection is made considering a set of weighted attributes. To evaluate the attributes in our approach, expert assessments are used. In the proposed methodology, lingual expressions (linguistic terms) given by all experts are used as initial attribute evaluations since they are the most natural and convenient representation of experts' evaluations. Then lingual evaluations are converted into trapezoidal fuzzy numbers, and the aggregate trapezoidal hesitant fuzzy decision matrix will be built. The case is considered when information on the attribute weights is completely unknown. The attribute weights are identified based on the De Luca and Termini information entropy concept, determined in the context of hesitant fuzzy sets. The decisions are made using the extended Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) method under a hesitant fuzzy environment. Hence, a methodology is based on a trapezoidal valued hesitant fuzzy TOPSIS decision-making model with entropy weights. The ranking of alternatives is performed by the proximity of their distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). For this purpose, the weighted hesitant Hamming distance is used. An example of investment decision-making is shown that clearly explains the procedure of the proposed methodology.

Procedia PDF Downloads 117
3480 Dialect as a Means of Identification among Hausa Speakers

Authors: Hassan Sabo

Abstract:

Language is a system of conventionally spoken, manual and written symbols by human beings that members of a certain social group and participants in its culture express themselves. Communication, expression of identity and imaginative expression are among the functions of language. Dialect is a form of language, or a regional variety of language that is spoken in a particular geographical setting by a particular group of people. Hausa is one of the major languages in Africa, in terms of large number of people for whom it is the first language. Hausa is one of the western Chadic groups of languages. It constitutes one of the five or six branches of Afro-Asiatic family. The predominant Hausa speakers are in Nigeria and they live in different geographical locations which resulted to variety of dialects within the Hausa language apart of the standard Hausa language, the Hausa language has a variety of dialect that distinguish from one another by such features as phonology, grammar and vocabulary. This study intends to examine such features that serve as means of identification among Hausa speakers who are set off from others, geographically or socially.

Keywords: dialect, features, geographical location, Hausa language

Procedia PDF Downloads 194
3479 Choosing between the Regression Correlation, the Rank Correlation, and the Correlation Curve

Authors: Roger L. Goodwin

Abstract:

This paper presents a rank correlation curve. The traditional correlation coefficient is valid for both continuous variables and for integer variables using rank statistics. Since the correlation coefficient has already been established in rank statistics by Spearman, such a calculation can be extended to the correlation curve. This paper presents two survey questions. The survey collected non-continuous variables. We will show weak to moderate correlation. Obviously, one question has a negative effect on the other. A review of the qualitative literature can answer which question and why. The rank correlation curve shows which collection of responses has a positive slope and which collection of responses has a negative slope. Such information is unavailable from the flat, "first-glance" correlation statistics.

Keywords: Bayesian estimation, regression model, rank statistics, correlation, correlation curve

Procedia PDF Downloads 476
3478 Predictors of School Drop out among High School Students

Authors: Osman Zorbaz, Selen Demirtas-Zorbaz, Ozlem Ulas

Abstract:

The factors that cause adolescents to drop out school were several. One of the frameworks about school dropout focuses on the contextual factors around the adolescents whereas the other one focuses on individual factors. It can be said that both factors are important equally. In this study, both adolescent’s individual factors (anti-social behaviors, academic success) and contextual factors (parent academic involvement, parent academic support, number of siblings, living with parent) were examined in the term of school dropout. The study sample consisted of 346 high school students in the public schools in Ankara who continued their education in 2015-2016 academic year. One hundred eighty-five the students (53.5%) were girls and 161 (46.5%) were boys. In addition to this 118 of them were in ninth grade, 122 of them in tenth grade and 106 of them were in eleventh grade. Multiple regression and one-way ANOVA statistical methods were used. First, it was examined if the data meet the assumptions and conditions that are required for regression analysis. After controlling the assumptions, regression analysis was conducted. Parent academic involvement, parent academic support, number of siblings, anti-social behaviors, academic success variables were taken into the regression model and it was seen that parent academic involvement (t=-3.023, p < .01), anti-social behaviors (t=7.038, p < .001), and academic success (t=-3.718, p < .001) predicted school dropout whereas parent academic support (t=-1.403, p > .05) and number of siblings (t=-1.908, p > .05) didn’t. The model explained 30% of the variance (R=.557, R2=.300, F5,345=30.626, p < .001). In addition to this the variance, results showed there was no significant difference on high school students school dropout levels according to living with parents or not (F2;345=1.183, p > .05). Results discussed in the light of the literature and suggestion were made. As a result, academic involvement, academic success and anti-social behaviors will be considered as an important factors for preventing school drop-out.

Keywords: adolescents, anti-social behavior, parent academic involvement, parent academic support, school dropout

Procedia PDF Downloads 284
3477 Separating Landform from Noise in High-Resolution Digital Elevation Models through Scale-Adaptive Window-Based Regression

Authors: Anne M. Denton, Rahul Gomes, David W. Franzen

Abstract:

High-resolution elevation data are becoming increasingly available, but typical approaches for computing topographic features, like slope and curvature, still assume small sliding windows, for example, of size 3x3. That means that the digital elevation model (DEM) has to be resampled to the scale of the landform features that are of interest. Any higher resolution is lost in this resampling. When the topographic features are computed through regression that is performed at the resolution of the original data, the accuracy can be much higher, and the reported result can be adjusted to the length scale that is relevant locally. Slope and variance are calculated for overlapping windows, meaning that one regression result is computed per raster point. The number of window centers per area is the same for the output as for the original DEM. Slope and variance are computed by performing regression on the points in the surrounding window. Such an approach is computationally feasible because of the additive nature of regression parameters and variance. Any doubling of window size in each direction only takes a single pass over the data, corresponding to a logarithmic scaling of the resulting algorithm as a function of the window size. Slope and variance are stored for each aggregation step, allowing the reported slope to be selected to minimize variance. The approach thereby adjusts the effective window size to the landform features that are characteristic to the area within the DEM. Starting with a window size of 2x2, each iteration aggregates 2x2 non-overlapping windows from the previous iteration. Regression results are stored for each iteration, and the slope at minimal variance is reported in the final result. As such, the reported slope is adjusted to the length scale that is characteristic of the landform locally. The length scale itself and the variance at that length scale are also visualized to aid in interpreting the results for slope. The relevant length scale is taken to be half of the window size of the window over which the minimum variance was achieved. The resulting process was evaluated for 1-meter DEM data and for artificial data that was constructed to have defined length scales and added noise. A comparison with ESRI ArcMap was performed and showed the potential of the proposed algorithm. The resolution of the resulting output is much higher and the slope and aspect much less affected by noise. Additionally, the algorithm adjusts to the scale of interest within the region of the image. These benefits are gained without additional computational cost in comparison with resampling the DEM and computing the slope over 3x3 images in ESRI ArcMap for each resolution. In summary, the proposed approach extracts slope and aspect of DEMs at the lengths scales that are characteristic locally. The result is of higher resolution and less affected by noise than existing techniques.

Keywords: high resolution digital elevation models, multi-scale analysis, slope calculation, window-based regression

Procedia PDF Downloads 129
3476 Effect of Transit-Oriented Development on Air Quality in Neighborhoods of Delhi

Authors: Smriti Bhatnagar

Abstract:

This study aims to find if the Transit-oriented planning and development approach benefit the quality of air in neighborhoods of New Delhi. Two methodologies, namely the land use regression analysis and the Transit-oriented development index analysis, are being used to explore this relationship. Land Use Regression Analysis makes use of urban form characteristics as obtained for 33 neighborhoods in Delhi. These comprise road lengths, land use areas, population and household densities, number of amenities and distance between amenities. Regressions are run to establish the relationship between urban form variables and air quality parameters (dependent variables). For the Transit-oriented development index analysis, the Transit-oriented Development index is developed as a composite index comprising 29 urban form indicators. This index is developed by assigning weights to each of the 29 urban form data points. Regressions are run to establish the relationship between the Transit-oriented development index and air quality parameters. The thesis finds that elements of Transit-oriented development if incorporated in planning approach, have a positive effect on air quality. Roads suited for non-motorized transport, well connected civic amenities in neighbourhoods, for instance, have a directly proportional relationship with air quality. Transit-oriented development index, however, is not found to have a consistent relationship with air quality parameters. The reason could this, however, be in the way that the index has been constructed.

Keywords: air quality, land use regression, mixed-use planning, transit-oriented development index, New Delhi

Procedia PDF Downloads 270
3475 GIS Based Spatial Modeling for Selecting New Hospital Sites Using APH, Entropy-MAUT and CRITIC-MAUT: A Study in Rural West Bengal, India

Authors: Alokananda Ghosh, Shraban Sarkar

Abstract:

The study aims to identify suitable sites for new hospitals with critical obstetric care facilities in Birbhum, one of the vulnerable and underserved districts of Eastern India, considering six main and 14 sub-criteria, using GIS-based Analytic Hierarchy Process (AHP) and Multi-Attribute Utility Theory (MAUT) approach. The criteria were identified through field surveys and previous literature. After collecting expert decisions, a pairwise comparison matrix was prepared using the Saaty scale to calculate the weights through AHP. On the contrary, objective weighting methods, i.e., Entropy and Criteria Importance through Interaction Correlation (CRITIC), were used to perform the MAUT. Finally, suitability maps were prepared by weighted sum analysis. Sensitivity analyses of AHP were performed to explore the effect of dominant criteria. Results from AHP reveal that ‘maternal death in transit’ followed by ‘accessibility and connectivity’, ‘maternal health care service (MHCS) coverage gap’ were three important criteria with comparatively higher weighted values. Whereas ‘accessibility and connectivity’ and ‘maternal death in transit’ were observed to have more imprint in entropy and CRITIC, respectively. While comparing the predictive suitable classes of these three models with the layer of existing hospitals, except Entropy-MAUT, the other two are pointing towards the left-over underserved areas of existing facilities. Only 43%-67% of existing hospitals were in the moderate to lower suitable class. Therefore, the results of the predictive models might bring valuable input in future planning.

Keywords: hospital site suitability, analytic hierarchy process, multi-attribute utility theory, entropy, criteria importance through interaction correlation, multi-criteria decision analysis

Procedia PDF Downloads 66
3474 Use of Interpretable Evolved Search Query Classifiers for Sinhala Documents

Authors: Prasanna Haddela

Abstract:

Document analysis is a well matured yet still active research field, partly as a result of the intricate nature of building computational tools but also due to the inherent problems arising from the variety and complexity of human languages. Breaking down language barriers is vital in enabling access to a number of recent technologies. This paper investigates the application of document classification methods to new Sinhalese datasets. This language is geographically isolated and rich with many of its own unique features. We will examine the interpretability of the classification models with a particular focus on the use of evolved Lucene search queries generated using a Genetic Algorithm (GA) as a method of document classification. We will compare the accuracy and interpretability of these search queries with other popular classifiers. The results are promising and are roughly in line with previous work on English language datasets.

Keywords: evolved search queries, Sinhala document classification, Lucene Sinhala analyzer, interpretable text classification, genetic algorithm

Procedia PDF Downloads 114
3473 ELD79-LGD2006 Transformation Techniques Implementation and Accuracy Comparison in Tripoli Area, Libya

Authors: Jamal A. Gledan, Othman A. Azzeidani

Abstract:

During the last decade, Libya established a new Geodetic Datum called Libyan Geodetic Datum 2006 (LGD 2006) by using GPS, whereas the ground traversing method was used to establish the last Libyan datum which was called the Europe Libyan Datum 79 (ELD79). The current research paper introduces ELD79 to LGD2006 coordinate transformation technique, the accurate comparison of transformation between multiple regression equations and the three-parameters model (Bursa-Wolf). The results had been obtained show that the overall accuracy of stepwise multi regression equations is better than that can be determined by using Bursa-Wolf transformation model.

Keywords: geodetic datum, horizontal control points, traditional similarity transformation model, unconventional transformation techniques

Procedia PDF Downloads 307
3472 Applicability of Cameriere’s Age Estimation Method in a Sample of Turkish Adults

Authors: Hatice Boyacioglu, Nursel Akkaya, Humeyra Ozge Yilanci, Hilmi Kansu, Nihal Avcu

Abstract:

The strong relationship between the reduction in the size of the pulp cavity and increasing age has been reported in the literature. This relationship can be utilized to estimate the age of an individual by measuring the pulp cavity size using dental radiographs as a non-destructive method. The purpose of this study is to develop a population specific regression model for age estimation in a sample of Turkish adults by applying Cameriere’s method on panoramic radiographs. The sample consisted of 100 panoramic radiographs of Turkish patients (40 men, 60 women) aged between 20 and 70 years. Pulp and tooth area ratios (AR) of the maxilla¬¬ry canines were measured by two maxillofacial radiologists and then the results were subjected to regression analysis. There were no statistically significant intra-observer and inter-observer differences. The correlation coefficient between age and the AR of the maxillary canines was -0.71 and the following regression equation was derived: Estimated Age = 77,365 – ( 351,193 × AR ). The mean prediction error was 4 years which is within acceptable errors limits for age estimation. This shows that the pulp/tooth area ratio is a useful variable for assessing age with reasonable accuracy. Based on the results of this research, it was concluded that Cameriere’s method is suitable for dental age estimation and it can be used for forensic procedures in Turkish adults. These instructions give you guidelines for preparing papers for conferences or journals.

Keywords: age estimation by teeth, forensic dentistry, panoramic radiograph, Cameriere's method

Procedia PDF Downloads 450
3471 Relations between Psychological Adjustment and Perceived Parental, Teacher and Best Friend Acceptance among Bangladeshi Adolescents

Authors: Tariqul Islam, Shaheen Mollah

Abstract:

The study's main objective is to assess the relationship between psychological adjustment and parental acceptance-rejection, teacher acceptance-rejection, and best friend acceptance-rejection among secondary school students. This study was conducted on a sample of 300 (6th through 10th-grade students) recruited from over ten schools in Dhaka. While the schools were selected purposively, the respondents within each school were selected conveniently. The collected data were analyzed using Pearson product-moment correlation, hierarchical regression, and simultaneous regression analysis. The results showed that psychological adjustment is positively correlated with paternal, maternal, teacher, and best friend acceptance. The paternal acceptance was significantly connected with maternal acceptance. The teacher and best friend acceptance are correlated substantially with paternal and maternal acceptance. The hierarchical multiple regressions indicated that maternal, paternal, teacher, and best friend acceptance-rejection contributed significantly to students' psychological adjustment. The results revealed substantial independent contributions of maternal, paternal, teacher, and best friend acceptance on the students' psychological adjustment. The simultaneous regression analysis indicates that the maternal and best friend acceptances (but not paternal acceptance) were significant predictors of psychological adjustments. It showed that 41.7% variability in psychological adjustment could be explained by paternal, maternal, and best friend acceptance. The findings of the present study are exciting. They may contribute to developing insight in parents and best friends for behaving properly with their offspring and friend, respectively, for better psychological adjustment.

Keywords: adjustment, parenting, rejection, acceptance

Procedia PDF Downloads 145
3470 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 231
3469 Free Fatty Acid Assessment of Crude Palm Oil Using a Non-Destructive Approach

Authors: Siti Nurhidayah Naqiah Abdull Rani, Herlina Abdul Rahim, Rashidah Ghazali, Noramli Abdul Razak

Abstract:

Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of prediction models has facilitated the estimation process in recent years. In this study, 110 crude palm oil (CPO) samples were used to build a free fatty acid (FFA) prediction model. 60% of the collected data were used for training purposes and the remaining 40% used for testing. The visible peaks on the NIR spectrum were at 1725 nm and 1760 nm, indicating the existence of the first overtone of C-H bands. Principal component regression (PCR) was applied to the data in order to build this mathematical prediction model. The optimal number of principal components was 10. The results showed R2=0.7147 for the training set and R2=0.6404 for the testing set.

Keywords: palm oil, fatty acid, NIRS, regression

Procedia PDF Downloads 507
3468 Estimation of Foliar Nitrogen in Selected Vegetation Communities of Uttrakhand Himalayas Using Hyperspectral Satellite Remote Sensing

Authors: Yogita Mishra, Arijit Roy, Dhruval Bhavsar

Abstract:

The study estimates the nitrogen concentration in selected vegetation community’s i.e. chir pine (pinusroxburghii) by using hyperspectral satellite data and also identified the appropriate spectral bands and nitrogen indices. The Short Wave InfraRed reflectance spectrum at 1790 nm and 1680 nm shows the maximum possible absorption by nitrogen in selected species. Among the nitrogen indices, log normalized nitrogen index performed positively and negatively too. The strong positive correlation is taken out from 1510 nm and 760 nm for the pinusroxburghii for leaf nitrogen concentration and leaf nitrogen mass while using NDNI. The regression value of R² developed by using linear equation achieved maximum at 0.7525 for the analysis of satellite image data and R² is maximum at 0.547 for ground truth data for pinusroxburghii respectively.

Keywords: hyperspectral, NDNI, nitrogen concentration, regression value

Procedia PDF Downloads 295
3467 A Design for Supply Chain Model by Integrated Evaluation of Design Value and Supply Chain Cost

Authors: Yuan-Jye Tseng, Jia-Shu Li

Abstract:

To design a product with the given product requirement and design objective, there can be alternative ways to propose the detailed design specifications of the product. In the design modeling stage, alternative design cases with detailed specifications can be modeled to fulfill the product requirement and design objective. Therefore, in the design evaluation stage, it is required to perform an evaluation of the alternative design cases for deciding the final design. The purpose of this research is to develop a product evaluation model for evaluating the alternative design cases by integrated evaluating the criteria of functional design, Kansei design, and design for supply chain. The criteria in the functional design group include primary function, expansion function, improved function, and new function. The criteria in the Kansei group include geometric shape, dimension, surface finish, and layout. The criteria in the design for supply chain group include material, manufacturing process, assembly, and supply chain operation. From the point of view of value and cost, the criteria in the functional design group and Kansei design group represent the design value of the product. The criteria in the design for supply chain group represent the supply chain and manufacturing cost of the product. It is required to evaluate the design value and the supply chain cost to determine the final design. For the purpose of evaluating the criteria in the three criteria groups, a fuzzy analytic network process (FANP) method is presented to evaluate a weighted index by calculating the total relational values among the three groups. A method using the technique for order preference by similarity to ideal solution (TOPSIS) is used to compare and rank the design alternative cases according to the weighted index using the total relational values of the criteria. The final decision of a design case can be determined by using the ordered ranking. For example, the design case with the top ranking can be selected as the final design case. Based on the criteria in the evaluation, the design objective can be achieved with a combined and weighted effect of the design value and manufacturing cost. An example product is demonstrated and illustrated in the presentation. It shows that the design evaluation model is useful for integrated evaluation of functional design, Kansei design, and design for supply chain to determine the best design case and achieve the design objective.

Keywords: design for supply chain, design evaluation, functional design, Kansei design, fuzzy analytic network process, technique for order preference by similarity to ideal solution

Procedia PDF Downloads 318
3466 A Multinomial Logistic Regression Analysis of Factors Influencing Couples' Fertility Preferences in Kenya

Authors: Naomi W. Maina

Abstract:

Fertility preference is a subject of great significance in developing countries. Studies reveal that the preferences of fertility are actually significant in determining the society’s fertility levels because the fertility behavior of the future has a high likelihood of falling under the effect of currently observed fertility inclinations. The objective of this study was to establish the factors associated with fertility preference amongst couples in Kenya by fitting a multinomial logistic regression model against 5,265 couple data obtained from Kenya demographic health survey 2014. Results revealed that the type of place of residence, the region of residence, age and spousal age gap significantly influence desire for additional children among couples in Kenya. There was the notable high likelihood of couples living in rural settlements having similar fertility preference compared to those living in urban settlements. Moreover, geographical disparities such as in northern Kenya revealed significant differences in a couples desire to have additional children compared to Nairobi. The odds of a couple’s desire for additional children were further observed to vary dependent on either the wife or husbands age and to a large extent the spousal age gap. Evidenced from the study, was the fact that as spousal age gap increases, the desire for more children amongst couples decreases. Insights derived from this study would be attractive to demographers, health practitioners, policymakers, and non-governmental organizations implementing fertility related interventions in Kenya among other stakeholders. Moreover, with the adoption of devolution, there is a clear need for adoption of population policies that are County specific as opposed to a national population policy as is the current practice in Kenya. Additionally, researchers or students who have little understanding in the application of multinomial logistic regression, both theoretical understanding and practical analysis in SPSS as well as application on real datasets, will find this article useful.

Keywords: couples' desire, fertility, fertility preference, multinomial regression analysis

Procedia PDF Downloads 181
3465 Lactate in Critically Ill Patients an Outcome Marker with Time

Authors: Sherif Sabri, Suzy Fawzi, Sanaa Abdelshafy, Ayman Nagah

Abstract:

Introduction: Static derangements in lactate homeostasis during ICU stay have become established as a clinically useful marker of increased risk of hospital and ICU mortality. Lactate indices or kinetic alteration of the anaerobic metabolism make it a potential parameter to evaluate disease severity and intervention adequacy. This is an inexpensive and simple clinical parameter that can be obtained by a minimally invasive means. Aim of work: Comparing the predictive value of dynamic indices of hyperlactatemia in the first twenty four hours of intensive care unit (ICU) admission with other static values are more commonly used. Patients and Methods: This study included 40 critically ill patients above 18 years old of both sexes with Hyperlactamia (≥ 2 m mol/L). Patients were divided into septic group (n=20) and low oxygen transport group (n=20), which include all causes of low-O2. Six lactate indices specifically relating to the first 24 hours of ICU admission were considered, three static indices and three dynamic indices. Results: There were no statistically significant differences among the two groups regarding age, most of the laboratory results including ABG and the need for mechanical ventilation. Admission lactate was significantly higher in low-oxygen transport group than the septic group [37.5±11.4 versus 30.6±7.8 P-value 0.034]. Maximum lactate was significantly higher in low-oxygen transport group than the septic group P-value (0.044). On the other hand absolute lactate (mg) was higher in septic group P-value (< 0.001). Percentage change of lactate was higher in the septic group (47.8±11.3) than the low-oxygen transport group (26.1±12.6) with highly significant P-value (< 0.001). Lastly, time weighted lactate was higher in the low-oxygen transport group (1.72±0.81) than the septic group (1.05±0.8) with significant P-value (0.012). There were statistically significant differences regarding lactate indices in survivors and non survivors, whether in septic or low-oxygen transport group. Conclusion: In critically ill patients, time weighted lactate and percent in lactate change in the first 24 hours can be an independent predictive factor in ICU mortality. Also, a rising compared to a falling blood lactate concentration over the first 24 hours can be associated with significant increase in the risk of mortality.

Keywords: critically ill patients, lactate indices, mortality in intensive care, anaerobic metabolism

Procedia PDF Downloads 241
3464 Estimation of a Finite Population Mean under Random Non Response Using Improved Nadaraya and Watson Kernel Weights

Authors: Nelson Bii, Christopher Ouma, John Odhiambo

Abstract:

Non-response is a potential source of errors in sample surveys. It introduces bias and large variance in the estimation of finite population parameters. Regression models have been recognized as one of the techniques of reducing bias and variance due to random non-response using auxiliary data. In this study, it is assumed that random non-response occurs in the survey variable in the second stage of cluster sampling, assuming full auxiliary information is available throughout. Auxiliary information is used at the estimation stage via a regression model to address the problem of random non-response. In particular, the auxiliary information is used via an improved Nadaraya-Watson kernel regression technique to compensate for random non-response. The asymptotic bias and mean squared error of the estimator proposed are derived. Besides, a simulation study conducted indicates that the proposed estimator has smaller values of the bias and smaller mean squared error values compared to existing estimators of finite population mean. The proposed estimator is also shown to have tighter confidence interval lengths at a 95% coverage rate. The results obtained in this study are useful, for instance, in choosing efficient estimators of the finite population mean in demographic sample surveys.

Keywords: mean squared error, random non-response, two-stage cluster sampling, confidence interval lengths

Procedia PDF Downloads 139
3463 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 97
3462 Study of the Biological Activity of a Ganglioside-Containing Drug (Cronassil) in an Experimental Model of Multiple Sclerosis

Authors: Hasmik V. Zanginyan, Gayane S. Ghazaryan, Laura M. Hovsepyan

Abstract:

Experimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating disease of the central nervous system that is induced in laboratory animals by developing an immune response against myelin epitopes. The typical clinical course is ascending palsy, which correlates with inflammation and tissue damage in the thoracolumbar spinal cord, although the optic nerves and brain (especially the subpial white matter and brainstem) are also often affected. With multiple sclerosis, there is a violation of lipid metabolism in myelin. When membrane lipids (glycosphingolipids, phospholipids) are disturbed, metabolites not only play a structural role in membranes but are also sources of secondary mediators that transmit multiple cellular signals. The purpose of this study was to investigate the effect of ganglioside as a therapeutic agent in experimental multiple sclerosis. The biological activity of a ganglioside-containing medicinal preparation (Cronassial) was evaluated in an experimental model of multiple sclerosis in laboratory animals. An experimental model of multiple sclerosis in rats was obtained by immunization with myelin basic protein (MBP), as well as homogenization of the spinal cord or brain. EAE was induced by administering a mixture of an encephalitogenic mixture (EGM) with Complete Freund’s Adjuvant. Mitochondrial fraction was isolated in a medium containing 0,25 M saccharose and 0, 01 M tris buffer, pH - 7,4, by a method of differential centrifugation on a K-24 centrifuge. Glutathione peroxidase activity was assessed by reduction reactions of hydrogen peroxide (H₂O₂) and lipid hydroperoxides (ROOH) in the presence of GSH. LPO activity was assessed by the amount of malondialdehyde (MDA) in the total homogenate and mitochondrial fraction of the spinal cord and brain of control and experimental autoimmune encephalomyelitis rats. MDA was assessed by a reaction with Thiobarbituric acid. For statistical data analysis on PNP, SPSS (Statistical Package for Social Science) package was used. The nature of the distribution of the obtained data was determined by the Kolmogorov-Smirnov criterion. The comparative analysis was performed using a nonparametric Mann-Whitney test. The differences were statistically significant when р ≤ 0,05 or р ≤ 0,01. Correlational analysis was conducted using a nonparametric Spearman test. In the work, refrigeratory centrifuge, spectrophotometer LKB Biochrom ULTROSPECII (Sweden), pH-meter PL-600 mrc (Israel), guanosine, and ATP (Sigma). The study of the process of lipid peroxidation in the total homogenate of the brain and spinal cord in experimental animals revealed an increase in the content of malonic dialdehyde. When applied, Cronassial observed normalization of lipid peroxidation processes. Reactive oxygen species, causing lipid peroxidation processes, can be toxic both for neurons and for oligodendrocytes that form myelin, causing a violation of their lipid composition. The high content of lipids in the brain and the uniqueness of their structure determines the nature of the development of LPO processes. The lipid layer of cellular and intracellular membranes performs two main functions -barrier and matrix (structural). Damage to the barrier leads to dysregulation of intracellular processes and severe disorders of cellular functions.

Keywords: experimental autoimmune encephalomyelitis, multiple sclerosis, neuroinflammation, therapy

Procedia PDF Downloads 92
3461 Electrical Load Estimation Using Estimated Fuzzy Linear Parameters

Authors: Bader Alkandari, Jamal Y. Madouh, Ahmad M. Alkandari, Anwar A. Alnaqi

Abstract:

A new formulation of fuzzy linear estimation problem is presented. It is formulated as a linear programming problem. The objective is to minimize the spread of the data points, taking into consideration the type of the membership function of the fuzzy parameters to satisfy the constraints on each measurement point and to insure that the original membership is included in the estimated membership. Different models are developed for a fuzzy triangular membership. The proposed models are applied to different examples from the area of fuzzy linear regression and finally to different examples for estimating the electrical load on a busbar. It had been found that the proposed technique is more suited for electrical load estimation, since the nature of the load is characterized by the uncertainty and vagueness.

Keywords: fuzzy regression, load estimation, fuzzy linear parameters, electrical load estimation

Procedia PDF Downloads 540
3460 Stature and Gender Estimation Using Foot Measurements in South Indian Population

Authors: Jagadish Rao Padubidri, Mehak Bhandary, Sowmya J. Rao

Abstract:

Introduction: The significance of the human foot and its measurements in identifying an individual has been proved a lot of times by different studies in different geographical areas and its association to the stature and gender of the individual has been justified by many researches. In our study we have used different foot measurements including the length, width, malleol height and navicular height for establishing its association to stature and gender and to find out its accuracy. The purpose of this study is to show the relation of foot measurements with stature and gender, and to derive Multiple and Logistic regression equations for stature and gender estimation in South Indian population. Materials and Methods: The subjects for this study were 200 South Indian students out of which 100 were females and 100 were males, aged between 18 to 24 years. The data for the present study included the stature, foot length, foot breath, foot malleol height, foot navicular height of both right and left foot. Descriptive statistics, T-test and Pearson correlation coefficients were derived between stature, gender and foot measurements. The stature was estimated from right and left foot measurements for both male and female South Indian population using multiple regression analysis and logistic regression analysis for gender estimation. Results: The means, standard deviation, stature, right and left foot measurements and T-test in male population were higher than in females. LFL (Left foot length) is more than RFL (Right Foot length) in male groups, but in female groups the length of both foot are almost equal [RFL=226.6, LFL=227.1]. There is not much of difference in means of RFW (Right foot width) and LFW (Left foot width) in both the genders. Significant difference were seen in mean values of malleol and navicular height of right and left feet in male gender. No such difference was seen in female subjects. Conclusions: The study has successfully demonstrated the correlation of foot length in stature estimation in all the three study groups in both right and left foot. Next in parameters are Foot width and malleol height in estimating stature among male and female groups. Navicular height of both right and left foot showed poor relationship with stature estimation in both male and female groups. Multiple regression equations for both right and left foot measurements to estimate stature were derived with standard error ranging from 11-12 cm in males and 10-11 cm in females. The SEE was 5.8 when both male and female groups were pooled together. The logistic regression model which was derived to determine gender showed 85% accuracy and 92.5% accuracy using right and left foot measurements respectively. We believe that stature and gender can be estimated with foot measurements in South Indian population.

Keywords: foot length, gender, stature, South Indian

Procedia PDF Downloads 335
3459 Uncovering the Relationship between EFL Students' Self-Concept and Their Willingness to Communicate in Language Classes

Authors: Seyedeh Khadijeh Amirian, Seyed Mohammad Reza Amirian, Narges Hekmati

Abstract:

The current study aims at examining the relationship between English as a foreign language (EFL) students' self-concept and their willingness to communicate (WTC) in EFL classes. To this effect, two questionnaires, namely 'Willingness to Communicate' (MacIntyre et al., 2001) and 'Self-Concept Scale' (Liu and Wang, 2005), were distributed among 174 (45 males and 129 females) Iranian EFL university students. Correlation and regression analyses were conducted to examine the relationship between the two variables. The results indicated that there was a significantly positive correlation between EFL students' self-concept and their WTC in EFL classes (p < .0.05). Moreover, regression analyses indicated that self-concept has a significantly positive influence on students’ WTC in language classes (B= .302, p < .0.05) and explains .302 percent of the variance in the dependent variable (WTC). The results are discussed with regards to the individual differences in educational contexts, and implications are offered.

Keywords: EFL students, language classes, willingness to communicate, self-concept

Procedia PDF Downloads 126
3458 The Influence of Interest, Beliefs, and Identity with Mathematics on Achievement

Authors: Asma Alzahrani, Elizabeth Stojanovski

Abstract:

This study investigated factors that influence mathematics achievement based on a sample of ninth-grade students (N  =  21,444) from the High School Longitudinal Study of 2009 (HSLS09). Key aspects studied included efficacy in mathematics, interest and enjoyment of mathematics, identity with mathematics and future utility beliefs and how these influence mathematics achievement. The predictability of mathematics achievement based on these factors was assessed using correlation coefficients and multiple linear regression. Spearman rank correlations and multiple regression analyses indicated positive and statistically significant relationships between the explanatory variables: mathematics efficacy, identity with mathematics, interest in and future utility beliefs with the response variable, achievement in mathematics.

Keywords: Mathematics achievement, math efficacy, mathematics interest, factors influence

Procedia PDF Downloads 150