Search results for: new technology in concrete reinforcement
9524 The Efficiency of the Resin for Steel Concrete Adhesion
Authors: Oualid Benyamina Douma
Abstract:
Repair is always the result of the appearance of apparent disorder or aggravation of a mass. Which had hitherto been considered minor if not negligible: The work was not done according to plan. So; the examination of causes can lead to thinking about repair. While the application of the epoxy resin has become a hot topic. In this context, we conducted an experimental campaign (48 specimens are tested beakout) whose objective is based on three points: 1- Highlight the importance and influence of important parameters (compressive strength of concrete anchorage length and diameter of the steel bar) on routes (steel-concrete and steel–concrete epoxy resin) 2- Understanding the influence of the parameters mentioned above on the relationship that may exist between the peel strength and slippage. 3- Faces of cracks and failure modes. This study shows that passage of a compressive strength of 40 MPa to 62 MPa increases the adhesion between the steel bar and concrete and for specimens with or without epoxy resin. The loading force was increased form 40 to 81 kM kN, a rate if increase in loading over 100% In addition, for specimens with and without epoxy resin. increased breakout force through a specimen without a specimen with resin ranging from 20% to 32%.Keywords: epoxy resin, peel strength, anchors, slip diameter steel rod, anchor plain concrete and concrete with moderate resistance
Procedia PDF Downloads 4339523 Effect of Steel Fibers on M30 Fly Ash Concrete
Authors: Saksham
Abstract:
Concrete's versatility and affordability make it a highly competitive building material capable of meeting diverse requirements. However, the increasing demands placed on structures and the need for enhanced durability and performance have driven the development of distinct cementitious materials and concrete composites. One significant aspect of this advancement is the utilization of waste materials from industries, such as fly ash, to improve concrete's properties. Fly ash, a byproduct of coal combustion can enhance concrete's strength and durability while reducing environmental impact. Additionally, steel fibers can enhance concrete's toughness and crack resistance, contributing to improved structural performance. The experimental study aims to optimize the proportion of ingredients in M30-grade concrete, incorporating fly ash and steel fibers. By varying fly ash content (10% to 30%) and steel fiber dosage (0% to 1.5%), the research seeks to determine the optimal combination for achieving the desired compressive strength. Two sets of experiments are conducted: one focusing on varying fly ash content while keeping steel fiber dosage constant, and the other focusing on varying steel fiber dosage while keeping other parameters fixed. Through systematic testing, molding, curing, and evaluation according to specified standards, the research aims to analyze the impact of fly ash and steel fibers on concrete's compressive strength. The findings have the potential to inform engineers about optimized concrete mix designs that balance performance, cost-effectiveness, and sustainability, advancing toward more resilient and environmentally friendly building practices.Keywords: concrete, sustainability, durability, compressive strength
Procedia PDF Downloads 529522 Petrography and Geochemistry of Basic Dokhan Volcanics from the Eastern Desert of Egypt and their Use as Aggregates in Concrete Mixes
Authors: Ahmed Khalil, Hatem M. El-Desoky
Abstract:
The present paper deals with the petrography and geochemistry of the Basic Dokhan Volcanics, Eastern Desert, Egypt. The basalts from Gabal Wassif, Atalla volcanics and Gabal Esh Mellaha were tested for use as aggregates in concrete mixes. The representative twelve samples were collected from areas. These samples were examined by using a petrographic microscope to evaluate sample texture, degree of alteration and the presence of volcanic glass in the matrix. The results obtained indicate that basalt can be used successfully for preparing concrete, but some attention should be paid to the choice of the suitable types of basalt. A general improvement in concrete mix properties has been found by using basalt aggregates in the mix.Keywords: basic Dokhan volcanics, petrography, geochemistry, petrogenesis and concrete aggregates
Procedia PDF Downloads 5179521 Square Concrete Columns under Axial Compression
Authors: Suniti Suparp, Panuwat Joyklad, Qudeer Hussain
Abstract:
This is a well-known fact that the actual latera forces due to natural disasters, for example, earthquakes, floods and storms are difficult to predict accurately. Among these natural disasters, so far, the highest amount of deaths and injuries have been recorded for the case of earthquakes all around the world. Therefore, there is always an urgent need to establish suitable strengthening methods for existing concrete and steel structures. This paper is investigating the structural performance of square concrete columns strengthened using low cost and easily available steel clamps. The salient features of these steel clamps are comparatively low cost, easy availability and ease of installation. To achieve research objectives, a large-scale experimental program was established in which a total number of 12 square concrete columns were constructed and tested under pure axial compression. Three square concrete columns were tested without any steel lamps to serve as a reference specimen. Whereas, remaining concrete columns were externally strengthened using steel clamps. The steel clamps were installed at a different spacing to investigate the best configuration of the steel clamps. The experimental results indicate that steel clamps are very effective in altering the structural performance of the square concrete columns. The square concrete columns externally strengthened using steel clamps demonstrate higher load carrying capacity and ductility as compared with the control specimens.Keywords: concrete, strength, ductility, pre-stressed, steel, clamps, axial compression, columns, stress and strain
Procedia PDF Downloads 1309520 A Soil Stabilization Technique on Apa-Hotamiş Conveyance Channel
Authors: Ali Sinan Soğancı
Abstract:
Apa-Hotamış conveyance channel is located within in the boundaries of Konya Regional Directorate of Water Works. This channel transfers the water to the fount of Apa Dam with 17 km length of Blue Channel. Then the water is transmitted with Apa- Hotamış conveyance channel to Hotamış Water Storage. In some places along the Apa-Hotamış conveyance canal which will be constructed by Directorate of Water Works of Konya, some swelling soils have been seen. The samples taken from these places have 35-95 kPa swelling pressure. To prevent the swelling pressure arising from the penetration of water to the concrete channel, it was proposed to make 10 cm concrete coating by spreading the geomembrane and geotextile between the soil and concrete. In this way, the pressure (35-95 kPa) caused by the swelling and cracking of concrete failure will be blocked.Keywords: conveyance channel, swelling pressure, geomembrane, geotextile, concrete
Procedia PDF Downloads 4139519 Concrete Recycling in Egypt for Construction Applications: A Technical and Financial Feasibility Model
Authors: Omar Farahat Hassanein, A. Samer Ezeldin
Abstract:
The construction industry is a very dynamic field. Every day new technologies and methods are developing to fasten the process and increase its efficiency. Hence, if a project uses fewer resources, it will be more efficient. This paper examines the recycling of concrete construction and demolition (C&D) waste to reuse it as aggregates in on-site applications for construction projects in Egypt and possibly in the Middle East. The study focuses on a stationary plant setting. The machinery set-up used in the plant is analyzed technically and financially. The findings are gathered and grouped to obtain a comprehensive cost-benefit financial model to demonstrate the feasibility of establishing and operating a concrete recycling plant. Furthermore, a detailed business plan including the time and hierarchy is proposed.Keywords: construction wastes, recycling, sustainability, financial model, concrete recycling, concrete life cycle
Procedia PDF Downloads 4169518 Behavior of Double Skin Circular Tubular Steel-Concrete-Composite Column
Authors: Usha Sivasankaran, Seetha Raman
Abstract:
Experimental work on Double skin Concrete Filled tubes (DSCFT) are a variation of CFT (Concrete- filled steel tubular) with a hollow core formed by two concentric steel tubes in – filled with concrete. Six Specimens with three different volume fractions of steel fibres are cast and tested. Experiments on circular steel tubes in – filled with steel fibre reinforced concrete (SFRC) and normal concrete have been performed to investigate the contribution of steel fibres to the load bearing capacity of Short Composite Columns. The main Variable considered in the test study is the percentage of steel fibres added to the in –filled concrete. All the specimens were tested under axial compression until failure state realisation. This project presents the percentage Variation in the compression strengths of the 3 types of Composite members taken under Study. The results show that 1.5% SFRC in filled steel columns exhibit enhanced ultimate load carrying capacity.Keywords: composite columns, optimization of steel, double skin, DSCFT
Procedia PDF Downloads 5489517 A Case Study of Assessment of Fire Affected Concrete Structure by NDT
Authors: Nikhil Gopalkrishnan, Praveen Bhaskaran, Aditya Bhargava, Gyandeep Bhumarkar
Abstract:
The present paper is an attempt to perform various Non-Destructive Tests on concrete structure as NDT is gaining a wide importance in the branch of civil engineering these days. Various tests that are performed under NDT not only enable us to determine the strength of concrete structure, but also provide us in-hand information regarding the durability, in-situ properties of the concrete structure. Keeping these points in our mind, we have focused our views on performing a case study to show the comparison between the NDT test results performed on a particular concrete structure and another structure at the same site which is subjected to a continuous fire of say 48-72 hours. The mix design and concrete grade of both the structures were same before the one was affected by fire. The variations in the compressive strength, concrete quality and in-situ properties of the two structures have been discussed in this paper. NDT tests namely Ultrasonic Pulse Velocity Test, Rebound Hammer Test, Core-Cutter Test was performed at both the sites. The main objective of this research is to analyze the variations in the strength and quality of the concrete structure which is subjected to a high temperature fire and the one which isn’t exposed to it.Keywords: core-cutter test, non-destructive test, rebound hammer test, ultrasonic pulse velocity test
Procedia PDF Downloads 3499516 Influence of Scrap Tyre Steel Fiber on Mechanical Properties of High Performance Concrete
Authors: Isyaka Abdulkadir, Egbe Ngu-Ntui Ogork
Abstract:
This research aims to investigate the use of Scrap Tyre Steel Fibers (STSF) for the production of fiber reinforced high performance concrete. The Scrap Tyre Steel Fibers (STSF) were obtained from dealers that extracted the fibers by burning the scrap tyres and were characterized. The effect of STSF was investigated on grade 50 concrete of 1:1.28:1.92 with water cement ratio of 0.39 at additions of STSF of 0, 0.5, 1.0, 1.5, 2.0 and 2.5% by volume of concrete. The fresh concrete was tested for slump while the hardened concrete was tested for compressive and splitting tensile strengths, respectively at curing ages of 3, 7, 28 and 56 days in accordance with standard procedure. The results indicate that slump decreased with increase in STSF, while compressive and splitting tensile strengths increased with increase in STSF up to 1.5% and reduction in strength with increase in STSF above 1.5%. 1.5% STSF was considered as the optimum dosage with a 28 days increase in compressive strength and splitting tensile strength of 12.3% and 43.8% respectively, of control.Keywords: compressive strength, high performance concrete, scrap tyre steel fiber, splitting tensile strength
Procedia PDF Downloads 2169515 Investigation the Effect of Partial Replacement of Fine Aggregates with Ceramic
Authors: Yared Assefa Demessie
Abstract:
This study may help to establish the appropriateness of ceramic waste aggregate for concrete production since it is obviously understood that the rising from continuous urbanization and industrialization development leads depletion of natural construction resource and the disposal of waste material. It can be used as base to conduct a study on the alternative readily available materials like ceramic industrial waste aggregates can lead to environmental concrete. The study assessed the fresh and hardened properties of the concrete produced by replacing part of the natural fine aggregate with an aggregate produced from ceramic industrial waste. In the study, experimental investigation was employed which involved two major tasks: material specifications and experimental evaluation of concrete were done in the laboratory. Experimental investigations such that workability, unit weight, compressive strength test, tensile strength test and flexural strength test for C-25 concrete mixes with different percentages of ceramic industrial waste aggregate after a curing period of 7 and 28 days has done and interpreted the result statically using mean, standard deviation and coefficient of variance.Keywords: ceramic industrial waste, fresh concrete, hardened concrete, fine aggregate
Procedia PDF Downloads 669514 Developing a Self-Healing Concrete Filler Using Poly(Methyl Methacrylate) Based Two-Part Adhesive
Authors: Shima Taheri, Simon Clark
Abstract:
Concrete is an essential building material used in the majority of structures. Degradation of concrete over time increases the life-cycle cost of an asset with an estimated annual cost of billions of dollars to national economies. Most of the concrete failure occurs due to cracks, which propagate through a structure and cause weakening leading to failure. Stopping crack propagation is thus the key to protecting concrete structures from failure and is the best way to prevent inconveniences and catastrophes. Furthermore, the majority of cracks occur deep within the concrete in inaccessible areas and are invisible to normal inspection. Few materials intrinsically possess self-healing ability, but one that does is concrete. However, self-healing in concrete is limited to small dormant cracks in a moist environment and is difficult to control. In this project, we developed a method for self-healing of nascent fractures in concrete components through the automatic release of self-curing healing agents encapsulated in breakable nano- and micro-structures. The Poly(methyl methacrylate) (PMMA) based two-part adhesive is encapsulated in core-shell structures with brittle/weak inert shell, synthesized via miniemulsion/solvent evaporation polymerization. Stress fields associated with propagating cracks can break these capsules releasing the healing agents at the point where they are needed. The shell thickness is playing an important role in preserving the content until the final setting of concrete. The capsules can also be surface functionalized with carboxyl groups to overcome the homogenous mixing issues. Currently, this formulated self-healing system can replace up to 1% of cement in a concrete formulation. Increasing this amount to 5-7% in the concrete formulation without compromising compression strength and shrinkage properties, is still under investigation. This self-healing system will not only increase the durability of structures by stopping crack propagation but also allow the use of less cement in concrete construction, thereby adding to the global effort for CO2 emission reduction.Keywords: self-healing concrete, concrete crack, concrete deterioration, durability
Procedia PDF Downloads 1189513 Aluminum Matrix Composites Reinforced by Glassy Carbon-Titanium Spatial Structure
Authors: B. Hekner, J. Myalski, P. Wrzesniowski
Abstract:
This study presents aluminum matrix composites reinforced by glassy carbon (GC) and titanium (Ti). In the first step, the heterophase (GC+Ti), spatial form (similar to skeleton) of reinforcement was obtained via own method. The polyurethane foam (with spatial, open-cells structure) covered by suspension of Ti particles in phenolic resin was pyrolyzed. In the second step, the prepared heterogeneous foams were infiltrated by aluminium alloy. The manufactured composites are designated to industrial application, especially as a material used in tribological field. From this point of view, the glassy carbon was applied to stabilise a coefficient of friction on the required value 0.6 and reduce wear. Furthermore, the wear can be limited due to titanium phase application, which reveals high mechanical properties. Moreover, fabrication of thin titanium layer on the carbon skeleton leads to reduce contact between aluminium alloy and carbon and thus aluminium carbide phase creation. However, the main modification involves the manufacturing of reinforcement in the form of 3D, skeleton foam. This kind on reinforcement reveals a few important advantages compared to classical form of reinforcement-particles: possibility to control homogeneity of reinforcement phase in composite material; low-advanced technique of composite manufacturing- infiltration; possibility to application the reinforcement only in required places of material; strict control of phase composition; High quality of bonding between components of material. This research is founded by NCN in the UMO-2016/23/N/ST8/00994.Keywords: metal matrix composites, MMC, glassy carbon, heterophase composites, tribological application
Procedia PDF Downloads 1189512 Finite Element Analysis of the Ordinary Reinforced Concrete Bridge Piers
Authors: Nabin Raj Chaulagain
Abstract:
Most of the concrete bridges in Nepal constructed during 90's and before are made up of low strength ordinary concrete which might be one of the reasons for damage in higher magnitude earthquake. Those bridges were designed by the outdated bridge codes which might not account the large seismic loads. This research investigates the seismic vulnerability of the existing single column ordinary concrete bridge pier by finite element modeling, using the software Seismostruct. The existing bridge pier capacity has been assessed using nonlinear pushover analysis and performance is compared after retrofitting those pier models with CFRP. Furthermore, the seismic evaluation was made by conducting cyclic loading test at different drift percentage. The performance analysis of bridge pier by nonlinear pushover analysis is further validated by energy dissipation phenomenon measured from the hysteric loop for each model of ordinary concrete piers.Keywords: finite element modeling, ordinary concrete bridge pier, performance analysis, retrofitting
Procedia PDF Downloads 3209511 Constitutive Modeling of Different Types of Concrete under Uniaxial Compression
Authors: Mostafa Jafarian Abyaneh, Khashayar Jafari, Vahab Toufigh
Abstract:
The cost of experiments on different types of concrete has raised the demand for prediction of their behavior with numerical analysis. In this research, an advanced numerical model has been presented to predict the complete elastic-plastic behavior of polymer concrete (PC), high-strength concrete (HSC), high performance concrete (HPC) along with different steel fiber contents under uniaxial compression. The accuracy of the numerical response was satisfactory as compared to other conventional simple models such as Mohr-Coulomb and Drucker-Prager. In order to predict the complete elastic-plastic behavior of specimens including softening behavior, disturbed state concept (DSC) was implemented by nonlinear finite element analysis (NFEA) and hierarchical single surface (HISS) failure criterion, which is a failure surface without any singularity.Keywords: disturbed state concept (DSC), hierarchical single surface (HISS) failure criterion, high performance concrete (HPC), high-strength concrete (HSC), nonlinear finite element analysis (NFEA), polymer concrete (PC), steel fibers, uniaxial compression test
Procedia PDF Downloads 3119510 Evaluation and Preservation of Post-War Concrete Architecture: The Case of Lithuania
Authors: Aušra Černauskienė
Abstract:
The heritage of modern architecture is closely related to the materiality and technology used to implement the buildings. Concrete is one of the most ubiquitous post-war building materials with enormous aesthetic and structural potential that architects have creatively used for everyday buildings and exceptional architectural objects that have survived. Concrete's material, structural, and architectural development over the post-war years has produced a remarkably rich and diverse typology of buildings, for implementation of which unique handicraft skills and industrialized novelties were used. Nonetheless, in the opinion of the public, concrete architecture is often treated as ugly and obsolete, and in Lithuania, it also has negative associations with the scarcity of the Soviet era. Moreover, aesthetic non-appreciation is not the only challenge that concrete architecture meets. It also no longer meets the needs of contemporary requirements: buildings are of poor energy class, have little potential for transformation, and have an obsolete surrounding environment. Thus, as a young heritage, concrete architecture is not yet sufficiently appreciated by society and heritage specialists, as it takes a short time to rethink what they mean from a historical perspective. However, concrete architecture is considered ambiguous but has its character and specificity that needs to be carefully studied in terms of cultural heritage to avoid the risk of poor renovation or even demolition, which has increasingly risen in recent decades in Lithuania. For example, several valuable pieces of post-war concrete architecture, such as the Banga restaurant and the Summer Stage in Palanga, were demolished without understanding their cultural value. Many unique concrete structures and raw concrete surfaces were painted or plastered, paying little attention to the appearance of authentic material. Furthermore, it raises a discussion on how to preserve buildings of different typologies: for example, innovative public buildings in their aesthetic, spatial solutions, and mass housing areas built using precast concrete panels. It is evident that the most traditional preservation strategy, conservation, is not the only option for preserving post-war concrete architecture, and more options should be considered. The first step in choosing the right strategy in each case is an appropriate assessment of the cultural significance. For this reason, an evaluation matrix for post-war concrete architecture is proposed. In one direction, an analysis of different typological groups of buildings is suggested, with the designation of ownership rights; in the other direction – the analysis of traditional value aspects such as aesthetic, technological, and relevant for modern architecture such as social, economic, and sustainability factors. By examining these parameters together, three relevant scenarios for preserving post-war concrete architecture were distinguished: conservation, renovation, and reuse, and they are revealed using examples of concrete architecture in Lithuania.Keywords: modern heritage, value aspects, typology, conservation, upgrade, reuse
Procedia PDF Downloads 1439509 A Comparative Study of Mechanisms across Different Online Social Learning Types
Authors: Xinyu Wang
Abstract:
In the context of the rapid development of Internet technology and the increasing prevalence of online social media, this study investigates the impact of digital communication on social learning. Through three behavioral experiments, we explore both affective and cognitive social learning in online environments. Experiment 1 manipulates the content of experimental materials and two forms of feedback, emotional valence, sociability, and repetition, to verify whether individuals can achieve online emotional social learning through reinforcement using two social learning strategies. Results reveal that both social learning strategies can assist individuals in affective, social learning through reinforcement, with feedback-based learning strategies outperforming frequency-dependent strategies. Experiment 2 similarly manipulates the content of experimental materials and two forms of feedback to verify whether individuals can achieve online knowledge social learning through reinforcement using two social learning strategies. Results show that similar to online affective social learning, individuals adopt both social learning strategies to achieve cognitive social learning through reinforcement, with feedback-based learning strategies outperforming frequency-dependent strategies. Experiment 3 simultaneously observes online affective and cognitive social learning by manipulating the content of experimental materials and feedback at different levels of social pressure. Results indicate that online affective social learning exhibits different learning effects under different levels of social pressure, whereas online cognitive social learning remains unaffected by social pressure, demonstrating more stable learning effects. Additionally, to explore the sustained effects of online social learning and differences in duration among different types of online social learning, all three experiments incorporate two test time points. Results reveal significant differences in pre-post-test scores for online social learning in Experiments 2 and 3, whereas differences are less apparent in Experiment 1. To accurately measure the sustained effects of online social learning, the researchers conducted a mini-meta-analysis of all effect sizes of online social learning duration. Results indicate that although the overall effect size is small, the effect of online social learning weakens over time.Keywords: online social learning, affective social learning, cognitive social learning, social learning strategies, social reinforcement, social pressure, duration
Procedia PDF Downloads 469508 Finite Element Modeling Techniques of Concrete in Steel and Concrete Composite Members
Authors: J. Bartus, J. Odrobinak
Abstract:
The paper presents a nonlinear analysis 3D model of composite steel and concrete beams with web openings using the Finite Element Method (FEM). The core of the study is the introduction of basic modeling techniques comprehending the description of material behavior, appropriate elements selection, and recommendations for overcoming problems with convergence. Results from various finite element models are compared in the study. The main objective is to observe the concrete failure mechanism and its influence on the structural performance of numerical models of the beams at particular load stages. The bearing capacity of beams, corresponding deformations, stresses, strains, and fracture patterns were determined. The results show how load-bearing elements consisting of concrete parts can be analyzed using FEM software with various options to create the most suitable numerical model. The paper demonstrates the versatility of Ansys software usage for structural simulations.Keywords: Ansys, concrete, modeling, steel
Procedia PDF Downloads 1219507 Impact of Butt Joints on Flexural Properties of Nail Laminated Timber
Authors: Mohammad Mehdi Bagheri, Tianying Ma, Meng Gong
Abstract:
Nail laminated timber (NLT) is widely used for constructing timber bridge decks in North America. Butt joints usually exist due to the length limits of lumber, leading to concerns about the decrease of structural performance of NLT. This study aimed at investigating the provisions incorporated in Canadian highway bridge design code on the use of but joints in wooden bridge decks. Three and five layers NLT specimens with various configurations were tested under 3-point bending test. It was found that the standard equation is capable of predicting the bending stiffness reduction due to butt joints and 1-m band limit in which, one but joint in every three adjacent lamination is allowed, sounds reasonable. The strength reduction also followed a pattern similar to stiffness reduction. Also reinforcement of the butt joint through nails and steel side plates was attempted. It was found that nail reinforcement recovers the stiffness slightly. In contrast, reinforcing the butt joint through steel side plate improved the flexural performance significantly when compared to the nail reinforcement.Keywords: nail laminated timber, butt joint, bending stiffness, reinforcement
Procedia PDF Downloads 1869506 Characterization of Cement Concrete Pavement
Authors: T. B. Anil Kumar, Mallikarjun Hiremath, V. Ramachandra
Abstract:
The present experimental investigation deals with the quality performance analysis of cement concrete with 0, 15 and 25% fly ash and 0, 0.2, 0.4 and 0.6% of polypropylene fibers by weight of cement. The various test parameters like workability, unit weight, compressive strength, flexural strength, split tensile strength and abrasion resistance are detailed in the analysis. The compressive strength of M40 grade concrete attains higher value by the replacement of cement by 15% fly ash and at 0.4% PP after 28 and 56 days of curing. Higher flexural strength of concrete was observed by the replacement of cement by 15% fly ash with 0.2% PP after 28 and 56 days of curing. Similarly, split tensile strength value also increases and attains higher value by the replacement of cement by 15% fly ash with 0.4% PP after 28 and 56 days of curing. The percentage of wear gets reduced to 30 to 33% by the addition of fibers at 0.2%, 0.4% and 0.6% in cement concrete replaced by 15 and 25% fly ash. Hence, it is found that the pavement thickness gets reduced up to 20% when compared with plain concrete slab by the 15% fly ash treated with 0.2% PP fibers and also reduced up to 27% of surface course cost.Keywords: cement, fly ash, polypropylene fiber, pavement design, cost analysis
Procedia PDF Downloads 3989505 Concrete-Wall-Climbing Testing Robot
Authors: S. Tokuomi, K. Mori, Y. Tsuruzono
Abstract:
A concrete-wall-climbing testing robot, has been developed. This robot adheres and climbs concrete walls using two sets of suction cups, as well as being able to rotate by the use of the alternating motion of the suction cups. The maximum climbing speed is about 60 cm/min. Each suction cup has a pressure sensor, which monitors the adhesion of each suction cup. The impact acoustic method is used in testing concrete walls. This robot has an impact acoustic device and four microphones for the acquisition of the impact sound. The effectiveness of the impact acoustic system was tested by applying it to an inspection of specimens with artificial circular void defects. A circular void defect with a diameter of 200 mm at a depth of 50 mm was able to be detected. The weight and the dimensions of the robot are about 17 kg and 1.0 m by 1.3 m, respectively. The upper limit of testing is about 10 m above the ground due to the length of the power cable.Keywords: concrete wall, nondestructive testing, climbing robot, impact acoustic method
Procedia PDF Downloads 6619504 Recycled Aggregates from Construction and Demolition Waste in the Production of Concrete Blocks
Authors: Juan A. Ferriz-Papi, Simon Thomas
Abstract:
The construction industry generates large amounts of waste, usually mixed, which can be composed of different origin materials, most of them catalogued as non-hazardous. The European Union targets for this waste for 2020 have been already achieved by the UK, but it is mainly developed in downcycling processes (backfilling) whereas upcycling (such as recycle in new concrete batches) still keeps at a low percentage. The aim of this paper is to explore further in the use of recycled aggregates from construction and demolition waste (CDW) in concrete mixes so as to improve upcycling. A review of most recent research and legislation applied in the UK is developed regarding the production of concrete blocks. As a case study, initial tests were developed with a CDW recycled aggregate sample from a CDW plant in Swansea. Composition by visual inspection and sieving tests of two samples were developed and compared to original aggregates. More than 70% was formed by soil waste from excavation, and the rest was a mix of waste from mortar, concrete, and ceramics with small traces of plaster, glass and organic matter. Two concrete mixes were made with 80% replacement of recycled aggregates and different water/cement ratio. Tests were carried out for slump, absorption, density and compression strength. The results were compared to a reference sample and showed a substantial reduction of quality in both mixes. Despite that, the discussion brings to identify different aspects to solve, such as heterogeneity or composition, and analyze them for the successful use of these recycled aggregates in the production of concrete blocks. The conclusions obtained can help increase upcycling processes ratio with mixed CDW as recycled aggregates in concrete mixes.Keywords: aggregates, concrete, concrete block, construction and demolition waste, recycling
Procedia PDF Downloads 2999503 A Pattern Practise for Awareness Educations on Information Security: Information Security Project
Authors: Fati̇h Apaydin
Abstract:
Education technology is an area which constantly changes and creates innovations. As an inevitable part of the changing circumstances, the societies who have a tendency to the improvements keep up with these innovations by using the methods and strategies which have been designed for education technology. At this point, education technology has taken the responsibility to help the individuals improve themselves and teach the effective teaching methods by filling the airs in theoretical information, information security and the practice. The technology which comes to the core of our lives by raising the importance of it day by day and it enforced its position in computer- based environments. As a result, ‘being ready for technological innovations, improvement on computer-based talent, information, ability and attitude’ doctrines have to be given. However, it is today quite hard to deal with the security and reinforcement of this information. The information which is got illegally gives harm to society from every aspect, especially education. This study includes how and to what extent to use these innovative appliances such as computers and the factor of information security of these appliances in computer-based education. As the use of computer is constantly becoming prevalent in our country, both education and computer will never become out of date, so how computer-based education affects our lives and the study of information security for this type of education are important topics.Keywords: computer, information security, education, technology, development
Procedia PDF Downloads 5949502 Efficient Subgoal Discovery for Hierarchical Reinforcement Learning Using Local Computations
Authors: Adrian Millea
Abstract:
In hierarchical reinforcement learning, one of the main issues encountered is the discovery of subgoal states or options (which are policies reaching subgoal states) by partitioning the environment in a meaningful way. This partitioning usually requires an expensive global clustering operation or eigendecomposition of the Laplacian of the states graph. We propose a local solution to this issue, much more efficient than algorithms using global information, which successfully discovers subgoal states by computing a simple function, which we call heterogeneity for each state as a function of its neighbors. Moreover, we construct a value function using the difference in heterogeneity from one step to the next, as reward, such that we are able to explore the state space much more efficiently than say epsilon-greedy. The same principle can then be applied to higher level of the hierarchy, where now states are subgoals discovered at the level below.Keywords: exploration, hierarchical reinforcement learning, locality, options, value functions
Procedia PDF Downloads 1719501 Durability Aspects of Recycled Aggregate Concrete: An Experimental Study
Authors: Smitha Yadav, Snehal Pathak
Abstract:
Aggregate compositions in the construction and demolition (C&D) waste have potential to replace normal aggregates. However, to re-utilise these aggregates, the concrete produced with these recycled aggregates needs to provide the desired compressive strength and durability. This paper examines the performance of recycled aggregate concrete made up of 60% recycled aggregates of 20 mm size in terms of durability tests namely rapid chloride permeability, drying shrinkage, water permeability, modulus of elasticity and creep without compromising the compressive strength. The experimental outcome indicates that recycled aggregate concrete provides strength and durability same as controlled concrete when processed for removal of adhered mortar.Keywords: compressive strength, recycled aggregate, shrinkage, rapid chloride permeation test, modulus of elasticity, water permeability
Procedia PDF Downloads 3159500 Deflection Behaviour of Retaining Wall with Pile for Pipeline on Slope of Soft Soil
Authors: Mutadi
Abstract:
Pipes laying on an unstable slope of soft soil are prone to movement. Pipelines that are buried in unstable slope areas will move due to lateral loads from soil movement, which can cause damage to the pipeline. A small-scale laboratory model of the reinforcement system of piles supported by retaining walls was conducted to investigate the effect of lateral load on the reinforcement. In this experiment, the lateral forces of 0.3 kN, 0.35 kN, and 0.4 kN and vertical force of 0.05 kN, 0.1 kN, and 0.15 kN were used. Lateral load from the electric jack is equipped with load cell and vertical load using the cement-steel box. To validate the experimental result, a finite element program named 2-D Plaxis was used. The experimental results showed that with an increase in lateral loading, the displacement of the reinforcement system increased. For a Vertical Load, 0.1 kN and versus a lateral load of 0.3 kN causes a horizontal displacement of 0.35 mm and an increase of 2.94% for loading of 0.35 kN and an increase of 8.82% for loading 0.4 kN. The pattern is the same in the finite element method analysis, where there was a 6.52% increase for 0.35 kN loading and an increase to 23.91 % for 0.4 kN loading. In the same Load, the Reinforcement System is reliable, as shown in Safety Factor on dry conditions were 3.3, 2.824 and 2.474, and on wet conditions were 2.98, 2.522 and 2.235.Keywords: soft soil, deflection, wall, pipeline
Procedia PDF Downloads 1639499 Effect of Treated Grey Water on Bacterial Concrete
Authors: Deepa T., Inchara S. R., Venkatesh S. V., Seema Tharannum
Abstract:
Concrete is the most widely used structural material. It is usually made using locally available materials. However, concrete has low tensile strength and may crack in the early days with exothermic hydration, for which water is essential. To address the increased construction water demand, treated greywater may be used. Bacillus subtilis bacteria that form endospores is the biological agent considered in this study for biomineralization or Microbially Induced Calcite Precipitation (MICP) technique to heal cracks. Treated grey water which is obtained from STP of PES University, opted in place of Potable water, which had qualities within the standard range as per codal provisions. In this work, M30 grade conventional concrete is designed using OPC 53-grade cement, manufactured sand, natural coarse aggregates, and potable water. Conventional concrete (CC), bacterial concrete with potable water (BS), and treated grey water concrete (TGWBS) are the three different concrete specimens cast. Experimental studies such as the strength test and the surface hardness test are performed on conventional and bacterial concrete samples after 7, 28, and 56 days of curing. Concrete cubes are subjected to a temperature of 50° C to investigate the effect of higher temperature. Cracked cube specimens are observed for self-healing -as well as microstructure analysis with Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Analysis (EDAX), and X-Ray Diffraction Analysis (XRD). Noticeable calcium salt deposition is observed on the surface of the BS and TGWBS cracked specimen. Surface hardness and the EDAX test gave promising results on the advantage of using spore-forming bacteria in concrete. This is followed by the strength gained in compression and flexure. Results also indicate that treated grey water can be a substitute for potable water in concrete.Keywords: Bacillus subtilis concrete, microstructure, temperature, treated greywater
Procedia PDF Downloads 999498 Seismic Fragility for Sliding Failure of Weir Structure Considering the Process of Concrete Aging
Authors: HoYoung Son, Ki Young Kim, Woo Young Jung
Abstract:
This study investigated the change of weir structure performances when durability of concrete, which is the main material of weir structure, decreased due to their aging by mean of seismic fragility analysis. In the analysis, it was assumed that the elastic modulus of concrete was reduced by 10% in order to account for their aged deterioration. Additionally, the analysis of seismic fragility was based on Monte Carlo Simulation method combined with a 2D nonlinear finite element in ABAQUS platform with the consideration of deterioration of concrete. Finally, the comparison of seismic fragility of model pre- and post-deterioration was made to study the performance of weir. Results show that the probability of failure in moderate damage for deteriorated model was found to be larger than pre-deterioration model when peak ground acceleration (PGA) passed 0.4 g.Keywords: weir, FEM, concrete, fragility, aging
Procedia PDF Downloads 4259497 Compressive and Torsional Strength of Self-Compacting Concrete
Authors: Moosa Mazloom, Morteza Mehrvand
Abstract:
The goal of this study was to investigate the effects of silica fume and super plasticizer dosages on compressive and torsional properties of SCC. This work concentrated on concrete mixes having water/binder ratios of 0.45 and 0.35, which contained constant total binder contents of 400 kg/m3 and 500 kg/m3, respectively. The percentages of silica fume that replaced cement were 0 % and 10 %. The super plasticizer dosages utilized in the mixtures were 0.4%, 0.8%, 1.2 % and 1.6 % of the weight of cement. Prism dimensions used in this test were 10 × 10 × 40 cm3. The results of this research indicated that torsional strength of SCC prisms can be calculated using the equations presented in Canadian and American concrete building codes.Keywords: self-compacting concrete, rectangular prism, torsional strength
Procedia PDF Downloads 5179496 Effect of Drying on the Concrete Structures
Authors: A. Brahma
Abstract:
The drying of hydraulics materials is unavoidable and conducted to important spontaneous deformations. In this study, we show that it is possible to describe the drying shrinkage of the high-performance concrete by a simple expression. A multiple regression model was developed for the prediction of the drying shrinkage of the high-performance concrete. The assessment of the proposed model has been done by a set of statistical tests. The model developed takes in consideration the main parameters of confection and conservation. There was a very good agreement between drying shrinkage predicted by the multiple regression model and experimental results. The developed model adjusts easily to all hydraulic concrete types.Keywords: hydraulic concretes, drying, shrinkage, prediction, modeling
Procedia PDF Downloads 3689495 Viability of Rice Husk Ash Concrete Brick/Block from Green Electricity in Bangladesh
Authors: Mohammad A. N. M. Shafiqul Karim
Abstract:
As a developing country, Bangladesh has to face numerous challenges. Self Independence in electricity, contributing to climate change by reducing carbon emission and bringing the backward population of society to the mainstream is more challenging for them. Therefore, it is essential to ensure recycled use of local products to the maximum level in every sector. Some private organizations have already worked alongside government to bring the backward population to the mainstream by developing their financial capacities. As rice husk is the largest single category of the total energy supply in Bangladesh. As part of this strategy, rice husk can play a great as a promising renewable energy source, which is readily available, has considerable environmental benefits and can produce electricity and ensure multiple uses of byproducts in construction technology. For the first time in Bangladesh, an experimental multidimensional project depending on Rice Husk Electricity and Rice Husk Ash (RHA) concrete brick/block under Green Eco-Tech Limited has already been started. Project analysis, opportunity, sustainability, the high monitoring component, limitations and finally evaluated data reflecting the viability of establishing more projects using rice husk are discussed in this paper. The by-product of rice husk from the production of green electricity, RHA, can be used for making, in particular, RHA concrete brick/block in Bangladeshi aspects is also discussed here.Keywords: project analysis, rice husk, rice husk ash concrete brick/block, compressive strength of rice husk ash concrete brick/block
Procedia PDF Downloads 297