Search results for: multi linear regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9354

Search results for: multi linear regression

8934 Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression

Authors: Wanatchapong Kongkaew

Abstract:

This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches.

Keywords: Gaussian process regression, iterated local search, simulated annealing, single machine total weighted tardiness

Procedia PDF Downloads 282
8933 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland

Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski

Abstract:

PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.

Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks

Procedia PDF Downloads 114
8932 Separating Landform from Noise in High-Resolution Digital Elevation Models through Scale-Adaptive Window-Based Regression

Authors: Anne M. Denton, Rahul Gomes, David W. Franzen

Abstract:

High-resolution elevation data are becoming increasingly available, but typical approaches for computing topographic features, like slope and curvature, still assume small sliding windows, for example, of size 3x3. That means that the digital elevation model (DEM) has to be resampled to the scale of the landform features that are of interest. Any higher resolution is lost in this resampling. When the topographic features are computed through regression that is performed at the resolution of the original data, the accuracy can be much higher, and the reported result can be adjusted to the length scale that is relevant locally. Slope and variance are calculated for overlapping windows, meaning that one regression result is computed per raster point. The number of window centers per area is the same for the output as for the original DEM. Slope and variance are computed by performing regression on the points in the surrounding window. Such an approach is computationally feasible because of the additive nature of regression parameters and variance. Any doubling of window size in each direction only takes a single pass over the data, corresponding to a logarithmic scaling of the resulting algorithm as a function of the window size. Slope and variance are stored for each aggregation step, allowing the reported slope to be selected to minimize variance. The approach thereby adjusts the effective window size to the landform features that are characteristic to the area within the DEM. Starting with a window size of 2x2, each iteration aggregates 2x2 non-overlapping windows from the previous iteration. Regression results are stored for each iteration, and the slope at minimal variance is reported in the final result. As such, the reported slope is adjusted to the length scale that is characteristic of the landform locally. The length scale itself and the variance at that length scale are also visualized to aid in interpreting the results for slope. The relevant length scale is taken to be half of the window size of the window over which the minimum variance was achieved. The resulting process was evaluated for 1-meter DEM data and for artificial data that was constructed to have defined length scales and added noise. A comparison with ESRI ArcMap was performed and showed the potential of the proposed algorithm. The resolution of the resulting output is much higher and the slope and aspect much less affected by noise. Additionally, the algorithm adjusts to the scale of interest within the region of the image. These benefits are gained without additional computational cost in comparison with resampling the DEM and computing the slope over 3x3 images in ESRI ArcMap for each resolution. In summary, the proposed approach extracts slope and aspect of DEMs at the lengths scales that are characteristic locally. The result is of higher resolution and less affected by noise than existing techniques.

Keywords: high resolution digital elevation models, multi-scale analysis, slope calculation, window-based regression

Procedia PDF Downloads 104
8931 Nuclear Fuel Safety Threshold Determined by Logistic Regression Plus Uncertainty

Authors: D. S. Gomes, A. T. Silva

Abstract:

Analysis of the uncertainty quantification related to nuclear safety margins applied to the nuclear reactor is an important concept to prevent future radioactive accidents. The nuclear fuel performance code may involve the tolerance level determined by traditional deterministic models producing acceptable results at burn cycles under 62 GWd/MTU. The behavior of nuclear fuel can simulate applying a series of material properties under irradiation and physics models to calculate the safety limits. In this study, theoretical predictions of nuclear fuel failure under transient conditions investigate extended radiation cycles at 75 GWd/MTU, considering the behavior of fuel rods in light-water reactors under reactivity accident conditions. The fuel pellet can melt due to the quick increase of reactivity during a transient. Large power excursions in the reactor are the subject of interest bringing to a treatment that is known as the Fuchs-Hansen model. The point kinetic neutron equations show similar characteristics of non-linear differential equations. In this investigation, the multivariate logistic regression is employed to a probabilistic forecast of fuel failure. A comparison of computational simulation and experimental results was acceptable. The experiments carried out use the pre-irradiated fuels rods subjected to a rapid energy pulse which exhibits the same behavior during a nuclear accident. The propagation of uncertainty utilizes the Wilk's formulation. The variables chosen as essential to failure prediction were the fuel burnup, the applied peak power, the pulse width, the oxidation layer thickness, and the cladding type.

Keywords: logistic regression, reactivity-initiated accident, safety margins, uncertainty propagation

Procedia PDF Downloads 271
8930 An Integreated Intuitionistic Fuzzy ELECTRE Model for Multi-Criteria Decision-Making

Authors: Babek Erdebilli

Abstract:

The aim of this study is to develop and describe a new methodology for the Multi-Criteria Decision-Making (MCDM) problem using IFE (Elimination Et Choix Traduisant La Realite (ELECTRE) model. The proposed models enable Decision-Makers (DMs) on the assessment and use Intuitionistic Fuzzy Numbers (IFN). A numerical example is provided to demonstrate and clarify the proposed analysis procedure. Also, an empirical experiment is conducted to validation the effectiveness.

Keywords: multi-criteria decision-making, IFE, DM’s, fuzzy electre model

Procedia PDF Downloads 619
8929 Stabilization Technique for Multi-Inputs Voltage Sense Amplifiers in Node Sharing Converters

Authors: Sanghoon Park, Ki-Jin Kim, Kwang-Ho Ahn

Abstract:

This paper discusses the undesirable charge transfer through the parasitic capacitances of the input transistors in a multi-inputs voltage sense amplifier. Its intrinsic rail-to-rail voltage transitions at the output nodes inevitably disturb the input sides through the capacitive coupling between the outputs and inputs. Then, it can possible degrade the stabilities of the reference voltage levels. Moreover, it becomes more serious in multi-channel systems by altering them for other channels, and so degrades the linearity of the overall systems. In order to alleviate the internal node voltage transition, the internal node stabilization techniques are proposed. It achieves 45% and 40% improvements for node stabilization and input referred disturbance, respectively.

Keywords: voltage sense amplifier, multi-inputs, voltage transition, node stabilization, biasing circuits

Procedia PDF Downloads 533
8928 Pushover Analysis of Masonry Infilled Reinforced Concrete Frames for Performance Based Design for near Field Earthquakes

Authors: Alok Madan, Ashok Gupta, Arshad K. Hashmi

Abstract:

Non-linear dynamic time history analysis is considered as the most advanced and comprehensive analytical method for evaluating the seismic response and performance of multi-degree-of-freedom building structures under the influence of earthquake ground motions. However, effective and accurate application of the method requires the implementation of advanced hysteretic constitutive models of the various structural components including masonry infill panels. Sophisticated computational research tools that incorporate realistic hysteresis models for non-linear dynamic time-history analysis are not popular among the professional engineers as they are not only difficult to access but also complex and time-consuming to use. And, commercial computer programs for structural analysis and design that are acceptable to practicing engineers do not generally integrate advanced hysteretic models which can accurately simulate the hysteresis behavior of structural elements with a realistic representation of strength degradation, stiffness deterioration, energy dissipation and ‘pinching’ under cyclic load reversals in the inelastic range of behavior. In this scenario, push-over or non-linear static analysis methods have gained significant popularity, as they can be employed to assess the seismic performance of building structures while avoiding the complexities and difficulties associated with non-linear dynamic time-history analysis. “Push-over” or non-linear static analysis offers a practical and efficient alternative to non-linear dynamic time-history analysis for rationally evaluating the seismic demands. The present paper is based on the analytical investigation of the effect of distribution of masonry infill panels over the elevation of planar masonry infilled reinforced concrete (R/C) frames on the seismic demands using the capacity spectrum procedures implementing nonlinear static analysis (pushover analysis) in conjunction with the response spectrum concept. An important objective of the present study is to numerically evaluate the adequacy of the capacity spectrum method using pushover analysis for performance based design of masonry infilled R/C frames for near-field earthquake ground motions.

Keywords: nonlinear analysis, capacity spectrum method, response spectrum, seismic demand, near-field earthquakes

Procedia PDF Downloads 382
8927 Minimum Half Power Beam Width and Side Lobe Level Reduction of Linear Antenna Array Using Particle Swarm Optimization

Authors: Saeed Ur Rahman, Naveed Ullah, Muhammad Irshad Khan, Quensheng Cao, Niaz Muhammad Khan

Abstract:

In this paper the optimization performance of non-uniform linear antenna array is presented. The Particle Swarm Optimization (PSO) algorithm is presented to minimize Side Lobe Level (SLL) and Half Power Beamwidth (HPBW). The purpose of using the PSO algorithm is to get the optimum values for inter-element spacing and excitation amplitude of linear antenna array that provides a radiation pattern with minimum SLL and HPBW. Various design examples are considered and the obtain results using PSO are confirmed by comparing with results achieved using other nature inspired metaheuristic algorithms such as real coded genetic algorithm (RGA) and biogeography (BBO) algorithm. The comparative results show that optimization of linear antenna array using the PSO provides considerable enhancement in the SLL and HPBW.

Keywords: linear antenna array, minimum side lobe level, narrow half power beamwidth, particle swarm optimization

Procedia PDF Downloads 531
8926 Similar Correlation of Meat and Sugar to Global Obesity Prevalence

Authors: Wenpeng You, Maciej Henneberg

Abstract:

Background: Sugar consumption has been overwhelmingly advocated as a major dietary offender to obesity prevalence. Meat intake has been hypothesized as an obesity contributor in previous publications, but a moderate amount of meat to be included in our daily diet still has been suggested in many dietary guidelines. Comparable sugar and meat exposure data were obtained to assess the difference in relationships between the two major food groups and obesity prevalence at population level. Methods: Population level estimates of obesity and overweight rates, per capita per day exposure of major food groups (meat, sugar, starch crops, fibers, fats and fruits) and total calories, per capita per year GDP, urbanization and physical inactivity prevalence rate were extracted and matched for statistical analysis. Correlation coefficient (Pearson and partial) comparisons with Fisher’s r-to-z transformation and β range (β ± 2 SE) and overlapping in multiple linear regression (Enter and Stepwise) were used to examine potential differences in the relationships between obesity prevalence and sugar exposure and meat exposure respectively. Results: Pearson and partial correlations (controlled for total calories, physical inactivity prevalence, GDP and urbanization) analyses revealed that sugar and meat exposures correlated to obesity and overweight prevalence significantly. Fisher's r-to-z transformation did not show statistically significant difference in Pearson correlation coefficients (z=-0.53, p=0.5961) or partial correlation coefficients (z=-0.04, p=0.9681) between obesity prevalence and both sugar exposure and meat exposure. Both Enter and Stepwise models in multiple linear regression analysis showed that sugar and meat exposure were most significant predictors of obesity prevalence. Great β range overlapping in the Enter (0.289-0.573) and Stepwise (0.294-0.582) models indicated statistically sugar and meat exposure correlated to obesity without significant difference. Conclusion: Worldwide sugar and meat exposure correlated to obesity prevalence at the same extent. Like sugar, minimal meat exposure should also be suggested in the dietary guidelines.

Keywords: meat, sugar, obesity, energy surplus, meat protein, fats, insulin resistance

Procedia PDF Downloads 284
8925 A Quantitative Study Investigating Whether the Internalisation of Adolescent Femininity Ideologies Predicts Depression and Anxiety in Female Adolescents

Authors: Tondani Mudau, Sherine B. Van Wyk, Zuhayr Kafaar, Janan Dietrich

Abstract:

Female adolescents residing in a patriarchal society such as South Africa are more inclined to embrace feminine ideologies. Internalizing these ideologies may expose female adolescents to mental health challenges such as depression and anxiety. This study explored whether the internalisation of adolescent femininity ideologies namely, objectified relationship with own body (ORB) and inauthentic self in relationships (ISR) predicted anxiety and depression in late female adolescents at Stellenbosch University. The sample of the study consisted of 1451 (18-24) female undergraduate and postgraduate students enrolled at Stellenbosch University. The mean age of the participants was 20 (SD=1.46), and most participants (39.7%) were first-year students. The study employed a cross-sectional quantitative research design. Data was collected through an online self-completion survey, the survey consisted of three sections, the first section asked biographical questions regarding age, gender, race and family background. The second section measured the internalisation of feminine ideologies by using the adolescent femininity ideology scale which has two subscales namely inauthentic self in relationship with others (ISR) and objectified relationship with one’s own body (ORB). The ISR scale had the Cronbach Alpha of 0.76, and the ORB scale had the Cronbach Alpha of 0.83. The third section measured mental health (depression and anxiety) by using the Hopkins Symptoms 25-checklist which had the Cronbach Alpha of 0.93. Data were analysed through multiple linear regression from IBM SPSS (Statistical Package for the Social Sciences Version 24). The overall results of the multiple linear regression showed that The AFIS combination accounted for 14% for anxiety as measured by the Hopkins Symptoms Checklist R² = .142, F (2, 682) = 56.431, p < .001. The combination also accounted for 24% for depression as measured by the Hopkins Symptoms Checklist R² = .239, F (2, 682) = 106.971, p < .0. The findings in this study affirm the objectification and feminist theory contentions that internalising femininity ideologies (ISR and ORB) predict negative mental health in female adolescents.

Keywords: adolescents, anxiety, depression, feminine ideologies, inauthentic self, mental health, self-objectification, South Africa

Procedia PDF Downloads 129
8924 Count Regression Modelling on Number of Migrants in Households

Authors: Tsedeke Lambore Gemecho, Ayele Taye Goshu

Abstract:

The main objective of this study is to identify the determinants of the number of international migrants in a household and to compare regression models for count response. This study is done by collecting data from total of 2288 household heads of 16 randomly sampled districts in Hadiya and Kembata-Tembaro zones of Southern Ethiopia. The Poisson mixed models, as special cases of the generalized linear mixed model, is explored to determine effects of the predictors: age of household head, farm land size, and household size. Two ethnicities Hadiya and Kembata are included in the final model as dummy variables. Stepwise variable selection has indentified four predictors: age of head, farm land size, family size and dummy variable ethnic2 (0=other, 1=Kembata). These predictors are significant at 5% significance level with count response number of migrant. The Poisson mixed model consisting of the four predictors with random effects districts. Area specific random effects are significant with the variance of about 0.5105 and standard deviation of 0.7145. The results show that the number of migrant increases with heads age, family size, and farm land size. In conclusion, there is a significantly high number of international migration per household in the area. Age of household head, family size, and farm land size are determinants that increase the number of international migrant in households. Community-based intervention is needed so as to monitor and regulate the international migration for the benefits of the society.

Keywords: Poisson regression, GLM, number of migrant, Hadiya and Kembata Tembaro zones

Procedia PDF Downloads 265
8923 Optimization of Tundish Geometry for Minimizing Dead Volume Using OpenFOAM

Authors: Prateek Singh, Dilshad Ahmad

Abstract:

Growing demand for high-quality steel products has inspired researchers to investigate the unit operations involved in the manufacturing of these products (slabs, rods, sheets, etc.). One such operation is tundish operation, in which a vessel (tundish) acts as a buffer of molten steel for the solidification operation in mold. It is observed that tundish also plays a crucial role in the quality and cleanliness of the steel produced, besides merely acting as a reservoir for the mold. It facilitates removal of dissolved oxygen (inclusions) from the molten steel thus improving its cleanliness. Inclusion removal can be enhanced by increasing the residence time of molten steel in the tundish by incorporation of flow modifiers like dams, weirs, turbo-pad, etc. These flow modifiers also help in reducing the dead or short circuit zones within the tundish which is significant for maintaining thermal and chemical homogeneity of molten steel. Thus, it becomes important to analyze the flow of molten steel in the tundish for different configuration of flow modifiers. In the present work, effect of varying positions and heights/depths of dam and weir on the dead volume in tundish is studied. Steady state thermal and flow profiles of molten steel within the tundish are obtained using OpenFOAM. Subsequently, Residence Time Distribution analysis is performed to obtain the percentage of dead volume in the tundish. Design of Experiment method is then used to configure different tundish geometries for varying positions and heights/depths of dam and weir, and dead volume for each tundish design is obtained. A second-degree polynomial with two-term interactions of independent variables to predict the dead volume in the tundish with positions and heights/depths of dam and weir as variables are computed using Multiple Linear Regression model. This polynomial is then used in an optimization framework to obtain the optimal tundish geometry for minimizing dead volume using Sequential Quadratic Programming optimization.

Keywords: design of experiments, multiple linear regression, OpenFOAM, residence time distribution, sequential quadratic programming optimization, steel, tundish

Procedia PDF Downloads 180
8922 Bi-Criteria Objective Network Design Model for Multi Period Multi Product Green Supply Chain

Authors: Shahul Hamid Khan, S. Santhosh, Abhinav Kumar Sharma

Abstract:

Environmental performance along with social performance is becoming vital factors for industries to achieve global standards. With a good environmental policy global industries are differentiating them from their competitors. This paper concentrates on multi stage, multi product and multi period manufacturing network. Bi-objective mathematical models for total cost and total emission for the entire forward supply chain are considered. Here five different problems are considered by varying the number of suppliers, manufacturers, and environmental levels, for illustrating the taken mathematical model. GA, and Random search are used for finding the optimal solution. The input parameters of the optimal solution are used to find the tradeoff between the initial investment by the industry and the long term benefit of the environment.

Keywords: closed loop supply chain, genetic algorithm, random search, green supply chain

Procedia PDF Downloads 526
8921 New Method for Determining the Distribution of Birefringence and Linear Dichroism in Polymer Materials Based on Polarization-Holographic Grating

Authors: Barbara Kilosanidze, George Kakauridze, Levan Nadareishvili, Yuri Mshvenieradze

Abstract:

A new method for determining the distribution of birefringence and linear dichroism in optical polymer materials is presented. The method is based on the use of polarization-holographic diffraction grating that forms an orthogonal circular basis in the process of diffraction of probing laser beam on the grating. The intensities ratio of the orders of diffraction on this grating enables the value of birefringence and linear dichroism in the sample to be determined. The distribution of birefringence in the sample is determined by scanning with a circularly polarized beam with a wavelength far from the absorption band of the material. If the scanning is carried out by probing beam with the wavelength near to a maximum of the absorption band of the chromophore then the distribution of linear dichroism can be determined. An appropriate theoretical model of this method is presented. A laboratory setup was created for the proposed method. An optical scheme of the laboratory setup is presented. The results of measurement in polymer films with two-dimensional gradient distribution of birefringence and linear dichroism are discussed.

Keywords: birefringence, linear dichroism, graded oriented polymers, optical polymers, optical anisotropy, polarization-holographic grating

Procedia PDF Downloads 407
8920 Requirements Definitions of Real-Time System Using the Behavioral Patterns Analysis (BPA) Approach: The Healthcare Multi-Agent System

Authors: Assem El-Ansary

Abstract:

This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach using the Healthcare Multi-Agent System. The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are: The Behavioral Pattern Analysis (BPA) modeling methodology. The development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.

Keywords: analysis, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases, Healthcare Multi-Agent System

Procedia PDF Downloads 521
8919 Constructions of Linear and Robust Codes Based on Wavelet Decompositions

Authors: Alla Levina, Sergey Taranov

Abstract:

The classical approach to the providing noise immunity and integrity of information that process in computing devices and communication channels is to use linear codes. Linear codes have fast and efficient algorithms of encoding and decoding information, but this codes concentrate their detect and correct abilities in certain error configurations. To protect against any configuration of errors at predetermined probability can robust codes. This is accomplished by the use of perfect nonlinear and almost perfect nonlinear functions to calculate the code redundancy. The paper presents the error-correcting coding scheme using biorthogonal wavelet transform. Wavelet transform applied in various fields of science. Some of the wavelet applications are cleaning of signal from noise, data compression, spectral analysis of the signal components. The article suggests methods for constructing linear codes based on wavelet decomposition. For developed constructions we build generator and check matrix that contain the scaling function coefficients of wavelet. Based on linear wavelet codes we develop robust codes that provide uniform protection against all errors. In article we propose two constructions of robust code. The first class of robust code is based on multiplicative inverse in finite field. In the second robust code construction the redundancy part is a cube of information part. Also, this paper investigates the characteristics of proposed robust and linear codes.

Keywords: robust code, linear code, wavelet decomposition, scaling function, error masking probability

Procedia PDF Downloads 465
8918 Optimization of Temperature Difference Formula at Thermoacoustic Cryocooler Stack with Genetic Algorithm

Authors: H. Afsari, H. Shokouhmand

Abstract:

When stack is placed in a thermoacoustic resonator in a cryocooler, one extremity of the stack heats up while the other cools down due to the thermoacoustic effect. In the present, with expression a formula by linear theory, will see this temperature difference depends on what factors. The computed temperature difference is compared to the one predicted by the formula. These discrepancies can not be attributed to non-linear effects, rather they exist because of thermal effects. Two correction factors are introduced for close up results among linear theory and computed and use these correction factors to modified linear theory. In fact, this formula, is optimized by GA (Genetic Algorithm). Finally, results are shown at different Mach numbers and stack location in resonator.

Keywords: heat transfer, thermoacoustic cryocooler, stack, resonator, mach number, genetic algorithm

Procedia PDF Downloads 344
8917 Developing a Multiagent-Based Decision Support System for Realtime Multi-Risk Disaster Management

Authors: D. Moser, D. Pinto, A. Cipriano

Abstract:

A Disaster Management System (DMS) for countries with different disasters is very important. In the world different disasters like earthquakes, tsunamis, volcanic eruption, fire or other natural or man-made disasters occurs and have an effect on the population. It is also possible that two or more disasters arisen at the same time, this means to handle multi-risk situations. To handle such a situation a Decision Support System (DSS) based on multiagents is a suitable architecture. The most known DMSs deal with one (in the case of an earthquake-tsunami combination with two) disaster and often with one particular disaster. Nevertheless, a DSS helps for a better realtime response. Analyze the existing systems in the literature and expand them for multi-risk disasters to construct a well-organized system is the proposal of our work. The here shown work is an approach of a multi-risk system, which needs an architecture, and well-defined aims. In this moment our study is a kind of case study to analyze the way we have to follow to create our proposed system in the future.

Keywords: decision support system, disaster management system, multi-risk, multiagent system

Procedia PDF Downloads 395
8916 Study on Resource Allocation of Cloud Operating System Based on Multi-Tenant Data Resource Sharing Technology

Authors: Lin Yunuo, Seow Xing Quan, Burra Venkata Durga Kumar

Abstract:

In this modern era, the cloud operating system is the world trend applied in various industries such as business, healthy, etc. In order to deal with the large capacity of requirements in cloud computing, research come up with multi-tenant cloud computing to maximize the benefits of server providers and clients. However, there are still issues in multi-tenant cloud computing especially regarding resource allocation. Issues such as inefficient resource utilization, large latency, lack of scalability and elasticity and poor data isolation had caused inefficient resource allocation in multi-tenant cloud computing. Without a doubt, these issues prevent multitenancy reaches its best condition. In fact, there are multiple studies conducted to determine the optimal resource allocation to solve these problems these days. This article will briefly introduce the cloud operating system, Multi-tenant cloud computing and resource allocation in cloud computing. It then discusses resource allocation in multi-tenant cloud computing and the current challenges it faces. According to the issue ‘ineffective resource utilization’, we will discuss an efficient dynamic scheduling technique for multitenancy, namely Multi-tenant Dynamic Resource Scheduling Model (MTDRSM). Moreover, there also have some recommendations to improve the shortcoming of this model in this paper’s final section.

Keywords: cloud computing, cloud operation system, multitenancy, resource allocation, utilization of cloud resources

Procedia PDF Downloads 63
8915 The Impact of Deprivation on the Prevalence of Common Mental Health Disorders in Clinical Commissioning Groups across England: A Retrospective, Cross-Sectional Study

Authors: Mohammed-Hareef Asunramu, Sana Hashemi, Raja Ohri, Luc Worthington, Nadia Zaman, Junkai Zhu

Abstract:

Background: The 2012 Health and Social Care Act committed to a ‘parity of esteem between mental and physical health services. Although this investment, aimed to both increase the quality of services and ensure the retention of mental health staff, questions remained regarding its ability to prevent mental health problems. One possible solution is a focus on the social determinants of health which have been shown to impact mental health. Aim: To examine the relationship between the index of multiple deprivations (IMD) and the prevalence of common mental health disorders (CMD) for CCGs in NHS England between 2019 and 2020. Design and setting: Cross-sectional analysis of 189 CCGs in NHS England. Methods: A multivariate linear regression model was utilized with CMD as outcome variable and IMD, age and ethnicity as explanatory variables. Datasets were obtained from Public Health England and the latest UK Census. Results: CCG IMD was found to have a significantly positive relationship with CMD. For every 1-point increase in IMD, CMD increases by 0.25%. Ethnicity had a significantly positive relationship with CMD. For every 1% increase in the population that identifies as BME, there is a 0.03% increase in CMD. Age had a significantly negative relationship with CMD. For every 1% increase in the population aged 60+, there is a 0.11% decrease in CMD. Conclusion: This study demonstrates that addressing mental health issues may require a multi-pronged approach. Beyond budget increases, it is essential to prioritize health equity, with careful considerations towards ethnic minorities and different age brackets.

Keywords: deprivation, health inequality, mental health, social determinants

Procedia PDF Downloads 108
8914 Non-Linear Behavior of Granular Materials in Pavement Design

Authors: Mounir Tichamakdj, Khaled Sandjak, Boualem Tiliouine

Abstract:

The design of flexible pavements is currently carried out using a multilayer elastic theory. However, for thin-surface pavements subject to light or medium traffic volumes, the importance of the non-linear stress-strain behavior of unbound granular materials requires the use of more sophisticated numerical models for the structural design of these pavements. The simplified analysis of the nonlinear behavior of granular materials in pavement design will be developed in this study. To achieve this objective, an equivalent linear model derived from a volumetric shear stress model is used to simulate the nonlinear elastic behavior of two unlinked local granular materials often used in pavements. This model is included here to adequately incorporate material non-linearity due to stress dependence and stiffness of the granular layers in the flexible pavement analysis. The sensitivity of the pavement design criteria to the likely variations in asphalt layer thickness and the mineralogical nature of unbound granular materials commonly used in pavement structures are also evaluated.

Keywords: granular materials, linear equivalent model, non-linear behavior, pavement design, shear volumetric strain model

Procedia PDF Downloads 150
8913 Design and Analysis of a Piezoelectric Linear Motor Based on Rigid Clamping

Authors: Chao Yi, Cunyue Lu, Lingwei Quan

Abstract:

Piezoelectric linear motors have the characteristics of great electromagnetic compatibility, high positioning accuracy, compact structure and no deceleration mechanism, which make it promising to applicate in micro-miniature precision drive systems. However, most piezoelectric motors are employed by flexible clamping, which has insufficient rigidity and is difficult to use in rapid positioning. Another problem is that this clamping method seriously affects the vibration efficiency of the vibrating unit. In order to solve these problems, this paper proposes a piezoelectric stack linear motor based on double-end rigid clamping. First, a piezoelectric linear motor with a length of only 35.5 mm is designed. This motor is mainly composed of a motor stator, a driving foot, a ceramic friction strip, a linear guide, a pre-tightening mechanism and a base. This structure is much simpler and smaller than most similar motors, and it is easy to assemble as well as to realize precise control. In addition, the properties of piezoelectric stack are reviewed and in order to obtain the elliptic motion trajectory of the driving head, a driving scheme of the longitudinal-shear composite stack is innovatively proposed. Finally, impedance analysis and speed performance testing were performed on the piezoelectric linear motor prototype. The motor can measure speed up to 25.5 mm/s under the excitation of signal voltage of 120 V and frequency of 390 Hz. The result shows that the proposed piezoelectric stacked linear motor obtains great performance. It can run smoothly in a large speed range, which is suitable for various precision control in medical images, aerospace, precision machinery and many other fields.

Keywords: piezoelectric stack, linear motor, rigid clamping, elliptical trajectory

Procedia PDF Downloads 132
8912 Particle Filter Implementation of a Non-Linear Dynamic Fall Model

Authors: T. Kobayashi, K. Shiba, T. Kaburagi, Y. Kurihara

Abstract:

For the elderly living alone, falls can be a serious problem encountered in daily life. Some elderly people are unable to stand up without the assistance of a caregiver. They may become unconscious after a fall, which can lead to serious aftereffects such as hypothermia, dehydration, and sometimes even death. We treat the subject as an inverted pendulum and model its angle from the equilibrium position and its angular velocity. As the model is non-linear, we implement the filtering method with a particle filter which can estimate true states of the non-linear model. In order to evaluate the accuracy of the particle filter estimation results, we calculate the root mean square error (RMSE) between the estimated angle/angular velocity and the true values generated by the simulation. The experimental results give the highest accuracy RMSE of 0.0141 rad and 0.1311 rad/s for the angle and angular velocity, respectively.

Keywords: fall, microwave Doppler sensor, non-linear dynamics model, particle filter

Procedia PDF Downloads 186
8911 Regional Flood Frequency Analysis in Narmada Basin: A Case Study

Authors: Ankit Shah, R. K. Shrivastava

Abstract:

Flood and drought are two main features of hydrology which affect the human life. Floods are natural disasters which cause millions of rupees’ worth of damage each year in India and the whole world. Flood causes destruction in form of life and property. An accurate estimate of the flood damage potential is a key element to an effective, nationwide flood damage abatement program. Also, the increase in demand of water due to increase in population, industrial and agricultural growth, has let us know that though being a renewable resource it cannot be taken for granted. We have to optimize the use of water according to circumstances and conditions and need to harness it which can be done by construction of hydraulic structures. For their safe and proper functioning of hydraulic structures, we need to predict the flood magnitude and its impact. Hydraulic structures play a key role in harnessing and optimization of flood water which in turn results in safe and maximum use of water available. Mainly hydraulic structures are constructed on ungauged sites. There are two methods by which we can estimate flood viz. generation of Unit Hydrographs and Flood Frequency Analysis. In this study, Regional Flood Frequency Analysis has been employed. There are many methods for estimating the ‘Regional Flood Frequency Analysis’ viz. Index Flood Method. National Environmental and Research Council (NERC Methods), Multiple Regression Method, etc. However, none of the methods can be considered universal for every situation and location. The Narmada basin is located in Central India. It is drained by most of the tributaries, most of which are ungauged. Therefore it is very difficult to estimate flood on these tributaries and in the main river. As mentioned above Artificial Neural Network (ANN)s and Multiple Regression Method is used for determination of Regional flood Frequency. The annual peak flood data of 20 sites gauging sites of Narmada Basin is used in the present study to determine the Regional Flood relationships. Homogeneity of the considered sites is determined by using the Index Flood Method. Flood relationships obtained by both the methods are compared with each other, and it is found that ANN is more reliable than Multiple Regression Method for the present study area.

Keywords: artificial neural network, index flood method, multi layer perceptrons, multiple regression, Narmada basin, regional flood frequency

Procedia PDF Downloads 390
8910 External Business Environment and Sustainability of Micro, Small and Medium Enterprises in Jigawa State, Nigeria

Authors: Shehu Isyaku

Abstract:

The general objective of the study was to investigate ‘the relationship between the external business environment and the sustainability of micro, small and medium enterprises (MSMEs) in Jigawa state’, Nigeria. Specifically, the study was to examine the relationship between 1) the economic environment, 2) the social environment, 3) the technological environment, and 4) the political environment and the sustainability of MSMEs in Jigawa state, Nigeria. The study was drawn on Resource-Based View (RBV) Theory and Knowledge-Based View (KBV). The study employed a descriptive cross-sectional survey design. A researcher-made questionnaire was used to collect data from the 350 managers/owners who were selected using stratified, purposive and simple random sampling techniques. Data analysis was done using means and standard deviations, factor analysis, Correlation Coefficient, and Pearson Linear Regression analysis. The findings of the study revealed that the sustainability potentials of the managers/owners were rated as high potential (economic, environmental, and social sustainability using 5 5-point Likert scale. Mean ratings of effectiveness of the external business environment were; as highly effective. The results from the Pearson Linear Regression Analysis rejected the hypothesized non-significant effect of the external business environment on the sustainability of MSMEs. Specifically, there is a positive significant relationship between 1) economic environment and sustainability; 2) social environment and sustainability; 3) technological environment and sustainability and political environment and sustainability. The researcher concluded that MSME managers/owners have a high potential for economic, social and environmental sustainability and that all the constructs of the external business environment (economic environment, social environment, technological environment and political environment) have a positive significant relationship with the sustainability of MSMEs. Finally, the researcher recommended that 1) MSME managers/owners need to develop marketing strategies and intelligence systems to accumulate information about the competitors and customers' demands, 2) managers/owners should utilize the customers’ cultural and religious beliefs as an opportunity that should be utilized while formulating business strategies.

Keywords: business environment, sustainability, small and medium enterprises, external business environment

Procedia PDF Downloads 17
8909 Streaming Communication Component for Multi-Robots

Authors: George Oliveira, Luana D. Fronza, Luiza Medeiros, Patricia D. M. Plentz

Abstract:

The research presented in this article is part of a wide project that proposes a scheduling system for multi-robots in intelligent warehouses employing multi-robot path-planning (MPP) and multi-robot task allocation (MRTA) to reconcile multiple restrictions (task delivery time, task priorities, charging capacity, and robots battery capacity). We present the software component capable of interconnecting an open streaming processing architecture and robot operating system (ROS), ensuring communication and message exchange between robots and the environment in which they are inserted. Simulation results show the good performance of our proposed technique for connecting ROS and streaming platforms.

Keywords: complex distributed systems, mobile robots, smart warehouses, streaming platforms

Procedia PDF Downloads 157
8908 Improved Computational Efficiency of Machine Learning Algorithm Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK

Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick

Abstract:

The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning archetypal that could forecast COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organisation (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data is split into 8:2 ratio for training and testing purposes to forecast future new COVID cases. Support Vector Machines (SVM), Random Forests, and linear regression algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID cases is evaluated. Random Forest outperformed the other two Machine Learning algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n=30. The mean square error obtained for Random Forest is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis Random Forest algorithm can perform more effectively and efficiently in predicting the new COVID cases, which could help the health sector to take relevant control measures for the spread of the virus.

Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest

Procedia PDF Downloads 91
8907 How to Use E-Learning to Increase Job Satisfaction in Large Commercial Bank in Bangkok

Authors: Teerada Apibunyopas, Nithinant Thammakoranonta

Abstract:

Many organizations bring e-Learning to use as a tool in their training and human development department. It is getting more popular because it is easy to access to get knowledge all the time and also it provides a rich content, which can develop the employees skill efficiently. This study focused on the factors that affect using e-Learning efficiently, so it will make job satisfaction increased. The questionnaires were sent to employees in large commercial banks, which use e-Learning located in Bangkok, the results from multiple linear regression analysis showed that employee’s characteristics, characteristics of e-Learning, learning and growth have influence on job satisfaction.

Keywords: e-Learning, job satisfaction, learning and growth, Bangkok

Procedia PDF Downloads 470
8906 Assesment of Financial Performance: An Empirical Study of Crude Oil and Natural Gas Companies in India

Authors: Palash Bandyopadhyay

Abstract:

Background and significance of the study: Crude oil and natural gas is of crucial importance due to its increasing demand in India. The demand has been increased because of change of lifestyle overtime. Since India has poor utilization of oil production capacity, constantly the import of it has been increased progressively day by day. This ultimately hit the foreign exchange reserves of India, however it negatively affect the Indian economy as well. The financial performance of crude oil and natural gas companies in India has been trimmed down year after year because of underutilization of production capacity, enhancement of demand, change in life style, and change in import bill and outflows of foreign currencies. In this background, the current study seeks to measure the financial performance of crude oil and natural gas companies of India in the post liberalization period. Keeping in view of this, this study assesses the financial performance in terms of liquidity management, solvency, efficiency, financial stability, and profitability of the companies under study. Methodology: This research work is encircled on yearly ratio data collected from Centre for Monitoring Indian Economy (CMIE) Prowess database for the periods between 1993-94 and 2012-13 with 20 observations using liquidity, solvency and efficiency indicators, profitability indicators and financial stability indicators of all the major crude oil and natural gas companies in India. In the course of analysis, descriptive statistics, correlation statistics, and linear regression test have been utilized. Major findings: Descriptive statistics indicate that liquidity position is satisfactory in case of three crude oil and natural gas companies (Oil and Natural Gas Companies Videsh Limited, Oil India Limited and Selan exploration and transportation Limited) out of selected companies under study but solvency position is satisfactory only for one company (Oil and Natural Gas Companies Videsh Limited). However, efficiency analysis points out that Oil and Natural Gas Companies Videsh Limited performs effectively the management of inventory, receivables, and payables, but the overall liquidity management is not well. Profitability position is very much satisfactory in case of all the companies except Tata Petrodyne Limited, but profitability management is not satisfactory for all the companies under study. Financial stability analysis shows that all the companies are more dependent on debt capital, which bears a financial risk. Correlation and regression test results illustrates that profitability is positively and negatively associated with liquidity, solvency, efficiency, and financial stability indicators. Concluding statement: Management of liquidity and profitability of crude oil and natural gas companies in India should have been improved through controlling unnecessary imports in spite of the heavy demand of crude oil and natural gas in India and proper utilization of domestic oil reserves. At the same time, Indian government has to concern about rupee depreciation and interest rates.

Keywords: financial performance, crude oil and natural gas companies, India, linear regression

Procedia PDF Downloads 301
8905 A User Identification Technique to Access Big Data Using Cloud Services

Authors: A. R. Manu, V. K. Agrawal, K. N. Balasubramanya Murthy

Abstract:

Authentication is required in stored database systems so that only authorized users can access the data and related cloud infrastructures. This paper proposes an authentication technique using multi-factor and multi-dimensional authentication system with multi-level security. The proposed technique is likely to be more robust as the probability of breaking the password is extremely low. This framework uses a multi-modal biometric approach and SMS to enforce additional security measures with the conventional Login/password system. The robustness of the technique is demonstrated mathematically using a statistical analysis. This work presents the authentication system along with the user authentication architecture diagram, activity diagrams, data flow diagrams, sequence diagrams, and algorithms.

Keywords: design, implementation algorithms, performance, biometric approach

Procedia PDF Downloads 446