Search results for: mount vibration variability
1369 On the Bootstrap P-Value Method in Identifying out of Control Signals in Multivariate Control Chart
Authors: O. Ikpotokin
Abstract:
In any production process, every product is aimed to attain a certain standard, but the presence of assignable cause of variability affects our process, thereby leading to low quality of product. The ability to identify and remove this type of variability reduces its overall effect, thereby improving the quality of the product. In case of a univariate control chart signal, it is easy to detect the problem and give a solution since it is related to a single quality characteristic. However, the problems involved in the use of multivariate control chart are the violation of multivariate normal assumption and the difficulty in identifying the quality characteristic(s) that resulted in the out of control signals. The purpose of this paper is to examine the use of non-parametric control chart (the bootstrap approach) for obtaining control limit to overcome the problem of multivariate distributional assumption and the p-value method for detecting out of control signals. Results from a performance study show that the proposed bootstrap method enables the setting of control limit that can enhance the detection of out of control signals when compared, while the p-value method also enhanced in identifying out of control variables.Keywords: bootstrap control limit, p-value method, out-of-control signals, p-value, quality characteristics
Procedia PDF Downloads 3471368 Detection of Extrusion Blow Molding Defects by Airflow Analysis
Authors: Eva Savy, Anthony Ruiz
Abstract:
In extrusion blow molding, there is great variability in product quality due to the sensitivity of the machine settings. These variations lead to unnecessary rejects and loss of time. Yet production control is a major challenge for companies in this sector to remain competitive within their market. Current quality control methods only apply to finished products (vision control, leak test...). It has been shown that material melt temperature, blowing pressure, and ambient temperature have a significant impact on the variability of product quality. Since blowing is a key step in the process, we have studied this parameter in this paper. The objective is to determine if airflow analysis allows the identification of quality problems before the full completion of the manufacturing process. We conducted tests to determine if it was possible to identify a leakage defect and an obstructed defect, two common defects on products. The results showed that it was possible to identify a leakage defect by airflow analysis.Keywords: extrusion blow molding, signal, sensor, defects, detection
Procedia PDF Downloads 1511367 Free Vibration Analysis of Gabled Frame Considering Elastic Supports and Semi-Rigid Connections
Authors: A. Shooshtari, A. R. Masoodi, S. Heyrani Moghaddam
Abstract:
Free vibration analysis of a gabled frame with elastic support and semi-rigid connections is performed by using a program in OpenSees software. Natural frequencies and mode shape details of frame are obtained for two states, which are semi-rigid connections and elastic supports, separately. The members of this structure are analyzed as a prismatic nonlinear beam-column element in software. The mass of structure is considered as two equal lumped masses at the head of two columns in horizontal and vertical directions. Note that the degree of freedom, allocated to all nodes, is equal to three. Furthermore, the mode shapes of frame are achieved. Conclusively, the effects of connections and supports flexibility on the natural frequencies and mode shapes of structure are investigated.Keywords: natural frequency, mode shape, gabled frame, semi-rigid connection, elastic support, OpenSees software
Procedia PDF Downloads 4071366 Rock Thickness Measurement by Using Self-Excited Acoustical System
Authors: Janusz Kwaśniewski, Ireneusz Dominik, Krzysztof Lalik
Abstract:
The knowledge about rock layers thickness, especially above drilled mining pavements are crucial for workers safety. The measuring systems used nowadays are generally imperfect and there is a strong demand for improvement. The application of a new type of a measurement system called Self-Excited Acoustical System is presented in the paper. The system was applied until now to monitor stress changes in metal and concrete constructions. The change in measurement methodology resulted in possibility of measuring the thickness of the rocks above the tunnels as well as thickness of a singular rock layer. The idea is to find two resonance frequencies of the self-exited system, which consists of a vibration exciter and vibration receiver placed at a distance, which are coupled with a proper power amplifier, and which operate in a closed loop with a positive feedback. The resonance with the higher amplitude determines thickness of the whole rock, whereas the lower amplitude resonance indicates thickness of a singular layer. The results of the laboratory tests conducted on a group of different rock materials are also presented.Keywords: auto-oscillator, non-destructive testing, rock thickness measurement, geotechnic
Procedia PDF Downloads 3741365 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics
Authors: Anas H. Aljemely, Jianping Xuan
Abstract:
Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features
Procedia PDF Downloads 2101364 Free Vibration Analysis of Timoshenko Beams at Higher Modes with Central Concentrated Mass Using Coupled Displacement Field Method
Authors: K. Meera Saheb, K. Krishna Bhaskar
Abstract:
Complex structures used in many fields of engineering are made up of simple structural elements like beams, plates etc. These structural elements, sometimes carry concentrated masses at discrete points, and when subjected to severe dynamic environment tend to vibrate with large amplitudes. The frequency amplitude relationship is very much essential in determining the response of these structural elements subjected to the dynamic loads. For Timoshenko beams, the effects of shear deformation and rotary inertia are to be considered to evaluate the fundamental linear and nonlinear frequencies. A commonly used method for solving vibration problem is energy method, or a finite element analogue of the same. In the present Coupled Displacement Field method the number of undetermined coefficients is reduced to half when compared to the famous Rayleigh Ritz method, which significantly simplifies the procedure to solve the vibration problem. This is accomplished by using a coupling equation derived from the static equilibrium of the shear flexible structural element. The prime objective of the present paper here is to study, in detail, the effect of a central concentrated mass on the large amplitude free vibrations of uniform shear flexible beams. Accurate closed form expressions for linear frequency parameter for uniform shear flexible beams with a central concentrated mass was developed and the results are presented in digital form.Keywords: coupled displacement field, coupling equation, large amplitude vibrations, moderately thick plates
Procedia PDF Downloads 2261363 A Study on the Method of Accelerated Life Test to Electric Rotating System
Authors: Youn-Hwan Kim, Jae-Won Moon, Hae-Joong Kim
Abstract:
This paper introduces the study on the method of accelerated life test to electrical rotating system. In recent years, as well as efficiency for motors and generators, there is a growing need for research on the life expectancy. It is considered impossible to calculate the acceleration coefficient by increasing the rotational load or temperature load as the acceleration stress in the motor system because the temperature of the copper exceeds the wire thermal class rating. In this paper, the accelerated life test methods of the electrical rotating system are classified according to the application. This paper describes the development of the test procedure for the highly accelerated life test (HALT) of the 100kW permanent magnet synchronous motor (PMSM) of electric vehicle. Finally, it explains how to select acceleration load for vibration, temperature, bearing load, etc. for accelerated life test.Keywords: acceleration coefficient, electric vehicle motor, HALT, life expectancy, vibration
Procedia PDF Downloads 3261362 Application of Transform Fourier for Dynamic Control of Structures with Global Positioning System
Authors: J. M. de Luis Ruiz, P. M. Sierra García, R. P. García, R. P. Álvarez, F. P. García, E. C. López
Abstract:
Given the evolution of viaducts, structural health monitoring requires more complex techniques to define their state. two alternatives can be distinguished: experimental and operational modal analysis. Although accelerometers or Global Positioning System (GPS) have been applied for the monitoring of structures under exploitation, the dynamic monitoring during the stage of construction is not common. This research analyzes whether GPS data can be applied to certain dynamic geometric controls of evolving structures. The fundamentals of this work were applied to the New Bridge of Cádiz (Spain), a worldwide milestone in bridge building. GPS data were recorded with an interval of 1 second during the erection of segments and turned to the frequency domain with Fourier transform. The vibration period and amplitude were contrasted with those provided by the finite element model, with differences of less than 10%, which is admissible. This process provides a vibration record of the structure with GPS, avoiding specific equipment.Keywords: Fourier transform, global position system, operational modal analysis, structural health monitoring
Procedia PDF Downloads 2461361 Genetic Variability in Advanced Derivatives of Interspecific Hybrids in Brassica
Authors: Yasir Ali, Farhatullah
Abstract:
The present study was conducted to estimate the genetic variability, heritability and genetic advance in six parental lines and their 56 genotypes derived from five introgressed brassica populations on the basis of morphological and biochemical traits. The experiment was laid out in a randomized complete block design with two replications at The University of Agriculture Peshawar-Pakistan during growing season of 2015-2016. The ANOVA of all traits of F5:6 populations showed highly significant differences (P ≤ 0.01) for all morphological and biochemical traits. Among F5:6 populations, the genotype 2(526) was earlier in flowering (108.65 days), and genotype 14(485) was earlier in maturity (170 days). Tallest plants (182.5 cm), largest main raceme (91.5 cm) and maximum number of pods (80.5) on main raceme were recorded for genotype 17(34). Maximum primary branches plant-1(6.2) and longest pods (10.26 cm) were recorded for genotype 15, while genotype 16(171) had more seeds pod⁻¹ (22) and gave maximum yield plant-1 (30.22 g). The maximum 100-seed weight (0.60 g) was observed for genotype 10(506) while high protein content (22.61%) was recorded for genotype 4(99). Maximum oil content (54.08 %) and low linoleic acid (7.07 %) were produced by genotype (12(138) and low glucosinolate (59.01 µMg⁻¹) was recorded for genotype 21(113). The genotype 27(303) having high oleic acid content (51.73 %) and genotype 1(209) gave low erucic acid (35.97 %). Among the F5:6 populations moderate to high heritability observed for all morphological and biochemical traits coupled with high genetic advance. Cluster analysis grouped the 56 F5:6 populations along their parental lines into seven different groups. Each group was different from the other group on the basis of morphological and biochemical traits. Moreover all the F5:6 populations showed sufficient variability. Genotypes 10(506) and 16(171) were superior for high seed yield⁻¹, 100-seeds weight, and seed pod⁻¹ and are recommended for future breeding program.Keywords: Brassicaceae, biochemical characterization, introgression, morphological characterization
Procedia PDF Downloads 1801360 Wearable Monitoring and Treatment System for Parkinson’s Disease
Authors: Bulcha Belay Etana, Benny Malengier, Janarthanan Krishnamoorthy, Timothy Kwa, Lieva Vanlangenhove
Abstract:
Electromyography measures the electrical activity of muscles using surface electrodes or needle electrodes to monitor various disease conditions. Recent developments in the signal acquisition of electromyograms using textile electrodes facilitate wearable devices, enabling patients to monitor and control their health status outside of healthcare facilities. Here, we have developed and tested wearable textile electrodes to acquire electromyography signals from patients suffering from Parkinson’s disease and incorporated a feedback-control system to relieve muscle cramping through thermal stimulus. In brief, the textile electrodes made of stainless steel was knitted into a textile fabric as a sleeve, and their electrical characteristic, such as signal-to-noise ratio, was compared with traditional electrodes. To relieve muscle cramping, a heating element made of stainless-steel conductive yarn sewn onto a cotton fabric, coupled with a vibration system, was developed. The system integrated a microcontroller and a Myoware muscle sensor to activate the heating element as well as the vibration motor when cramping occurred. At the same time, the element gets deactivated when the muscle cramping subsides. An optimum therapeutic temperature of 35.5°C is regulated and maintained continuously by a heating device. The textile electrode exhibited a signal-to-noise ratio of 6.38dB, comparable to that of the traditional electrode’s value of 7.05 dB. For a given 9 V power supply, the rise time for the developed heating element was about 6 minutes to reach an optimum temperature.Keywords: smart textile system, wearable electronic textile, electromyography, heating textile, vibration therapy, Parkinson’s disease
Procedia PDF Downloads 771359 Measuring Emotion Dynamics on Facebook: Associations between Variability in Expressed Emotion and Psychological Functioning
Authors: Elizabeth M. Seabrook, Nikki S. Rickard
Abstract:
Examining time-dependent measures of emotion such as variability, instability, and inertia, provide critical and complementary insights into mental health status. Observing changes in the pattern of emotional expression over time could act as a tool to identify meaningful shifts between psychological well- and ill-being. From a practical standpoint, however, examining emotion dynamics day-to-day is likely to be burdensome and invasive. Utilizing social media data as a facet of lived experience can provide real-world, temporally specific access to emotional expression. Emotional language on social media may provide accurate and sensitive insights into individual and community mental health and well-being, particularly with focus placed on the within-person dynamics of online emotion expression. The objective of the current study was to examine the dynamics of emotional expression on the social network platform Facebook for active users and their relationship with psychological well- and ill-being. It was expected that greater positive and negative emotion variability, instability, and inertia would be associated with poorer psychological well-being and greater depression symptoms. Data were collected using a smartphone app, MoodPrism, which delivered demographic questionnaires, psychological inventories assessing depression symptoms and psychological well-being, and collected the Status Updates of consenting participants. MoodPrism also delivered an experience sampling methodology where participants completed items assessing positive affect, negative affect, and arousal, daily for a 30-day period. The number of positive and negative words in posts was extracted and automatically collated by MoodPrism. The relative proportion of positive and negative words from the total words written in posts was then calculated. Preliminary analyses have been conducted with the data of 9 participants. While these analyses are underpowered due to sample size, they have revealed trends that greater variability in the emotion valence expressed in posts is positively associated with greater depression symptoms (r(9) = .56, p = .12), as is greater instability in emotion valence (r(9) = .58, p = .099). Full data analysis utilizing time-series techniques to explore the Facebook data set will be presented at the conference. Identifying the features of emotion dynamics (variability, instability, inertia) that are relevant to mental health in social media emotional expression is a fundamental step in creating automated screening tools for mental health that are temporally sensitive, unobtrusive, and accurate. The current findings show how monitoring basic social network characteristics over time can provide greater depth in predicting risk and changes in depression and positive well-being.Keywords: emotion, experience sampling methods, mental health, social media
Procedia PDF Downloads 2501358 Spatio-Temporal Variability and Trends in Frost-Free Season Parameters in Finland: Influence of Climate Teleconnections
Authors: Masoud Irannezhad, Sirpa Rasmus, Saghar Ahmadian, Deliang Chen, Bjorn Klove
Abstract:
Variability and changes in thermal conditions play a crucial role in functioning of human society, particularly over cold climate regions like Finland. Accordingly, the frost-free season (FFS) parameters in terms of start (FFSS), end (FFSE) and length (FFSL) have substantial effects not only on natural environment (e.g. flora and fauna), but also on human requirements (e.g. agriculture, forestry and energy generation). Applying the 0°C threshold of minimum temperature (Tmin), the FFS was defined as the period between the last spring frost as FFSS and the first fall frost as FFSE. For this study, gridded (10 x 10 km2) daily minimum temperature datasets throughout Finland during 1961-2011 was used to investigate recent spatio-temporal variations and trends in frost-free season (FFS) parameters and their relationships with the well-known large-scale climate teleconnections (CTs). The FFS in Finland naturally increases from north (~60 days) to south (~190 days), in association with earlier FFSS (~24 April) and later FFSE (~30 October). Statistically significant (p<0.05) trends in FFSL were all positive (increasing) ranged between 0 and 13.5 (days/decade) and mainly observed in the east, upper west, centre and upper north of Finland. Such lengthening trends in FFS were attributable to both earlier FFSS and later FFSE mostly over central and upper northern Finland, while only to later FFSE in eastern and upper western parts. Variations in both FFSL and FFSS were significantly associated with the Polar (POL) pattern over northern Finland, while with the East Atlantic (EA) pattern over eastern and upper western areas. However, the POL and Scandinavia (SCA) patterns were most influential CTs for FFSE variability over northern Finland.Keywords: climate teleconnections, Finland, frost-free season, trend analysis
Procedia PDF Downloads 2021357 Investigating Geopolymerization Process of Aluminosilicates and its Impact on the Compressive Strength of the Produced Geopolymers
Authors: Heba Fouad, Tarek M. Madkour, Safwan A. Khedr
Abstract:
This paper investigates multiple factors that impact the formation of geopolymers and their compressive strength to be utilized in construction as an environmentally-friendly material. Bentonite and Kaolinite were thermally calcinated at 750 °C to obtain Metabentonite and Metakaolinite with higher reactivity. Both source materials were activated using a solution of sodium hydroxide (NaOH). Thereafter, samples were cured at different temperatures. The samples were analyzed chemically using a host of spectroscopic techniques. The bulk density and compressive strength of the produced Geopolymer pastes were studied. Findings indicate that the ratio of NaOH solution to source material affects the compressive strength, being optimal at 0.54. Moreover, controlled heat curing was proven effective to improve compressive strength. The existence of characteristic Fourier Transform Infrared Spectroscopy (FTIR) peaks at approximately 1020 cm-1 and 460 cm-1 which corresponds to the asymmetric stretching vibration of Si-O-T and bending vibration of Si-O-Si, hence, confirming the formation of the target geopolymer.Keywords: calcination of metakaolinite, compressive strength, FTIR analysis, geopolymer, green cement
Procedia PDF Downloads 1701356 A Wireless Feedback Control System as a Base of Bio-Inspired Structure System to Mitigate Vibration in Structures
Authors: Gwanghee Heo, Geonhyeok Bang, Chunggil Kim, Chinok Lee
Abstract:
This paper attempts to develop a wireless feedback control system as a primary step eventually toward a bio-inspired structure system where inanimate structure behaves like a life form autonomously. It is a standalone wireless control system which is supposed to measure externally caused structural responses, analyze structural state from acquired data, and take its own action on the basis of the analysis with an embedded logic. For an experimental examination of its effectiveness, we applied it on a model of two-span bridge and performed a wireless control test. Experimental tests have been conducted for comparison on both the wireless and the wired system under the conditions of Un-control, Passive-off, Passive-on, and Lyapunov control algorithm. By proving the congruence of the test result of the wireless feedback control system with the wired control system, its control performance was proven to be effective. Besides, it was found to be economical in energy consumption and also autonomous by means of a command algorithm embedded into it, which proves its basic capacity as a bio-inspired system.Keywords: structural vibration control, wireless system, MR damper, feedback control, embedded system
Procedia PDF Downloads 2111355 Erectile Function and Heart Rate Variability in Men under 40 Years Old
Authors: Rui Miguel Costa, Jose Pestana, David Costa, Paula Mangia, Catarina Correia, Mafalda Pinto Coelho
Abstract:
There is lack of studies examining the relation of different heart rate variability (HRV) parameters with the risk of erectile dysfunction (ED) in younger men. Thus, the present study aimed at examining, in a nonclinical sample of men aged 19-39 years old (mean age = 23.98 years, SD = 4.90), the relations of risk of ED with the standard deviation of the heart rate (SD of HR), high and low frequency power of HRV, and low-to-high frequency HRV ratio. Eighty-three heterosexual Portuguese men completed the 5-item version of the International Index of Erectile Function (IIEF-5) and HRV parameters were calculated from a 5-minute resting period. Risk of ED was determined by IIEF-5 scores of 21 or less. Fifteen men (18.1%) reported symptoms of ED (14 with mild and one with mild to moderate symptoms). Univariate analyses of variance revealed that risk of ED was related to lesser SD of HR and lesser low-frequency power, the two HRV parameters that express a coupling of higher vagal and sympathetic tone. Risk of ED was unrelated to high-frequency power and low-to-high frequency HRV ratio. Further, in a logistic regression, the risk of ED was independently predicted by older age and lower SD of HR, but not by low-frequency power, having a regular sexual partner, and cohabiting. The results provide preliminary evidence that, in younger men, a coupling of higher vagal and sympathetic tone, as indexed by the SD of HR, is important for erections. Greater resting SD of HR might reflect better vascular and interpersonal function via vagal tone coupled with greater motor mobilization to pursue sexual intercourse via sympathetic tone. Many interventions can elevate HRV; future research is warranted on how they can be tailored to treat ED in younger men.Keywords: erectile dysfunction, heart rate variability, standard deviation of the heart rate, younger men
Procedia PDF Downloads 2761354 Design Development and Qualification of a Magnetically Levitated Blower for C0₂ Scrubbing in Manned Space Missions
Authors: Larry Hawkins, Scott K. Sakakura, Michael J. Salopek
Abstract:
The Marshall Space Flight Center is designing and building a next-generation CO₂ removal system, the Four Bed Carbon Dioxide Scrubber (4BCO₂), which will use the International Space Station (ISS) as a testbed. The current ISS CO2 removal system has faced many challenges in both performance and reliability. Given that CO2 removal is an integral Environmental Control and Life Support System (ECLSS) subsystem, the 4BCO2 Scrubber has been designed to eliminate the shortfalls identified in the current ISS system. One of the key required upgrades was to improve the performance and reliability of the blower that provides the airflow through the CO₂ sorbent beds. A magnetically levitated blower, capable of higher airflow and pressure than the previous system, was developed to meet this need. The design and qualification testing of this next-generation blower are described here. The new blower features a high-efficiency permanent magnet motor, a five-axis, active magnetic bearing system, and a compact controller containing both a variable speed drive and a magnetic bearing controller. The blower uses a centrifugal impeller to pull air from the inlet port and drive it through an annular space around the motor and magnetic bearing components to the exhaust port. Technical challenges of the blower and controller development include survival of the blower system under launch random vibration loads, operation in microgravity, packaging under strict size and weight requirements, and successful operation during 4BCO₂ operational changeovers. An ANSYS structural dynamic model of the controller was used to predict response to the NASA defined random vibration spectrum and drive minor design changes. The simulation results are compared to measurements from qualification testing the controller on a vibration table. Predicted blower performance is compared to flow loop testing measurements. Dynamic response of the system to valve changeovers is presented and discussed using high bandwidth measurements from dynamic pressure probes, magnetic bearing position sensors, and actuator coil currents. The results presented in the paper show that the blower controller will survive launch vibration levels, the blower flow meets the requirements, and the magnetic bearings have adequate load capacity and control bandwidth to maintain the desired rotor position during the valve changeover transients.Keywords: blower, carbon dioxide removal, environmental control and life support system, magnetic bearing, permanent magnet motor, validation testing, vibration
Procedia PDF Downloads 1351353 Predictability of Kiremt Rainfall Variability over the Northern Highlands of Ethiopia on Dekadal and Monthly Time Scales Using Global Sea Surface Temperature
Authors: Kibrom Hadush
Abstract:
Countries like Ethiopia, whose economy is mainly rain-fed dependent agriculture, are highly vulnerable to climate variability and weather extremes. Sub-seasonal (monthly) and dekadal forecasts are hence critical for crop production and water resource management. Therefore, this paper was conducted to study the predictability and variability of Kiremt rainfall over the northern half of Ethiopia on monthly and dekadal time scales in association with global Sea Surface Temperature (SST) at different lag time. Trends in rainfall have been analyzed on annual, seasonal (Kiremt), monthly, and dekadal (June–September) time scales based on rainfall records of 36 meteorological stations distributed across four homogenous zones of the northern half of Ethiopia for the period 1992–2017. The results from the progressive Mann–Kendall trend test and the Sen’s slope method shows that there is no significant trend in the annual, Kiremt, monthly and dekadal rainfall total at most of the station's studies. Moreover, the rainfall in the study area varies spatially and temporally, and the distribution of the rainfall pattern increases from the northeast rift valley to northwest highlands. Methods of analysis include graphical correlation and multiple linear regression model are employed to investigate the association between the global SSTs and Kiremt rainfall over the homogeneous rainfall zones and to predict monthly and dekadal (June-September) rainfall using SST predictors. The results of this study show that in general, SST in the equatorial Pacific Ocean is the main source of the predictive skill of the Kiremt rainfall variability over the northern half of Ethiopia. The regional SSTs in the Atlantic and the Indian Ocean as well contribute to the Kiremt rainfall variability over the study area. Moreover, the result of the correlation analysis showed that the decline of monthly and dekadal Kiremt rainfall over most of the homogeneous zones of the study area are caused by the corresponding persistent warming of the SST in the eastern and central equatorial Pacific Ocean during the period 1992 - 2017. It is also found that the monthly and dekadal Kiremt rainfall over the northern, northwestern highlands and northeastern lowlands of Ethiopia are positively correlated with the SST in the western equatorial Pacific, eastern and tropical northern the Atlantic Ocean. Furthermore, the SSTs in the western equatorial Pacific and Indian Oceans are positively correlated to the Kiremt season rainfall in the northeastern highlands. Overall, the results showed that the prediction models using combined SSTs at various ocean regions (equatorial and tropical) performed reasonably well in the prediction (With R2 ranging from 30% to 65%) of monthly and dekadal rainfall and recommends it can be used for efficient prediction of Kiremt rainfall over the study area to aid with systematic and informed decision making within the agricultural sector.Keywords: dekadal, Kiremt rainfall, monthly, Northern Ethiopia, sea surface temperature
Procedia PDF Downloads 1401352 Phylogenetic Diversity and Antibiotic Resistance in Sediments of Aegean Sea
Authors: Ilknur Tuncer, Nihayet Bizsel
Abstract:
The studies in bacterial diversity and antimicrobial resistance in coastal areas are important to understand the variability in the community structures and metabolic activities. In the present study, antimicrobial susceptibility and phylogenetic analysis of bacteria isolated from stations with different depths and influenced by terrestrial and marine fluxes in eastern Aegean Sea were illustrated. 51% of the isolates were found as resistant and 14% showed high MAR index indicating the high-risk sources of contamination in the environment. The resistance and the intermediate levels and high MAR index of the study area were 38–60%, 11–38% and 0–40%, respectively. According to 16S rRNA gene analysis, it was found that the isolates belonged to two phyla Firmicutes and Gammaproteobacteria with the genera Bacillus, Halomonas, Oceanobacillus, Photobacterium, Pseudoalteromonas, Psychrobacter, and Vibrio. 47% of Bacillus strains which were dominant among all isolates were resistant. In addition to phylogenetically diverse bacteria, the variability in resistance, intermediate and high MAR index levels of the study area indicated the effect of geographical differences.Keywords: bacterial diversity, multiple antibiotic resistance, 16S rRNA genes, Aegean Sea
Procedia PDF Downloads 4121351 Numerical Simulation of a Three-Dimensional Framework under the Action of Two-Dimensional Moving Loads
Authors: Jia-Jang Wu
Abstract:
The objective of this research is to develop a general technique so that one may predict the dynamic behaviour of a three-dimensional scale crane model subjected to time-dependent moving point forces by means of conventional finite element computer packages. To this end, the whole scale crane model is divided into two parts: the stationary framework and the moving substructure. In such a case, the dynamic responses of a scale crane model can be predicted from the forced vibration responses of the stationary framework due to actions of the four time-dependent moving point forces induced by the moving substructure. Since the magnitudes and positions of the moving point forces are dependent on the relative positions between the trolley, moving substructure and the stationary framework, it can be found from the numerical results that the time histories for the moving speeds of the moving substructure and the trolley are the key factors affecting the dynamic responses of the scale crane model.Keywords: moving load, moving substructure, dynamic responses, forced vibration responses
Procedia PDF Downloads 3521350 The Continuously Supported Infinity Rail Subjected to a Moving Complex Bogie System
Authors: Vladimir Stojanović, Marko D. Petković
Abstract:
The vibration of a complex bogie system that moves on along the high order shear deformable beam on a viscoelastic foundation is studied. The complex bogie system has been modeled by elastically connected rigid bars on an identical supports. Elastic coupling between bars is introduced to simulate rigidly or flexibly (transversal or/and rotational) connection. Identical supports are modeled as a system of attached spring and dashpot to the bar on one side and interact with the beam through the concentrated mass on the other side. It is assumed that the masses and the beam are always in contact. New analytically determined critical velocity of the system is presented. It is analyzed the case when the complex bogie system exceeds the minimum phase velocity of waves in the beam when the vibration of the system may become unstable. Effect of an elastic coupling between bars on the stability of the system has been analyzed. The instability regions are found for the complex bogie system by applying the principle of the argument and D-decomposition method.Keywords: Reddy-Bickford beam, D-decomposition method, principle of argument, critical velocity
Procedia PDF Downloads 3061349 Geometry of the Bandaging Procedure and Its Application while Wrapping Bandages for Treatment of Leg Ulcers
Authors: Monica Puri Sikka, Subrato Ghosh Arunangshu Mukhopadhyay
Abstract:
Appropriate compression bandaging is important for compression therapeutic medical diseases. The high compression approach employed for treating venous leg ulcers should be used correctly so that sufficient (but not excessive) pressure is applied. Bandages used to treat venous disease by compression should achieve and sustain effective levels and gradients of pressure and minimise the risk of pressure trauma. To maintain graduated compression on the limb the bandage needs to be applied at same tension for each layer from ankle to the knee. In this paper the geometry for various bandaging procedures is used to wrap each layer of bandage by marking the relaxed length of the bandage. The relaxed length is calculated depending on the stretch, average circumference of the limb on which it is to be applied and the bandaging technique to be used. This paper aims at developing a scientific approach while applying the bandage to reduce the inter operator variability in applying same tension on each successive layer of bandage.Keywords: bandaging, compression, inter operator variability, graduated, relaxed length, stretch
Procedia PDF Downloads 4951348 The Impact of Karst Structures on the Urban Environment in Semi-Arid Area
Authors: Benhammadi Hocine, Chaffai Hicham
Abstract:
Urban development is often dependent on adequate land for expansion, except that sometimes these areas have vulnerability. This is the case of karst regions characterized by carbonate geological formations marked by the presence of cavities and cracks. The impact of climate variability in Cheria area marked by a growing shortage of rainfall, the impact resulted in the development of the vulnerability of these structures. This vulnerability has led to the appearance of collapse phenomena as well in both agricultural and urban areas. Two phenomena have emerged to explain the collapses, the first is assigned a filling process in the cavities, and the second is due to a weakening of the resistance that collapses limestone slab shear phenomenon. In urban areas, the weight of the buildings has increased the load on the limestone slab and accelerated the collapse. The analysis of the environmental process is in the context of our modest work, after which we indicate the appropriate methods for management policy of urban expansion. This management more preventive (upstream), much less expensive than remedial solutions (downstream) needed after the event and sometimes ineffective.Keywords: Cheria, urban, climate variability, vulnerability karst collapse, extension, management
Procedia PDF Downloads 4681347 Study of Flow-Induced Noise Control Effects on Flat Plate through Biomimetic Mucus Injection
Authors: Chen Niu, Xuesong Zhang, Dejiang Shang, Yongwei Liu
Abstract:
Fishes can secrete high molecular weight fluid on their body skin to enable their rapid movement in the water. In this work, we employ a hybrid method that combines Computational Fluid Dynamics (CFD) and Finite Element Method (FEM) to investigate the effects of different mucus viscosities and injection velocities on fluctuation pressure in the boundary layer and flow-induced structural vibration noise of a flat plate model. To accurately capture the transient flow distribution on the plate surface, we use Large Eddy Simulation (LES) while the mucus inlet is positioned at a sufficient distance from the model to ensure effective coverage. Mucus injection is modeled using the Volume of Fluid (VOF) method for multiphase flow calculations. The results demonstrate that mucus control of pulsating pressure effectively reduces flow-induced structural vibration noise, providing an approach for controlling flow-induced noise in underwater vehicles.Keywords: mucus, flow control, noise control, flow-induced noise
Procedia PDF Downloads 1451346 Improved Wearable Monitoring and Treatment System for Parkinson’s Disease
Authors: Bulcha Belay Etana, Benny Malengier, Janarthanan Krishnamoorthy, Timothy Kwa, Lieva VanLangenhove
Abstract:
Electromyography measures the electrical activity of muscles using surface electrodes or needle electrodes to monitor various disease conditions. Recent developments in the signal acquisition of electromyograms using textile electrodes facilitate wearable devices, enabling patients to monitor and control their health status outside of healthcare facilities. Here, we have developed and tested wearable textile electrodes to acquire electromyography signals from patients suffering from Parkinson’s disease and incorporated a feedback-control system to relieve muscle cramping through thermal stimulus. In brief, the textile electrodes made of stainless steel was knitted into a textile fabric as a sleeve, and their electrical characteristic, such as signal-to-noise ratio, was compared with traditional electrodes. To relieve muscle cramping, a heating element made of stainless-steel conductive yarn sewn onto cotton fabric, coupled with a vibration system, was developed. The system integrated a microcontroller and a Myoware muscle sensor to activate the heating element as well as the vibration motor when cramping occurs, and at the same time, the element gets deactivated when the muscle cramping subsides. An optimum therapeutic temperature of 35.5 °C is regulated by continuous temperature monitoring to deactivate the heating system when this threshold value is reached. The textile electrode exhibited a signal-to-noise ratio of 6.38dB, comparable to that of the traditional electrode’s value of 7.05 dB. For a given 9 V power supply, the rise time was about 6 minutes for the developed heating element to reach an optimum temperature.Keywords: smart textile system, wearable electronic textile, electromyography, heating textile, vibration therapy, Parkinson’s disease
Procedia PDF Downloads 1061345 Migration in Times of Uncertainty
Authors: Harman Jaggi, David Steinsaltz, Shripad Tuljapurkar
Abstract:
Understanding the effect of fluctuations on populations is crucial in the context of increasing habitat fragmentation, climate change, and biological invasions, among others. Migration in response to environmental disturbances enables populations to escape unfavorable conditions, benefit from new environments and thereby ride out fluctuations in variable environments. Would populations disperse if there is no uncertainty? Karlin showed in 1982 that when sub-populations experience distinct but fixed growth rates at different sites, greater mixing of populations will lower the overall growth rate relative to the most favorable site. Here we ask if and when environmental variability favors migration over no-migration. Specifically, in random environments, would a small amount of migration increase the overall long-run growth rate relative to the zero migration case? We use analysis and simulations to show how long-run growth rate changes with migration rate. Our results show that when fitness (dis)advantages fluctuate over time across sites, migration may allow populations to benefit from variability. When there is one best site with highest growth rate, the effect of migration on long-run growth rate depends on the difference in expected growth between sites, scaled by the variance of the difference. When variance is large, there is a substantial probability of an inferior site experiencing higher growth rate than its average. Thus, a high variance can compensate for a difference in average growth rates between sites. Positive correlations in growth rates across sites favor less migration. With multiple sites and large fluctuations, the length of shortest cycle (excursion) from the best site (on average) matters, and we explore the interplay between excursion length, average differences between sites and the size of fluctuations. Our findings have implications for conservation biology: even when there are superior sites in a sea of poor habitats, variability and habitat quality across space may be key to determining the importance of migration.Keywords: migration, variable-environments, random, dispersal, fluctuations, habitat-quality
Procedia PDF Downloads 1391344 Crystal Structure, Vibration Study, and Calculated Frequencies by Density Functional Theory Method of Copper Phosphate Dihydrate
Authors: Soufiane Zerraf, Malika Tridane, Said Belaaouad
Abstract:
CuHPO₃.2H₂O was synthesized by the direct method. CuHPO₃.2H₂O crystallizes in the orthorhombic system, space group P2₁2₁2₁, a = 6.7036 (2) Å, b = 7.3671 (4) Å, c = 8.9749 (4) Å, Z = 4, V = 443.24 (4) ų. The crystal structure was refined to R₁= 0.0154, R₂= 0.0380 for 19018 reflections satisfying criterion I ≥ 2σ (I). The structural resolution shows the existence of chains of ions HPO₃- linked together by hydrogen bonds. The crystalline structure is formed by chains consisting of Cu[O₃(H₂O)₃] deformed octahedral, which are connected to the vertices. The chains extend parallel to b and are mutually linked by PO₃ groups. The structure is closely related to that of CuSeO₃.2H₂O and CuTeO₃.2H₂O. The experimental studies of the infrared and Raman spectra were used to confirm the presence of the phosphate ion and were compared in the (0-4000) cm-1 region with the theoretical results calculated by the density functional theory (DFT) method to provide reliable assignments of all observed bands in the experimental spectra.Keywords: crystal structure, X-ray diffraction, vibration study, thermal behavior, density functional theory
Procedia PDF Downloads 1171343 Multiple-Material Flow Control in Construction Supply Chain with External Storage Site
Authors: Fatmah Almathkour
Abstract:
Managing and controlling the construction supply chain (CSC) are very important components of effective construction project execution. The goals of managing the CSC are to reduce uncertainty and optimize the performance of a construction project by improving efficiency and reducing project costs. The heart of much SC activity is addressing risk, and the CSC is no different. The delivery and consumption of construction materials is highly variable due to the complexity of construction operations, rapidly changing demand for certain components, lead time variability from suppliers, transportation time variability, and disruptions at the job site. Current notions of managing and controlling CSC, involve focusing on one project at a time with a push-based material ordering system based on the initial construction schedule and, then, holding a tremendous amount of inventory. A two-stage methodology was proposed to coordinate the feed-forward control of advanced order placement with a supplier to a feedback local control in the form of adding the ability to transship materials between projects to improve efficiency and reduce costs. It focused on the single supplier integrated production and transshipment problem with multiple products. The methodology is used as a design tool for the CSC because it includes an external storage site not associated with one of the projects. The idea is to add this feature to a highly constrained environment to explore its effectiveness in buffering the impact of variability and maintaining project schedule at low cost. The methodology uses deterministic optimization models with objectives that minimizing the total cost of the CSC. To illustrate how this methodology can be used in practice and the types of information that can be gleaned, it is tested on a number of cases based on the real example of multiple construction projects in Kuwait.Keywords: construction supply chain, inventory control supply chain, transshipment
Procedia PDF Downloads 1221342 Variation of Fertility-Related Traits in Italian Tomato Landraces under Mild Heat Stress
Authors: Maurizio E. Picarella, Ludovica Fumelli, Francesca Siligato, Andrea Mazzucato
Abstract:
Studies on reproductive dynamics in crops subjected to heat stress are crucial to breed more tolerant cultivars. In tomato, cultivars, breeding lines, and wild species have been thoroughly evaluated for the response to heat stress in several studies. Here, we address the reaction to temperature stress in a panel of selected landraces representing genotypes cultivated before the advent of professional varieties that usually show high adaptation to local environments. We adopted an experimental design with two open field trials, where transplanting was spaced by one month. In the second field, plants were thus subjected to mild stress with natural temperature fluctuations. The genotypes showed wide variation for both vegetative (plant height) and reproductive (stigma exsertion, pollen viability, number of flowers per inflorescence, and fruit set) traits. On average, all traits were affected by heat conditions; except for the number of flowers per inflorescence, the “G*E” interaction was always significant. In agreement with studies based on different materials, estimated broad sense heritability was high for plant height, stigma exsertion, and pollen viability and low for the number of flowers per inflorescence and fruit set. Despite the interaction, traits recorded in control and in heat conditions were positively correlated. The first two principal components estimated by multivariate analysis explained more than 50% of the total variability. The study indicated that landraces present a wide variability for the response of reproductive traits to temperature stress and that such variability could be very informative to dissect the traits with higher heritability and identify new QTL useful for breeding more resilient varieties.Keywords: fruit set, heat stress, solanum lycopersicum L., style exsertion, tomato
Procedia PDF Downloads 1291341 Free Vibration Analysis of Composite Beam with Non-Uniform Section Using Analytical, Numerical and Experimental Method
Authors: Kadda Boumediene, Mohamed Ziani
Abstract:
Mainly because of their good ratio stiffness/mass, and in addition to adjustable mechanical properties, composite materials are more and more often used as an alternative to traditional materials in several domains. Before using these materials in practical application, a detailed and precise characterization of their mechanical properties is necessary. In the present work, we will find a dynamic analyze of composite beam (natural frequencies and mode shape), an experimental vibration technique, which presents a powerful tool for the estimation of mechanical characteristics, is used to characterize a dissimilar beam of a Mortar/ natural mineral fiber. The study is completed by an analytic (Rayleigh & Rayleigh-Ritz), experimental and numerical application for non-uniform composite beam of a Mortar/ natural mineral fiber. The study is supported by a comparison between numerical and analytic results as well as a comparison between experimental and numerical results.Keywords: composite beam, mortar/ natural mineral fiber, mechanical characteristics, natural frequencies, mode shape
Procedia PDF Downloads 3531340 Variability of Metal Composition and Concentrations in Road Dust in the Urban Environment
Authors: Sandya Mummullage, Prasanna Egodawatta, Ashantha Goonetilleke, Godwin A. Ayoko
Abstract:
Urban road dust comprises of a range of potentially toxic metal elements and plays a critical role in degrading urban receiving water quality. Hence, assessing the metal composition and concentration in urban road dust is a high priority. This study investigated the variability of metal composition and concentrations in road dust in four different urban land uses in Gold Coast, Australia. Samples from 16 road sites were collected and tested for selected 12 metal species. The data set was analyzed using both univariate and multivariate techniques. Outcomes of the data analysis revealed that the metal concentrations inroad dust differs considerably within and between different land uses. Iron, aluminum, magnesium and zinc are the most abundant in urban land uses. It was also noted that metal species such as titanium, nickel, copper, and zinc have the highest concentrations in industrial land use. The study outcomes revealed that soil and traffic related sources as key sources of metals deposited on road surfaces.Keywords: metals build-up, pollutant accumulation, stormwater quality, urban road dust
Procedia PDF Downloads 292