Search results for: lactic acid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3354

Search results for: lactic acid

2934 Modification of Unsaturated Fatty Acids Derived from Tall Oil Using Micro/Mesoporous Materials Based on H-ZSM-22 Zeolite

Authors: Xinyu Wei, Mingming Peng, Kenji Kamiya, Eika Qian

Abstract:

Iso-stearic acid as a saturated fatty acid with a branched chain shows a low pour point, high oxidative stability and great biodegradability. The industrial production of iso-stearic acid involves first isomerizing unsaturated fatty acids into branched-chain unsaturated fatty acids (BUFAs), followed by hydrogenating the branched-chain unsaturated fatty acids to obtain iso-stearic acid. However, the production yield of iso-stearic acid is reportedly less than 30%. In recent decades, extensive research has been conducted on branched fatty acids. Most research has replaced acidic clays with zeolites due to their high selectivity, good thermal stability, and renewability. It was reported that isomerization of unsaturated fatty acid occurred mainly inside the zeolite channel. In contrast, the production of by-products like dimer acid mainly occurs at acid sites outside the surface of zeolite. Further, the deactivation of catalysts is attributed to the pore blockage of zeolite. In the present study, micro/mesoporous ZSM-22 zeolites were developed. It is clear that the synthesis of a micro/mesoporous ZSM-22 zeolite is regarded as the ideal strategy owing to its ability to minimize coke formation. Different mesoporosities micro/mesoporous H-ZSM-22 zeolites were prepared through recrystallization of ZSM-22 using sodium hydroxide solution (0.2-1M) with cetyltrimethylammonium bromide template (CTAB). The structure, morphology, porosity, acidity, and isomerization performance of the prepared catalysts were characterized and evaluated. The dissolution and recrystallization process of the H-ZSM-22 microporous zeolite led to the formation of approximately 4 nm-sized mesoporous channels on the outer surface of the microporous zeolite, resulting in a micro/mesoporous material. This process increased the weak Brønsted acid sites at the pore mouth while reducing the total number of acid sites in ZSM-22. Finally, an activity test was conducted using oleic acid as a model compound in a fixed-bed reactor. The activity test results revealed that micro/mesoporous H-ZSM-22 zeolites exhibited a high isomerization activity, reaching >70% selectivity and >50% yield of BUFAs. Furthermore, the yield of oligomers was limited to less than 20%. This demonstrates that the presence of mesopores in ZSM-22 enhances contact between the feedstock and the active sites within the catalyst, thereby increasing catalyst activity. Additionally, a portion of the dissolved and recrystallized silica adhered to the catalyst's surface, covering the surface-active sites, which reduced the formation of oligomers. This study offers distinct insights into the production of iso-stearic acid using a fixed-bed reactor, paving the way for future research in this area.

Keywords: Iso-stearic acid, oleic acid, skeletal isomerization, micro/mesoporous, ZSM-22

Procedia PDF Downloads 23
2933 Naturally Occurring Abietic Acid for Liquid Crystalline Epoxy Curing Agents

Authors: Rasha A.Ibrahim El-Ghazawy, Ashraf M. El-Saeed, Heusin El-Shafey, M. Abdel-Raheim, Maher A. El-Sockary

Abstract:

Two thermotropic liquid crystalline curing agents based on abietic acid with different mesogens (LCC1 and LCC2) were synthesized for producing thermally stable liquid crystal networks suitable for high performance epoxy coatings. Differential scanning calorimetry (DSC) and polarized optical microscope (POM) was used to identify the liquid crystal phase transformation temperatures and texture, respectively. POM micro graphs for both LCCs revealing cholesteric texture. A multifunctional epoxy resin with two abietic acid moieties was also synthesized. Dynamic mechanical (DMA) and thermogravimetric (TGA) analyses show that the fully bio-based cured epoxies by either LCCs possess high glass transition temperature (Tg), high modulus (G`) and improved thermal stability. The chemical structure of the synthesized LCCs and epoxy resin was investigated through FTIR and 1HNMR spectroscopic techniques.

Keywords: abietic acid, dynamic mechanical analysis, epoxy resin, liquid crystal, thermo gravimetric analysis

Procedia PDF Downloads 363
2932 Effect of Phytohormones on the Development and Nutraceutical Characteristics of the Fruit Capsicum annuum

Authors: Rossy G. Olan Villegas, Gerardo Acosta Garcia, Aurea Bernardino Nicanor, Leopoldo Gonzalez Cruz, Humberto Ramirez Medina

Abstract:

Capsicum annuum is a crop of agricultural and economic importance in Mexico and other countries. The fruit (pepper) contains bioactive components such as carotenoids, phenolic compounds and capsaicinoids that improve health. However, pepper cultivation is affected by biotic and abiotic factors that decrease yield. Some phytohormones like gibberellins and auxins induce the formation and development of fruit in several plants. In this study, we evaluated the effect of the exogenous application of phytohormones like gibberellic acid and indolbutyric acid on fruit development of jalapeno pepper plants, the protein profile of plant tissues, the accumulation of bioactive compounds and antioxidant activity in the pericarp and seeds. For that, plants were sprinkled with these phytohormones. The fruit collection for the control, indolbutyric acid and gibberellic acid treatments was 7 peppers per plant; however, for the treatment that combines indolbutyric acid and gibberellic acid, a fruit with the shortest length (1.52 ± 1.00 cm) and weight (0.41 ± 1.0 g) was collected compared to fruits of plants grown under other treatments. The length (4,179 ± 0,130 cm) and weight of the fruit (8,949 ± 0.583 g) increased in plants treated with indolbutyric acid, but these characteristics decreased with the application of GA3 (length of 3,349 ± 0.127 cm and a weight 4,429 ± 0.144 g). The content of carotenes and phenolic compounds increased in plants treated with GA3 (1,733 ± 0.092 and 1,449 ± 0.009 mg / g, respectively) or indolbutyric acid (1,164 ± 0.042 and 0.970 ± 0.003 mg / g). However, this effect was not observed in plants treated with both phytohormones (0.238 ± 0.021 and 0.218 ± 0.004 mg / g). Capsaicin content was higher in all treatments; but it was more noticeable in plants treated with both phytohormones, the value being 0.913 ± 0.001 mg / g (three times greater in amount). The antioxidant activity was measured by 3 different assays, 2,2-diphenyl-1-picrylhydrazyl (DPPH), antioxidant power of ferric reduction (FRAP) and 2,2'-Azinobis-3-ethyl-benzothiazoline-6-sulfonic acid ( ABTS) to find the minimum inhibitory concentration of the reducing radical (IC50 and EC50). Significant differences were observed from the application of the phytohormone, being the fruits treated with gibberellins, which had a greater accumulation of bioactive compounds. Our results suggest that the application of phytohormones modifies the development of fruit and its content of bioactive compounds.

Keywords: auxins, capsaicinoids, carotenoids, gibberellins

Procedia PDF Downloads 114
2931 The Creation of a Yeast Model for 5-oxoproline Accumulation

Authors: Pratiksha Dubey, Praveen Singh, Shantanu Sen Gupta, Anand K. Bachhawat

Abstract:

5-oxoproline (pyroglutamic acid) is a cyclic lactam of glutamic acid. In the cell, it can be produced by several different pathways and is metabolized into glutamate with the help of the 5-oxoprolinase enzyme (OPLAH or OXP1). The inhibition of 5-oxoprolinase enzyme in mammals was found to result in heart failure and is thought to be a consequence of oxidative stress [1]. To analyze the consequences of 5-oxoproline accumulation more clearly, we are generating models for 5-oxoproline accumulation in yeast. The 5-oxoproline accumulation model in yeast is being developed by two different strategies. The first one is by overexpression of the mouse  -glutamylcyclotransferase enzyme. It degrades -glu-met dipeptide into 5-oxoproline and methionine taken by the cell from the medium. The second strategy is by providing high concentration of 5-oxoproline externally to the yeast cells. The intracellular 5-oxoproline levels in both models are being evaluated. In addition, the metabolic and cellular consequences are being investigated.

Keywords: 5-oxoproline, pyroglutamic acid, yeast, genetics

Procedia PDF Downloads 86
2930 Variability and Stability of Bread and Durum Wheat for Phytic Acid Content

Authors: Gordana Branković, Vesna Dragičević, Dejan Dodig, Desimir Knežević, Srbislav Denčić, Gordana Šurlan-Momirović

Abstract:

Phytic acid is a major pool in the flux of phosphorus through agroecosystems and represents a sum equivalent to > 50% of all phosphorus fertilizer used annually. Nutrition rich in phytic acid can substantially decrease micronutrients apsorption as calcium, zink, iron, manganese, copper due to phytate salts excretion by human and non-ruminant animals as poultry, swine and fish, having in common very scarce phytase activity, and consequently the ability to digest and utilize phytic acid, thus phytic acid derived phosphorus in animal waste contributes to water pollution. The tested accessions consisted of 15 genotypes of bread wheat (Triticum aestivum L. ssp. vulgare) and of 15 genotypes of durum wheat (Triticum durum Desf.). The trials were sown at the three test sites in Serbia: Rimski Šančevi (RS) (45º19´51´´N; 19º50´59´´E), Zemun Polje (ZP) (44º52´N; 20º19´E) and Padinska Skela (PS) (44º57´N 20º26´E) during two vegetation seasons 2010-2011 and 2011-2012. The experimental design was randomized complete block design with four replications. The elementary plot consisted of 3 internal rows of 0.6 m2 area (3 × 0.2 m × 1 m). Grains were grinded with Laboratory Mill 120 Perten (“Perten”, Sweden) (particles size < 500 μm) and flour was used for the analysis. Phytic acid grain content was determined spectrophotometrically with the Shimadzu UV-1601 spectrophotometer (Shimadzu Corporation, Japan). Objectives of this study were to determine: i) variability and stability of the phytic acid content among selected genotypes of bread and durum wheat, ii) predominant source of variation regarding genotype (G), environment (E) and genotype × environment interaction (GEI) from the multi-environment trial, iii) influence of climatic variables on the GEI for the phytic acid content. Based on the analysis of variance it had been determined that the variation of phytic acid content was predominantly influenced by environment in durum wheat, while the GEI prevailed for the variation of the phytic acid content in bread wheat. Phytic acid content expressed on the dry mass basis was in the range 14.21-17.86 mg g-1 with the average of 16.05 mg g-1 for bread wheat and 14.63-16.78 mg g-1 with the average of 15.91 mg g-1 for durum wheat. Average-environment coordination view of the genotype by environment (GGE) biplot was used for the selection of the most desirable genotypes for breeding for low phytic acid content in the sense of good stability and lower level of phytic acid content. The most desirable genotypes of bread and durum wheat for breeding for phytic acid were Apache and 37EDUYT /07 No. 7849. Models of climatic factors in the highest percentage (> 91%) were useful in interpreting GEI for phytic acid content, and included relative humidity in June, sunshine hours in April, mean temperature in April and winter moisture reserves for genotypes of bread wheat, as well as precipitation in June and April, maximum temperature in April and mean temperature in June for genotypes of durum wheat.

Keywords: genotype × environment interaction, phytic acid, stability, variability

Procedia PDF Downloads 394
2929 Application of Fatty Acid Salts for Antimicrobial Agents in Koji-Muro

Authors: Aya Tanaka, Mariko Era, Shiho Sakai, Takayoshi Kawahara, Takahide Kanyama, Hiroshi Morita

Abstract:

Objectives: Aspergillus niger and Aspergillus oryzae are used as koji fungi in the spot of the brewing. Since koji-muro (room for making koji) was a low level of airtightness, microbial contamination has long been a concern to the alcoholic beverage production. Therefore, we focused on the fatty acid salt which is the main component of soap. Fatty acid salts have been reported to show some antibacterial and antifungal activity. So this study examined antimicrobial activities against Aspergillus and Bacillus spp. This study aimed to find the effectiveness of the fatty acid salt in koji-muro as antimicrobial agents. Materials & Methods: A. niger NBRC 31628, A. oryzae NBRC 5238, A. oryzae (Akita Konno store) and Bacillus subtilis NBRC 3335 were chosen as tested. Nine fatty acid salts including potassium butyrate (C4K), caproate (C6K), caprylate (C8K), caprate (C10K), laurate (C12K), myristate (C14K), oleate (C18:1K), linoleate (C18:2K) and linolenate (C18:3K) at 350 mM and pH 10.5 were used as antimicrobial activity. FASs and spore suspension were prepared in plastic tubes. The spore suspension of each fungus (3.0×104 spores/mL) or the bacterial suspension (3.0×105 CFU/mL) was mixed with each of the fatty acid salts (final concentration of 175 mM). The mixtures were incubated at 25 ℃. Samples were counted at 0, 10, 60, and 180 min by plating (100 µL) on potato dextrose agar. Fungal and bacterial colonies were counted after incubation for 1 or 2 days at 30 ℃. The MIC (minimum inhibitory concentration) is defined as the lowest concentration of drug sufficient for inhibiting visible growth of spore after 10 min of incubation. MICs against fungi and bacteria were determined using the two-fold dilution method. Each fatty acid salt was separately inoculated with 400 µL of Aspergillus spp. or B. subtilis NBRC 3335 at 3.0 × 104 spores/mL or 3.0 × 105 CFU/mL. Results: No obvious change was observed in tested fatty acid salts against A. niger and A. oryzae. However, C12K was the antibacterial effect of 5 log-unit incubated time for 10 min against B. subtilis. Thus, C12K suppressed 99.999 % of bacterial growth. Besides, C10K was the antibacterial effect of 5 log-unit incubated time for 180 min against B. subtilis. C18:1K, C18:2K and C18:3K was the antibacterial effect of 5 log-unit incubated time for 10 min against B. subtilis. However, compared to saturated fatty acid salts to unsaturated fatty acid salts, saturated fatty acid salts are lower cost. These results suggest C12K has potential in the field of koji-muro. It is necessary to evaluate the antimicrobial activity against other fungi and bacteria, in the future.

Keywords: Aspergillus, antimicrobial, fatty acid salts, koji-muro

Procedia PDF Downloads 554
2928 Lipid from Activated Sludge as a Feedstock for the Production of Biodiesel

Authors: Ifeanyichukwu Edeh, Tim Overton, Steve Bowra

Abstract:

There is increasing interest in utilising low grade or waste biomass for the production of renewable bioenergy vectors i.e. waste to energy. In this study we have chosen to assess, activated sludge, which is a microbial biomass generated during the second stage of waste water treatment as a source of lipid for biodiesel production. To date a significant proportion of biodiesel is produced from used cooking oil and animal fats. It was reasoned that if activated sludge proved a viable feedstock it has the potential to support increase biodiesel production capacity. Activated sludge was obtained at different times of the year and from two different sewage treatment works in the UK. The biomass within the activated sludge slurry was recovered by filtration and the total weight of material calculated by combining the dry weight of the total suspended solid (TSS) and the total dissolved solid (TDS) fractions. Total lipids were extracted from the TSS and TDS using solvent extraction (Folch methods). The classes of lipids within the total lipid extract were characterised using high performance thin layer chromatography (HPTLC) by referencing known standards. The fatty acid profile and content of the lipid extract were determined using acid mediated-methanolysis to obtain fatty acid methyl esters (FAMEs) which were analysed by gas chromatography and HPTLC. The results showed that there were differences in the total biomass content in the activated sludge collected from different sewage works. Lipid yields from TSS obtained from both sewage treatment works differed according to the time of year (between 3.0 and 7.4 wt. %). The lipid yield varied slightly within the same source of biomass but more widely between the two sewage treatment works. The neutral lipid classes identified were acylglycerols, free fatty acids, sterols and wax esters while the phospholipid class included phosphatidylcholine, lysophosphatidycholine, phosphatidylethanolamine and phosphatidylinositol. The fatty acid profile revealed the presence of palmitic acid, palmitoleic acid, linoleic acid, oleic acid and stearic acid and that unsaturated fatty acids were the most abundant. Following optimisation, the FAME yield was greater than 10 wt. % which was required to have an economic advantage in biodiesel production.

Keywords: activated sludge, biodiesel, lipid, methanolysis

Procedia PDF Downloads 472
2927 Physicochemical Investigation of Caffeic Acid and Caffeinates with Chosen Metals (Na, Mg, Al, Fe, Ru, Os)

Authors: Włodzimierz Lewandowski, Renata Świsłocka, Aleksandra Golonko, Grzegorz Świderski, Monika Kalinowska

Abstract:

Caffeic acid (3,4-dihydroxycinnamic) is distributed in a free form or as ester conjugates in many fruits, vegetables and seasonings including plants used for medical purpose. Caffeic acid is present in propolis – a substance with exceptional healing properties used in natural medicine since ancient times. The antioxidant, antibacterial, antiinflammatory and anticarcinogenic properties of caffeic acid are widely described in the literature. The biological activity of chemical compounds can be modified by the synthesis of their derivatives or metal complexes. The structure of the compounds determines their biological properties. This work is a continuation of the broader topic concerning the investigation of the correlation between the electronic charge distribution and biological (anticancer and antioxidant) activity of the chosen phenolic acids and their metal complexes. In the framework of this study the synthesis of new metal complexes of sodium, magnesium, aluminium, iron (III) ruthenium (III) and osmium (III) with caffeic acid was performed. The spectroscopic properties of these compounds were studied by means of FT-IR, FT-Raman, UV-Vis, ¹H and ¹³C NMR. The quantum-chemical calculations (at B3LYP/LAN L2DZ level) of caffeic acid and selected complexes were done. Moreover the antioxidant properties of synthesized complexes were studied in relation to selected stable radicals (method of reduction of DPPH and method of reduction of ABTS). On the basis of the differences in the number, intensity and locations of the bands from the IR, Raman, UV/Vis and NMR spectra of caffeic acid and its metal complexes the effect of metal cations on the electronic system of ligand was discussed. The geometry, theoretical spectra and electronic charge distribution were calculated by the use of Gaussian 09 programme. The geometric aromaticity indices (Aj – normalized function of the variance in bond lengths; BAC - bond alternation coefficient; HOMA – harmonic oscillator model of aromaticity and I₆ – Bird’s index) were calculated and the changes in the aromaticity of caffeic acid and its complexes was discussed. This work was financially supported by National Science Centre, Poland, under the research project number 2014/13/B/NZ7/02-352.

Keywords: antioxidant properties, caffeic acid, metal complexes, spectroscopic methods

Procedia PDF Downloads 216
2926 The Actoprotective Efficiency of Pyrimidine Derivatives

Authors: Nail Nazarov, Vladimir Zobov, Alexandra Vyshtakalyuk, Vyacheslav Semenov, Irina Galyametdinova, Vladimir Reznik

Abstract:

There have been studied effects of xymedon and six new pyrimidine derivatives, that are close and distant analogs of xymedon, on rats' working capacity in the test 'swimming to failure'. It has been shown that a single administration of the studied compounds did not have a statistically significant effect in the test. In the conditions of multiple intraperitoneal administration of the studied pyrimidine derivatives, the compound L-ascorbate, 1-(2-hydroxyethyl)-4.6-dimethyl-1.2-dihydropyrimidine-2-one had the lowest toxicity and the most pronounced actoprotective effect. Introduction in the dose of 20 mg/kg caused a statistically significant increase 440 % in the duration of swimming of rats on the 14th day of the experiment compared with the control group. Multiple administration of the compound in the conditions of physical load did not affect leucopoiesis but stimulates erythropoiesis resulting in an increase in the number of erythrocytes and a hemoglobin level. The substance introduction under mixed exhausting loads prevented such changes of blood biochemical parameters as reduction of glucose, increased of urea and lactic acid levels, what indicates improvement in the animals' tolerability of loads and an anti-catabolic effect of the compound. Absence of hepato and cardiotoxic effects of the substance has been shown. This work was performed with the financial support of Russian Science Foundation (grant № 14-50-00014).

Keywords: actoprotectors, physical working capacity, pyrimidine derivatives, xymedon

Procedia PDF Downloads 291
2925 Manufacturing and Characterization of Bioresorbable Self-Reinforced PLA Composites for Bone Applications

Authors: Carolina Pereira Lobato Costa, Cristina Pascual-González, Monica Echeverry, Javier LLorca, Carlos Gonzáléz, Juan Pedro Fernández-Bláquez

Abstract:

Although the potential of PLA self-reinforced composites for bone applications, not much literature addresses optimal manufacturing conditions. In this regard, this paper describes the woven self-reinforced PLA composites manufacturing processes: the commingling of yarns, weaving, and hot pressing and characterizes the manufactured laminates. Different structures and properties can be achieved by varying the hot compaction process parameters (pressure, holding time, and temperature). The specimens manufactured were characterized in terms of thermal properties (DSC), microstructure (C-scan optical microscope and SEM), strength (tensile test), and biocompatibility (MTT assays). Considering the final device, 155 ℃ for 10 min at 2 MPa act as the more appropriate hot pressing parameters. The laminate produced with these conditions has few voids/porosity, a tensile strength of 30.39 ± 1.21 MPa, and a modulus of 4.09 ± 0.24 GPa. Subsequently to the tensile testing was possible to observe fiber pullout from the fracture surfaces, confirming that this material behaves as a composite. From the results, no single laminate can fulfill all the requirements, being necessary to compromise in function of the priority property. Further investigation is required to improve materials' mechanical performance. Subsequently, process parameters and materials configuration can be adjusted depending on the place and type of implant to suit its function.

Keywords: woven fabric, self-reinforced polymer composite, poly(lactic acid), biodegradable

Procedia PDF Downloads 195
2924 Acid Soil Amelioration Using Coal Bio-Briquette Ash and Waste Concrete in China

Authors: Y. Sakai, C. Wang

Abstract:

The decrease in agricultural production due to soil deterioration has been an urgent task. Soil acidification is a potentially serious land degradation issue and it will have a major impact on agricultural productivity and sustainable farming systems. In China, acid soil is mainly distributed in the southern part, the decrease in agricultural production and heavy metal contamination are serious problems. In addition, not only environmental and health problems due to the exhaust gas such as mainly sulfur dioxide (SO₂) but also the generation of a huge amount of construction and demolition wastes with the accelerating urbanization has emerged as a social problem in China. Therefore, the need for the recycling and reuse of both desulfurization waste and waste concrete is very urgent and necessary. So we have investigated the effectiveness as acid soil amendments of both coal bio-briquette ash and waste concrete. In this paper, acid soil (AS1) in Nanjing (pH=6.0, EC=1.6dSm-1) and acid soil (AS2) in Guangzhou (pH=4.1, EC=0.2dSm-1) were investigated in soil amelioration test. Soil amendments were three coal bio-briquette ashes (BBA1, BBA2 and BBA3), the waste cement fine powders (CFP) ( < 200µm (particle diameter)), waste concrete particles (WCP) ( < 4.75mm ( < 0.6mm, 0.6-1.0mm, 1.0-2.0mm, 2.0-4.75mm)), and six mixtures with two coal bio-briquette ashes (BBA2 and BBA3), CFP, WCP( < 0.6mm) and WCP(2.0-4.75mm). In acid soil amelioration test, the three BBAs, CFP and various WCPs based on exchangeable calcium concentration were added to two acid soils. The application rates were from 0 wt% to 3.5 wt% in AS1 test and from 0 wt% to 6.0 wt% in AS2 test, respectively. Soil chemical properties (pH, EC, exchangeable and soluble ions (Na, Ca, Mg, K)) before and after mixing with soil amendments were measured. In addition, Al toxicity and the balance of salts (CaO, K₂O, MgO) in soil after amelioration was evaluated. The order of pH and exchangeable Ca concentration that is effective for acid soil amelioration was WCP(0.6mm) > CFP > WCP(2.0-4.25mm) > BB1 > BB2 > BB3. In all AS 1 and AS 2 amelioration tests using three BBAs, the pH and EC increased slightly with the increase of application rate and reached to the appropriate value range of both pH and EC in BBA1 only. Because BBA1 was higher value in pH and exchangeable Ca. After that, soil pH and EC with the increase in the application rate of BBA2, BBA3 and by using CFP, WC( < 0.6mm), WC(2.0-4.75mm) as soil amendment reached to each appropriate value range, respectively. In addition, the mixture amendments with BBA2, BBA3 CFP, WC( < 0.6mm), and WC(2.0-4.75mm) could ameliorate at a smaller amount of application rate in case of BBA only. And the exchangeable Al concentration decreased drastically with the increase in pH due to soil amelioration and was under the standard value. Lastly, the heavy metal (Cd, As, Se, Ni, Cr, Pb, Mo, B, Cu, Zn) contents in new soil amendments were under control standard values for agricultural use in China. Thus we could propose a new acid soil amelioration method using coal bio-briquette ash and waste concrete in China.

Keywords: acid soil, coal bio-briquette ash, soil amelioration, waste concrete

Procedia PDF Downloads 181
2923 Comprehensive Validation of High-Performance Liquid Chromatography-Diode Array Detection (HPLC-DAD) for Quantitative Assessment of Caffeic Acid in Phenolic Extracts from Olive Mill Wastewater

Authors: Layla El Gaini, Majdouline Belaqziz, Meriem Outaki, Mariam Minhaj

Abstract:

In this study, it introduce and validate a high-performance liquid chromatography method with diode-array detection (HPLC-DAD) specifically designed for the accurate quantification of caffeic acid in phenolic extracts obtained from olive mill wastewater. The separation process of caffeic acid was effectively achieved through the use of an Acclaim Polar Advantage column (5µm, 250x4.6mm). A meticulous multi-step gradient mobile phase was employed, comprising water acidified with phosphoric acid (pH 2.3) and acetonitrile, to ensure optimal separation. The diode-array detection was adeptly conducted within the UV–VIS spectrum, spanning a range of 200–800 nm, which facilitated precise analytical results. The method underwent comprehensive validation, addressing several essential analytical parameters, including specificity, repeatability, linearity, as well as the limits of detection and quantification, alongside measurement uncertainty. The generated linear standard curves displayed high correlation coefficients, underscoring the method's efficacy and consistency. This validated approach is not only robust but also demonstrates exceptional reliability for the focused analysis of caffeic acid within the intricate matrices of wastewater, thus offering significant potential for applications in environmental and analytical chemistry.

Keywords: high-performance liquid chromatography (HPLC-DAD), caffeic acid analysis, olive mill wastewater phenolics, analytical method validation

Procedia PDF Downloads 70
2922 Role of Salicylic Acid in Alleviating Chromium Toxicity in Chickpea (Cicer Arietinum L.)

Authors: Ghulam Hassan Abbasi, Moazzam Jamil, Ghazala Akhtar, M.Anwar-ul-Haq

Abstract:

Heavy metals are significant pollutants in environment and their toxicity is a problem for survival of living things while salicylic acid (SA) is signaling and ubiquitous bioactive molecule that regulates cellular mechanism in plants under stress condition. Therefore, exogenous application of salicylic acid (SA) under chromium stress in two chickpea varieties were investigated in hydroponic experiment with five treatments comprising of control, 5 µM Cr + 5 mM SA, 5µM Cr + 10 mM SA, 10µM Cr + 5 mM SA, and 10µM Cr + 10 mM SA. Results revealed that treatments of plants with 10 mM SA application under both 5 µM Cr and 10 µM Cr stress resulted in maximum improvement in plant morphological attributes (root and shoot length, root and shoot fresh and dry weight, membrane stability index and relative water contents) relative to 5 mM SA application in both chickpea varieties. Results regarding Cr concentration showed that Cr was more retained in roots followed by shoots and maximum reduction in Cr uptake was observed at 10 mM SA application. Chickpea variety BRC-61 showed maximum growth and least concentration of Cr in root and shoot relative to BRC-390 variety.

Keywords: chromium, Chickpea, salicylic acid, growth

Procedia PDF Downloads 512
2921 Definition of Quality Indicators for Damascus Rose Oil (Rosa damascena) Flora of Morocco

Authors: Serebryanaya Fatima, Essaih Hind

Abstract:

The Rosa damascena (Rosa damascena Mill.) is an interesting medicinal plant; it is famous in different countries and has medicinal use in many cultures. The main groups of pharmacological actions of rose oil are connected with anti-inflammatory, antifungal activity, also antioxidant and antibacterial, and antiparasitic properties. We have prepared the quality indicators analysis of the Damascus rose oil. An iodine number, acid number, and oil peroxide number were determined. The following indicators of the quality of rose oil have been studied. The determination was carried out according to the pharmacopoeic methods of analysis of essential oils, the definition of peroxide number (1,971%), iodine number (3,365%), and acid number (0,0526%).

Keywords: Rosa damascene, Rosa damascena Mill., iodine number, acid number, oil peroxide number

Procedia PDF Downloads 87
2920 Fatty Acid Structure and Composition Effects of Biodiesel on Its Oxidative Stability

Authors: Gelu Varghese, Khizer Saeed

Abstract:

Biodiesel is as a mixture of mono-alkyl esters of long chain fatty acids derived from vegetable oils or animal fats. Recent studies in the literature suggest that end property of biodiesel such as its oxidative stability (OS) is highly influenced by the structure and composition of its alkyl esters than by environmental conditions. The structure and composition of these long chain fatty acid components have been also associated with trends in Cetane number, heat of combustion, cold flow properties viscosity, and lubricity. In the present work, detailed investigation has been carried out to decouple and correlate the fatty acid structure indices of biodiesel such as degree of unsaturation, chain length, double bond orientation, and composition with its oxidative stability. Measurements were taken using the EN14214 established Rancimat oxidative stability test method (EN141120). Firstly, effects of the degree of unsaturation, chain length and bond orientation were tested for the pure fatty acids to establish their oxidative stability. Results for pure Fatty acid show that Saturated FAs are more stable than unsaturated ones to oxidation; superior oxidative stability can be achieved by blending biodiesel fuels with relatively high in saturated fatty acid contents. A lower oxidative stability is noticed when a greater quantity of double bonds is present in the methyl ester. A strong inverse relationship with the number of double bonds and the Rancimat IP values can be identified. Trans isomer Methyl elaidate shows superior stability to oxidation than its cis isomer methyl oleate (7.2 vs. 2.3). Secondly, the effects of the variation in the composition of the biodiesel were investigated and established. Finally, biodiesels with varying structure and composition were investigated and correlated.

Keywords: biodiesel, fame, oxidative stability, fatty acid structure, acid composition

Procedia PDF Downloads 286
2919 Interaction of Hemoglobin with Sodium Dodecyl Sulfate and Ascorbic Acid: A Chemometrics Study

Authors: Radnoosh Mirzajani, Ebrahim Mirzajani, Heshmatollah Ebrahimi-Najafabadi

Abstract:

Introduction: Hydrogen peroxide can be produced over the interaction of sodium dodecyl sulfate (SDS) with hemoglobin which would facilitate the oxidation process of hemoglobin. The presence of ascorbic acid (AA) can hinder the extreme oxidation of oxyhemoglobin. Methods: Hemoglobin was purified from blood samples according to the method of Williams. UV-V is spectra of Hb solutions mixed with different concentrations of SDS and AA were recorded. Chemical components, concentration, and spectral profiles were estimated using MCR-ALS techniques. Results: The intensity of soret band of OxyHb decreased due to the interaction of Hb with SDS. Furthermore, changes were also observed for peaks at 575 and 540. Subspace plots confirm the presence of OxyHb, MetHb, and Hemichrom in each mixture. The resolved concentration profiles using MCR-ALS reveal that the mole fraction of OxyHb increased upon the presence of AA up to a concentration level of 3 mM. The higher concentration of AA shows a reverse effect. AA demonstrated a dual effect on the interaction of hemoglobin with SDS. AA disturbs the interaction of SDS and hemoglobin and exhibits an antioxidative effect. However, it caused a tiny decrease in the mole fraction of OxyHb. Conclusions: H2O2 produces upon the interaction of OxyHb with SDS. Oxidation of OxyHb facilitates due to overproduction of H2O2. Ascorbic acid interacts with H2O2 to form dehydroascorbic acid. Furthermore, the available free SDS was reduced because the Gibbs free energy for micelle production of SDS became more negative in the presence of AA.

Keywords: hemoglobin, ascorbic acid, sodium dodecyl sulfate, multivariate curve resolution, antioxidant

Procedia PDF Downloads 119
2918 Antioxidant Capacity, Proximate Biomass Composition and Fatty Acid Profile of Five Marine Microalgal Species with Potential as Aquaculture Feed

Authors: Vasilis Andriopoulos, Maria D. Gkioni, Elena Koutra, Savvas G. Mastropetros, Fotini N. Lamari, Sofia Hatziantoniou, Michalis Kornaros

Abstract:

In the present study, the antioxidant activity of aqueous and methanolic extracts of Chlorella minutissima, Dunaliella salina, Isochrysis galbana, Nannochloropsis oculata and Tisohrysis lutea, as well as the proximate composition and fatty acid profile were evaluated, with the aim to select species suitable for co-production of antioxidants and aquaculture feed. Batch cultivation was performed at 25oC in a modified f/2 medium under continuous illumination and aeration with ambient air. Biomass was collected via centrifugation and extracted first with H2O and subsequently with methanol at two growth phases (early and late stationary). Total phenolic content and antioxidant and reducing activity of the extracts were evaluated. The highest phenolic content was found in the methanolic extract of C. minutissima at the early stationary phase (9.04±0.68 mg Gallic Acid Equivalent g-1 dry weight), and the aqueous extract of D. salina at the late stationary phase (8.78±1.49 mg Gallic Acid Equivalent g-1 Dry weight). Antioxidant activity, measured as 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and Ferric reducing antioxidant power assay of methanolic extracts were comparable to the literature and correlated to Total phenolic content and Chlorophyll content of the biomass. No such correlation was found in the aqueous extracts. N. oculata and T. lutea were high in protein (39.88±1.72% Dry weight and 43.30±1.33% Dry weight, respectively) and carotenoids (0.64±0.13% and 0.92±0.02%, respectively). Additionally, they presented high eicosapentaenoic acid and docosahexaenoic acid levels (33.74±9.98 mg eicosapentaenoic acid g-1 DW and 31.31±2.92 mg docosahexaenoic acid g-1 dry weight, respectively). N. oculata and T. lutea are promising candidates for the co-production of antioxidants and aquaculture feed, while C. minutissima and D. salina showed promise due to their higher antioxidant content.

Keywords: aquaculture fee, antioxidant activity, fatty acids, microalgae, total phenolic content

Procedia PDF Downloads 169
2917 Anti-Inflammatory Effect of Omega-3 Fish-Oil Supplements: Eicosapentaenoic Acid and Docosahexaenoic Acid in Early-Stage Tumors

Authors: Corina Muscurel, Irina Stoian, Laura Gaman, Valeriu Atanasiu

Abstract:

Chronic inflammation predisposes cells to neoplastic transformation and is associated with angiogenesis. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) give rise to anti-inflammatory metabolites and decrease some inflammatory cytokines. The aim of the study was to analyze the effect of n-3 PUFAs intake on patients with tumors in early-stage (without regional or distant metastasis). There were two groups of patients: one group with colon tumors and one group with lung tumors. All patients took for 60 days daily supplements from fish-oil containing 600 mg eicosapentaenoic acid and 400 mg docosahexaenoic acid. The plasma markers were evaluated before and after PUFAs intake: ceruloplasmin (using p-phenylenediamine oxidase method), plasma total thiol groups (using dithiobis-nitrobenzoic acid method) and CEA (carcinoembryonic antigen using electrochemiluminescent immunoassay). The results reflect ceruloplasmin decrease (p < 0.05), plasma total thiol groups increase (not statistically significant) and CEA decrease (p < 0.05) after n-3 PUFAs intake. Conclusions: n-3 PUFAs intake is favorable in premalignant lesions or in early tumor stage and dietary fish-oil has anti-inflammatory effects and can contribute to reduce cancer progression.

Keywords: cancer, fish-oil, inflammation, n-3 polyunsaturated fatty acids

Procedia PDF Downloads 136
2916 Protective Effects of Sinapic Acid on Organophosphate Poisoning

Authors: Turker Yardan, Bahattin Avci, S. Sirri Bilge, Ayhan Bozkurt

Abstract:

Sinapic acid (SA) is a phenylpropanoid compound with anti-inflammatory, antioxidant, and neuroprotective activities. The purpose of this study was to characterize the possible protective effect of sinapic acid on chlorpyrifos (CPF), a common organophosphorus pesticide used worldwide, induced toxicity in rats. Forty male and female rats (240-270 g) were used in this study. Each group was composed of 5 male and 5 female rats. Sinapic acid (20 mg/kg or 40 mg/kg) or vehicle (olive oil, 1 ml ⁄ rat) were given orally for 5 days. CPF (279 mg/kg) or vehicle (peanut oil, 2 ml ⁄ kg, s.c.) was administered on the sixth day, immediately after the recording of the body weight of the animals. Twenty four hours following CPF administration body weight, body temperature and locomotor activity values were recorded before decapitation of the animals. Trunk blood, brain, and liver samples were collected for biochemical examinations. Chlorpyrifos administration decreased butyrylcholinesterase activity in blood, brain, and liver, while it increased malondialdehyde (MDA) levels and advanced oxidation protein products (AOPPs) (p < 0.01 - 0.001). Additionally, CPF administration reduced the body weight, body temperature, and locomotor activity values of the animals (p < 0.01 - 0.001). All these physiological and biochemical changes induced by CPF were reduced with the 40 mg/kg dose of SA (p < 0.05 - 0.001). Our results suggest that SA administration ameliorates CPF induced toxicity in rats, possibly by supporting the antioxidant mechanism.

Keywords: antioxidant, Chlorpyrifos, poisoning, sinapic acid

Procedia PDF Downloads 178
2915 Application of Active Chitosan Coating Incorporated with Spirulina Extract as a Potential Food Packaging Material for Enhancing Quality and Shelf Life of Shrimp

Authors: Rafik Balti, Nourhene Zayoud, Mohamed Ben Mansour, Abdellah Arhaliass, Anthony Masse

Abstract:

Application of edible films and coatings with natural active compounds for enhancing storage stability of food products is a promising active packaging approach. Shrimp are generally known as valuable seafood products around the world because of their delicacy and good nutritional. However, shrimp is highly vulnerable to quality deterioration associated with biochemical, microbiological or physical changes during postmortem storage, which results in the limited shelf life of the product. Chitosan is considered as a functional packaging component for maintaining the quality and increasing the shelf life of perishable foods. The present study was conducted to evaluate edible coating of crab chitosan containing variable levels of ethanolic extract of Spirulina on microbiological (mesophilic aerobic, psychrotrophic, lactic acid bacteria, and enterobacteriacea), chemical (pH, TVB-N, TMA-N, PV, TBARS) and sensory (odor, color, texture, taste, and overall acceptance) properties of shrimp during refrigerated storage. Also, textural and color characteristics of coated shrimp were performed. According to the obtained results, crab chitosan in combination with Spirulina extract was very effective in order to extend the shelf life of shrimp during storage in refrigerated condition.

Keywords: food packaging, chitosan, spirulina extract, white shrimp, shelf life

Procedia PDF Downloads 210
2914 Leaching of Flotation Concentrate of Oxide Copper Ore from Sepon Mine, Lao PDR

Authors: C. Rattanakawin, S. Vasailor

Abstract:

Acid leaching of flotation concentrate of oxide copper ore containing mainly of malachite was performed in a standard agitation tank with various parameters. The effects of solid to liquid ratio, sulfuric acid concentration, agitation speed, leaching temperature and time were examined to get proper conditions. The best conditions are 1:8 solid to liquid ratio, 10% concentration by weight, 250 rev/min, 30 oC and 5-min leaching time in respect. About 20% Cu grade assayed by atomic absorption technique with 98% copper recovery was obtained from these combined optimum conditions. Dissolution kinetics of the concentrate was approximated as a logarithmic function. As a result, the first-order reaction rate is suggested from this leaching study.

Keywords: agitation leaching, dissolution kinetics, flotation concentrate, oxide copper ore, sulfuric acid

Procedia PDF Downloads 119
2913 Purification of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) from Fish Oil Using HPLC Method and Investigation of Their Antibacterial Effects on Some Pathogenic Bacteria

Authors: Yılmaz Uçar, Fatih Ozogul, Mustafa Durmuş, Yesim Ozogul, Ali Rıza Köşker, Esmeray Kuley Boğa, Deniz Ayas

Abstract:

The aim of this study was to purified eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), that are essential oils from trout oil, using high-performance liquid chromatography (HPLC) method, bioconverted EPA and DHA into bioconverted EPA (bEPA), bioconverted DHA (bDHA) extracts by P. aeruginosa PR3. Moreover, in vitro antibacterial activity of bEPA and bDHA was investigated using disc diffusion methods and minimum inhibitory concentration (MIC). EPA and DHA concentration of 11.1% and 15.9% in trout oil increased in 58.64% and 40.33% after HPLC optimisation, respectively. In this study, EPA and DHA enriched products were obtained which are to be used as valuable supplements for food and pharmaceutical purposes. The bioconverted EPA and DHA exhibited antibacterial activities against two Gram-positive bacteria (Listeria monocytogenes ATCC 7677 and Staphylococcus aureus ATCC 29213) and six Gram-negative bacteria (Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC700603, Enterococcus faecalis ATCC 29212, Aeromonas hydrophila NCIMB 1135, and Salmonella Paratyphi A NCTC 13). Inhibition zones and MIC value of bEPA and bDHA against bacterial strains ranged from 7 to 12 mm and from 350 to 2350 μg/mL, respectively. Our results suggested that the crude extracts of bioconversion of EPA and DHA by P. aeruginosa PR3 can be considered as promising antimicrobials in improving food safety by controlling foodborne pathogens.

Keywords: High-Performance Liquid Chromatography (HPLC), docosahexaenoic acid, DHA, eicosapentaenoic acid, EPA, minimum inhibitory concentration, MIC, Pseudomonas aeruginosa PR3

Procedia PDF Downloads 498
2912 The Leaching Kinetics of Zinc from Industrial Zinc Slag Waste

Authors: Hilary Rutto

Abstract:

The investigation was aimed at determining the extent at which the zinc will be extracted from secondary sources generated from galvanising process using dilute sulphuric acid under controlled laboratory conditions of temperature, solid-liquid ratio, and agitation rate. The leaching experiment was conducted for a period of 2 hours and to total zinc extracted calculated in relation to the amount of zinc dissolved at a unit time in comparison to the initial zinc content of the zinc ash. Sulphuric acid was found to be an effective leaching agent with an overall extraction of 91.1% when concentration is at 2M, and solid/liquid ratio kept at 1g/200mL leaching solution and temperature set at 65ᵒC while slurry agitation is at 450rpm. The leaching mechanism of zinc ash with sulphuric acid was conformed well to the shrinking core model.

Keywords: leaching, kinetics, shrinking core model, zinc slag

Procedia PDF Downloads 155
2911 Modelling and Simulating CO2 Electro-Reduction to Formic Acid Using Microfluidic Electrolytic Cells: The Influence of Bi-Sn Catalyst and 1-Ethyl-3-Methyl Imidazolium Tetra-Fluoroborate Electrolyte on Cell Performance

Authors: Akan C. Offong, E. J. Anthony, Vasilije Manovic

Abstract:

A modified steady-state numerical model is developed for the electrochemical reduction of CO2 to formic acid. The numerical model achieves a CD (current density) (~60 mA/cm2), FE-faradaic efficiency (~98%) and conversion (~80%) for CO2 electro-reduction to formic acid in a microfluidic cell. The model integrates charge and species transport, mass conservation, and momentum with electrochemistry. Specifically, the influences of Bi-Sn based nanoparticle catalyst (on the cathode surface) at different mole fractions and 1-ethyl-3-methyl imidazolium tetra-fluoroborate ([EMIM][BF4]) electrolyte, on CD, FE and CO2 conversion to formic acid is studied. The reaction is carried out at a constant concentration of electrolyte (85% v/v., [EMIM][BF4]). Based on the mass transfer characteristics analysis (concentration contours), mole ratio 0.5:0.5 Bi-Sn catalyst displays the highest CO2 mole consumption in the cathode gas channel. After validating with experimental data (polarisation curves) from literature, extensive simulations reveal performance measure: CD, FE and CO2 conversion. Increasing the negative cathode potential increases the current densities for both formic acid and H2 formations. However, H2 formations are minimal as a result of insufficient hydrogen ions in the ionic liquid electrolyte. Moreover, the limited hydrogen ions have a negative effect on formic acid CD. As CO2 flow rate increases, CD, FE and CO2 conversion increases.

Keywords: carbon dioxide, electro-chemical reduction, ionic liquids, microfluidics, modelling

Procedia PDF Downloads 146
2910 Synthesis and Application of an Organic Dye in Nanostructure Solar Cells Device

Authors: M. Hoseinnezhad, K. Gharanjig

Abstract:

Two organic dyes comprising carbazole as the electron donors and cyanoacetic acid moieties as the electron acceptors were synthesized. The organic dye was prepared by standard reaction from carbazole as the starting material. To this end, carbazole was reacted with bromobenzene and further oxidation and reacted with cyanoacetic acid. The obtained organic dye was purified and characterized using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1HNMR), carbon nuclear magnetic resonance (13CNMR) and elemental analysis. The influence of heteroatom on carbazole donors and cyno substitution on the acid acceptor is evidenced by spectral and electrochemical photovoltaic experiments. Finally, light fastness properties for organic dye were investigated.

Keywords: dye-sensitized solar cells, indoline dye, nanostructure, oxidation potential, solar energy

Procedia PDF Downloads 193
2909 Phenolic Compounds, Antiradical Activity, and Antioxidant Efficacy of Satureja hortensisl - Extracts in Vegetable Oil Protection

Authors: Abolfazl Kamkar

Abstract:

Vegetable oils and fats are recognized as important components of our diet. They provide essential fatty acids, which are precursors of important hormones and control many physiological factors such as blood pressure, cholesterol level, and the reproductive system.Vegetable oils with higher contents of unsaturated fatty acids, especially polyunsaturated fatty acids (PUFAs) are more susceptible to oxidation.Protective effects of Sature jahortensis(SE) extracts in stabilizing soybean oil at different concentrations (200 and 400 ppm) were tested. Results showed that plant extracts could significantly (P< 0.05) lower the peroxide value and thiobarbituric acid value of oil during storage at 60 oC. The IC50 values for methanol and ethanol extracts were 31.5 ± 0.7 and 37.00 ± 0 µg/ml, respectively. In the β- carotene/linoleic acid system, methanol and ethanol extracts exhibited 87.5 ± 1.41% and 74.0 ±2.25 % inhibition against linoleic acid oxidation. The total phenolic and flavonoid contents of methanol and ethanol extracts were (101.58 ± 0. 26m g/ g) and (96.00 ± 0.027 mg/ g), (44.91 ± 0.14 m g/ g) and (14.30 ± 0.12 mg/ g) expressed in Gallic acid and Quercetin equivalents, respectively.These findings suggest that Satureja extracts may have potential application as natural antioxidants in the edible oil and food industry.

Keywords: satureja hortensis, antioxidant activity, oxidative stability, vegetable oil, extract

Procedia PDF Downloads 371
2908 Free Fatty Acid Assessment of Crude Palm Oil Using a Non-Destructive Approach

Authors: Siti Nurhidayah Naqiah Abdull Rani, Herlina Abdul Rahim, Rashidah Ghazali, Noramli Abdul Razak

Abstract:

Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of prediction models has facilitated the estimation process in recent years. In this study, 110 crude palm oil (CPO) samples were used to build a free fatty acid (FFA) prediction model. 60% of the collected data were used for training purposes and the remaining 40% used for testing. The visible peaks on the NIR spectrum were at 1725 nm and 1760 nm, indicating the existence of the first overtone of C-H bands. Principal component regression (PCR) was applied to the data in order to build this mathematical prediction model. The optimal number of principal components was 10. The results showed R2=0.7147 for the training set and R2=0.6404 for the testing set.

Keywords: palm oil, fatty acid, NIRS, regression

Procedia PDF Downloads 507
2907 Anti-Acanthamoeba Activities of Fatty Acid Salts and Fatty Acids

Authors: Manami Masuda, Mariko Era, Takayoshi Kawahara, Takahide Kanyama, Hiroshi Morita

Abstract:

Objectives: Fatty acid salts are a type of anionic surfactant and are produced from fatty acids and alkali. Moreover, fatty acid salts are known to have potent antibacterial activities. Acanthamoeba is ubiquitously distributed in the environment including sea water, fresh water, soil and even from the air. Although generally free-living, Acanthamoeba can be an opportunistic pathogen, which could cause a potentially blinding corneal infection known as Acanthamoeba keratitis. So, in this study, we evaluated the anti-amoeba activity of fatty acid salts and fatty acids to Acanthamoeba castellanii ATCC 30010. Materials and Methods: The antibacterial activity of 9 fatty acid salts (potassium butyrate (C4K), caproate (C6K), caprylate (C8K), caprate (C10K), laurate (C12K), myristate (C14K), oleate (C18:1K), linoleate (C18:2K), linolenate (C18:3K)) tested on cells of Acanthamoeba castellanii ATCC 30010. Fatty acid salts (concentration of 175 mM and pH 10.5) were prepared by mixing the fatty acid with the appropriate amount of KOH. The amoeba suspension mixed with KOH with a pH adjusted solution was used as the control. Fatty acids (concentration of 175 mM) were prepared by mixing the fatty acid with Tween 80 (20 %). The amoeba suspension mixed with Tween 80 (20 %) was used as the control. The anti-amoeba method, the amoeba suspension (3.0 × 104 cells/ml trophozoites) was mixed with the sample of fatty acid potassium (final concentration of 175 mM). Samples were incubated at 30°C, for 10 min, 60 min, and 180 min and then the viability of A. castellanii was evaluated using plankton counting chamber and trypan blue stainings. The minimum inhibitory concentration (MIC) against Acanthamoeba was determined using the two-fold dilution method. The MIC was defined as the minimal anti-amoeba concentration that inhibited visible amoeba growth following incubation (180 min). Results: C8K, C10K, and C12K were the anti-amoeba effect of 4 log-unit (99.99 % growth suppression of A. castellanii) incubated time for 180 min against A. castellanii at 175mM. After the amoeba, the suspension was mixed with C10K or C12K, destroying the cell membrane had been observed. Whereas, the pH adjusted control solution did not exhibit any effect even after 180 min of incubation with A. castellanii. Moreover, C6, C8, and C18:3 were the anti-amoeba effect of 4 log-unit incubated time for 60 min. C4 and C18:2 exhibited a 4-log reduction after 180 min incubation. Furthermore, the minimum inhibitory concentration (MIC) was determined. The MIC of C10K, C12K and C4 were 2.7 mM. These results indicate that C10K, C12K and C4 have high anti-amoeba activity against A. castellanii and suggest C10K, C12K and C4 have great potential for antimi-amoeba agents.

Keywords: Fatty acid salts, anti-amoeba activities, Acanthamoeba, fatty acids

Procedia PDF Downloads 479
2906 A Comparative Performance of Polyaspartic Acid and Sodium Polyacrylate on Silicate Scale Inhibition

Authors: Ismail Bin Mohd Saaid, Abubakar Abubakar Umar

Abstract:

Despite the successes recorded by Alkaline/Surfactant/Polymer (ASP) flooding as an effective chemical EOR technique, the combination CEOR is not unassociated with stern glitches, one of which is the scaling of downhole equipment. One of the major issues inside the oil industry is how to control scale formation, regardless of whether it is in the wellhead equipment, down-hole pipelines or even the actual field formation. The best approach to handle the challenge associated with oilfield scale formation is the application of scale inhibitors to avert the scale formation. Chemical inhibitors have been employed in doing such. But due to environmental regulations, the industry have focused on using green scale inhibitors to mitigate the formation of scales. This paper compares the scale inhibition performance of Polyaspartic acid and sodium polyacrylic acid, both commercial green scale inhibitors, in mitigating silicate scales formed during Alkaline/Surfactant/polymer flooding under static conditions. Both PASP and TH5000 are non-threshold inhibitors, therefore their efficiency was only seeing in delaying the deposition of the silicate scales.

Keywords: alkaline/surfactant/polymer flooding (ASP), polyaspartic acid (PASP), sodium polyacrylate (SPA)

Procedia PDF Downloads 351
2905 Simple Fabrication of Au (111)-Like Electrode and Its Applications to Electrochemical Determination of Dopamine and Ascorbic Acid

Authors: Zahrah Thamer Althagafi, Mohamed I. Awad

Abstract:

A simple method for the fabrication of Au (111)-like electrode via controlled reductive desorption of a pre-adsorbed cysteine monolayer onto polycrystalline gold (poly-Au) electrode is introduced. Then, the voltammetric behaviour of dopamine (DA) and ascorbic acid (AA) on the thus modified electrode is investigated. Electrochemical characterization of the modified electrode is achieved using cyclic voltammetry and square wave voltammetry. For the binary mixture of DA and AA, the results showed that Au (111)-like electrode exhibits excellent electrocatalytic activity towards the oxidation of DA and AA. This allows highly selective and simultaneous determination of DA and AA. The effect of various experimental parameters on the voltammetric responses of DA and AA was investigated. The enrichment of the Au (111) facet of the poly-Au electrode is thought to be behind the electrocatalytic activity.

Keywords: gold electrode, electroanalysis, electrocatalysis, monolayers, self-assembly, cysteine, dopamine, ascorbic acid

Procedia PDF Downloads 195